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Abstract

KBody is a method for fitting a low-dimensional body
model to an image. It follows a predict-and-optimize ap-
proach, relying on data-driven model estimates for the con-
straints that will be used to solve for the body’s parameters.
Compared to other approaches, it introduces virtual joints
to identify higher quality correspondences and disentangles
the optimization between the pose and shape parameters to
achieve a more balanced result in terms of pose and shape
capturing capacity, as well as pixel alignment.

Author’s preprint version. Published in CVPR 2023 6th
Workshop on Computer Vision for Fashion, Art, and De-
sign (CVFAD).

1. Introduction
Estimating the parameters of a low-dimensional human

body is a cornerstone for human-centric applications such
as virtual try-on based e-commerce [25]. However, for
consumer-facing products that necessitate monocular in-
puts, it is a highly ill-posed problem that remains elusive
due to the challenges arising from the problem formulation
itself and the limitations of available constraints.

Estimating the human body from a single image cor-
responds to estimating the articulation parameters θ ∈
SO(3)P , the shape parameters β ∈ RB and the global
transform T = [R t

0 1 ]. These parameters reconstruct a hu-
man mesh (V,F) = H(θ,β,T) via the body function H.
Two dominant classes of approach exist. The first is fitting
the body by minimizing an objective function [7, 33]:

argmin
θ,β,T

Edata + Eprior, (1)

that includes a data fitting term, Edata, and Eprior, an im-
portant prior regularization term to prevent degenerate so-
lutions and regularize the ill-posed problem. The con-
straints involved in the data term most typically include 2D
keypoints [33], that are typically inferred by a data-driven
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Figure 1. Flexible, pixel aligned, accurate body pose and shape
capture is the challenging, yet ultimate goal of monocular expres-
sive body fitting. KBody improves the balance between all 3 traits
using a predict-and-optimize approach.

method [8]. While the prior term helps, 2D keypoints usu-
ally lead to solutions that suffer from monocular ambigu-
ity, producing poor results from a 3D accuracy perspective.
The second class of approach consists of data-driven meth-
ods that encode a learned prior in the parameters, χ, of a
neural network, f , and perform monocular inference:

(θ,β,T,π) = fχ(I), (2)

with π being the – typically weak perspective / orthographic
– projection parameters that best explain the image content
using the estimated parameters. As the neural network func-
tion fχ is supervised, it preserves 3D awareness but usually
suffers from predictions with poor pixel alignment.

Another challenge that also hinders high-quality pixel
alignment is the conflict between the pose θ and shape β,
that are entangled through H. Early works [10, 33] focused
on the difficult problem of pose capturing foremost, with
proper shape being an unaccomplished side-objective. Yet
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as progress was made, it became evident that inaccurate
shape was hindering further advances, and thus, more recent
works [9, 11] started focusing on higher quality shape cap-
ture, but seemingly, at the cost of poorer pose estimation.
Overall, achieving pixel-aligned estimates that are metri-
cally correct (in world scale, not up to an unknown scale
factor), and doing so robustly for a wide range of inputs
remains a significant challenge.

In this work, we present a balanced whole-body monocu-
lar fitting method. We improve fitting quality by introducing
virtual joints, adapted to fit the estimated data, and allowing
for smooth interplay with silhouette constraints, expressed
as an asymmetric distance field. We additionally show how
disentangling the optimization process allows for improved
joint shape and pose estimates.

2. Related Work
Estimating parametric human models from images is a

rapidly evolving area forming a complex landscape of data,
models, and training strategies, as discussed in a recent sur-
vey [32] and benchmark [41] papers. Several parametric hu-
man body models, including STAR [30], GHUM [1,44] and
most recently SUPR [31] have been released, but we will
focus on the expressive variant of SMPL, SMPL-X [33].

Pioneering the transition from keypoint estimation to
full-body estimation involved the direct regression of low-
dimensional body parameters from a single image [18].
The method was supervised using keypoint annotations and
thus, end-to-end training was achieved after also regress-
ing the camera parameters that would project the articulated
body joints to correct positions. Regularization was applied
in the form of a discriminator for the estimated pose and
shape, so as to match a realistic distribution made available
as a corpus of fit human scans. Various extensions were
later proposed, integrating inverse kinematics [26], topolog-
ical priors [29], and external camera estimation [21]. While
the latter two approaches use silhouettes in their training
schemes, they remain an intermediate representation for
skeletonization [29] or they include clothing layers [21].

