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A. Complementary Discussion

In the main paper, qualitative and quantitative compar-
isons are offered to help appreciate the gains of KBody. We
select PyMAf-X [9] as a representative of a single-shot es-
timator that delivers high quality performance on pose cap-
ture, evident also by its quantitative and qualitative perfor-
mance. On the other end, we also select SHAPY [3] as a
representative of a single-shot estimator that delivers high
quality performance on shape capture, also evident by its
quantiative and qualitative performance. Further, as our ap-
proach is an iterative optimization based one, we also in-
clude the SMPLify-X [7] baseline and its data-driven suc-
cessor ExPose [4] which is mostly used as a parameter ini-
tializer. All aforementioned methods are used with their
original – best – hyper-parameters and pre-trained models,
receiving the same inputs, and, where necessary, cropped
with an extended bounding box calculated from OpenPose’s
[2] keypoints. Performance is first evaluated on a 3D vertex
level, with V2V evaluating pose and shape jointly, PVE-T-
SC evaluating shape only, and the body specific measure-
ment metrics presented in SHAPY [3]. We also evaluate
pixel alignment performance using the ground-truth ren-
dered bodies when available (EHF & SSP3D), and by ex-
tracting segmentation masks using a background subtrac-
tion service [1] on the Lab images of HBW (val), which
contain minimal clothing and plain backgrounds.

From a strict comparison perspective, PyMAF-X and
SHAPY are single-shot regressors, while SMPLify-X and
KBody are iterative optimizers. Still, the latter are con-
strained by the estimations of third-party regressors like
OpenPose [2] for the 2D keypoints and MODNet [6] for the
silhouette. While the predict-and-optimize approach can be
considered as a generic scheme and be applied to different
regressors like PyMAF-X and SHAPY, there are conflicting
arguments made in the literature.

Both EFT [5] and Pose-NDF [8] show that simply post-
processing an initial regressor estimate with iterative op-
timization using third-party regressed constraints does not
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necessarily lead to improved results. This is the case for
ExPose [4] being refined via SMPLify-X [7] in the experi-
ments conducted in Pose-NDF [8] and reported in Table 1
of the main paper, as well as the experiments reported in
Table 5 of EFT [5], where better performing initializations
lead to inferior results post fine-tuning.

Instead the exemplar fine-tuning [5] that includes no
prior terms and only exploits the prior learned by the model
is shown to always improve results, albeit less in cases
where the initialization is already of high quality. However,
EFT post-processing [5] was only applied to simple single-
shot pose-dominant regressors, whereas the best performing
models in each category, PyMAF-X [9] and SHAPY [3],
are modified versions of these regressors whose interplay
with EFT post-processing is to be investigated. PyMAF-
X [9] already contains a feedback loop, essentially a mini
iteration loop using its pyramidal features, to improve pose
estimates, and its results interestingly show that this does
not improve shape capture as it regresses towards a camera-
scaled mean shape. SHAPY [3] on the other hand was
(partly) trained with shape annotations, a fact that improved
the performance of the shape coefficient regression, but
crucially reduced pose performance. Original EFT post-
processing would only use the OpenPose keypoints to fine-
tune, with unclear consequences for the shape estimate.
Still, different schemes that combine the silhouette term,
the original SHAPY shape measurements and a discarding
of the optimized shape coefficients are potential options, but
these are expected to require extensive fine-tuning of the pa-
rameters and the process itself, opening up an entirely new
problem.

Our findings show that achieving holistic human capture
across its different components (shape, pose, image align-
ment – see Figure 1 of the main paper) requires the inte-
gration of predictions and optimization which, considering
the rapid important advances in the former, needs more in-
vestigative effort on the post-processing/fine-tuning side to
align with these developments.

Finally, robustness and applicability to in-the-wild im-
ages is an orthogonal goal. These include challenging poses

1

https://klothed.github.io/KBody
mailto:james@getklothed.com


and a variety of body shapes, depicted in images with plain
and complex backgrounds, either in full or partially. Sec-
tion C of this supplemental material includes an extensive
set (over 200) of qualitative results comparison across full
and partial images and an asymmetric distance field abla-
tion.

B. Runtime Performance
The single-shot regressors (PyMAF-X [9], SHAPY

[3]) exhibit significantly better runtime performance as
they produce their estimates an order of magnitude faster
(around 0.1s) than the unoptimized iterative optimization
approaches (SMPLify-X [7], KBody) that need some sec-
onds (∼≥ 17s) to converge. While KBody exploits the Ex-
Pose [4] initialization to skip the camera initialization stages
of SMPLify-X [7], the use of a differentiable renderer at its
later stages incurs extra computational costs, especially for
gradient computations. This amounts to an increase of 40%
in runtime compared to SMPLify-X [7], with all the mea-
surements taken on the same computational infrastructure,
an AWS g4dn.2xlarge instance.

C. Qualitative Results
Figs. 1 to 25 present 112 qualitative result comparisons

between the presented KBody method (rightmost - pink) the
optimization-based SMPLify-X [7] (leftmost - light green),
and the single-shot models PyMAF-X [9] (middle left - pur-
ple) and SHAPY [3] (middle right - green), focusing on
pose and shape capturing respectively.

In addition, Figs. 29 to 32 present an extra 32 qualita-
tive results that demonstrate benefits of the asymmetric dis-
tance field (ADF), compared to a symmetric variant, when
considering clothing robustness gains and unnatural shape
captures.

Further, Figs. 33 to 52 present 78 qualitative result com-
parisons between the presented KBody method (rightmost
- pink), the optimization-based SMPLify-X [7] (leftmost
- light green), and the single-shot models PyMAF-X [9]
(middle left - purple) and SHAPY [3] (middle right - green),
focusing on pose and shape capturing respectively. These
examples focus on partial images with missing head and/or
lower body information, and present a challenging scenario
for high quality monocular body fitting. Our generative
inversion-based completion approach handles them grace-
fully and helps produce reasonable fits even in the absence
of important information. As illustrated by the examples,
priors alone cannot handle this properly for optimization-
based approaches like SMPLify-X [7], while single-shot es-
timates [3,9] exhibit reduced performance given the lack of
necessary image context.
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SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 1. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 2. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 3. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 4. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 5. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 6. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 7. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 8. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 9. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 10. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 11. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 12. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 13. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 14. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 15. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 16. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 17. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 18. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 19. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 20. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 21. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 22. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 23. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 24. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 25. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 26. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 27. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



Figure 28. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



w
/o

A
D

F
w

ith
A

D
F

w
/o

A
D

F
w

ith
A

D
F

Figure 29. KBody fitting results without ADF on each even row and with ADF on each odd row.
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Figure 30. KBody fitting results without ADF on each even row and with ADF on each odd row.
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Figure 31. KBody fitting results without ADF on each even row and with ADF on each odd row.
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Figure 32. KBody fitting results without ADF on each even row and with ADF on each odd row.



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 33. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 34. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 35. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 36. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 37. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 38. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



Figure 39. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 40. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 41. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 42. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



Figure 43. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 44. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 45. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 46. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 47. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 48. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 49. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 50. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 51. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).



SMPLify-X [7] PyMAF-X [9] SHAPY [3] KBody (Ours)

Figure 52. Left-to-right: SMPLify-X [7] (light green), PyMAF-X [9] (purple), SHAPY [3] (green) and KBody (pink).
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