Computer Graphics

University of California - Berkeley

Adaptive Anisotropic Remeshing for Cloth Simulation


Abstract

We present a technique for cloth simulation that dynamically refines and coarsens triangle meshes so that they automatically conform to the geometric and dynamic detail of the simulated cloth. Our technique produces anisotropic meshes that adapt to surface curvature and velocity gradients, allowing efficient modeling of wrinkles and waves. By anticipating buckling and wrinkle formation, our technique preserves fine-scale dynamic behavior. Our algorithm for adaptive anisotropic remeshing is simple to implement, takes up only a small fraction of the total simulation time, and provides substantial computational speedup without compromising the fidelity of the simulation. We also introduce a novel technique for strain limiting by posing it as a nonlinear optimization problem. This formulation works for arbitrary non-uniform and anisotropic meshes, and converges more rapidly than existing solvers based on Jacobi or Gauss-Seidel iterations.

Citation

Rahul Narain, Armin Samii, and James F. O'Brien. "Adaptive Anisotropic Remeshing for Cloth Simulation". ACM Transactions on Graphics, 31(6):147:1–10, November 2012. Proceedings of ACM SIGGRAPH Asia 2012, Singapore.

Supplemental Material

Demonstration Video

Suplemental Appendix

Source code