Initial efforts only regressed pure body parameters
(i.e. SMPL), which unfortunately disregards details like
hands and faces. ExPose [10] included regressing param-
eters for the hands and face. FrankMoCap [35] built an
efficient system, achieving real-time rates. ExPose was ex-
tended to PIXIE [13], which had separate experts for the
body, hands and face that were optimally combined to im-
prove results. More recently, PyMAF-X [45] builds on the
iterative nature of these models (e.g. [10, 18]) but instead
of using global features at a single scale, PyMAF-X uses a
pyramid of features, including finer-grained ones, achieving
higher quality pixel alignment than other approaches.

Taking another direction, SHAPY [9] focuses on shape
estimation using model agency annotations for shape mea-

Figure 2. KBody body fitting. Keypoints k and silhouette S are
predicted from the respective models K and S. An initial state
β,θ,T predicted by P is iteratively optimized to fit k and S using
the rendering R, virtual joint V , and projection π functions.

surements. Having been trained with this supervision, it is
capable of regressing metric-scale shapes. SHAPY’s pose
estimation performance is below PyMAF-X, but its capac-
ity to output metric-scale shapes heavily compensates.

SMPLify [7] is the seminal work that fits the SMPL body
to a single image, showing the effectiveness of having pri-
ors for both the pose and shape alike. SMPLify was later
extended to use annotated silhouettes in its iterative opti-
mization scheme, with the goal of improving dataset an-
notations [24]. Using an L1 silhouette objective allowed
for capturing human performances in video [15] using dif-
ferentiable soft-rasterization [28, 34], and improved results
when combined with a differentiable ray-tracer [27] and
part-based masks [3]. In a follow up work, it was extended
to SMPLify-X [33], adding details like hands and face, as
well as a learned prior, VPoser [33]. Similarly, to improve
shape capturing for use within forensic contexts [40], an L2
mask loss was added into the optimization scheme through
a differentiable renderer [19].

While orthogonal improvements like better priors
(e.g. Pose-NDF [42]) can improve fitting performance, re-
sults ultimately heavily rely on the constraints k and (op-
tionally) S. Another important component is the initializa-
tion of the optimization which can significantly affect con-
vergence due to the ill-posedness of monocular fit.

3. Approach

Similar to prior approaches, we minimize Eq. (1) to fit
a body model to image-domain constraints, using the same
prior terms as [33], but with disentangling the optimization,
adding virtual joints, and a silhouette-based objective:

Edata = λk(Erj + Evj)︸ ︷︷ ︸
keypoints

+λmEmask + λdEadf︸ ︷︷ ︸
silhouette

, (3)



where Erj|vj = ϱ(k,π(jrj|vj)) is the Geman-McClure
penalty function [14] for the regular, jrj , and virtual, jvj ,
joints, matching them to the corresponding keypoints k via
the projection function π of given camera model. Emask =∑Ω ||S − Ŝ||1 is an L1 silhouette overlay term defined on
the image domain Ω, between an inferred silhouette S and
the body model’s silhouette Ŝ = R(V,F) rendered via a
differentiable renderer R. An overview is shown in Fig. 2.

Disentangled Optimization (DO). Prior monocular hu-
man body fitting works perform a staged optimization of
Eq.(1), where each stage adds a layer of complexity in the
optimization (e.g. details like fingers), and also anneals the
constraints’ [7, 33] weights across stages. Initial estimates
of global parameters T have also been included as a first
stage [7,33], but sensitivity to localisation of the torso joints
has led to alternatives [24]. To partly address sensitivity to
initialization, a data-driven initial estimate is used, offering
a good initial starting point.

However, all prior work up to now optimize both β
and θ simultaneously at each iteration i of each stage s:
(βs

i+1,θ
s
i+1) = (βs

i + ∆βsi,θ
s
i + ∆θs

i ). These two sets
of parameters are entangled by the human body function H
that allows for their joint optimization. While this is effec-
tive with a 3D objective that is conditioned on the same do-
main where the function H exists, it is much less effective in
the monocular 2D case that comes with inherent 3D ambi-
guities. As a result, optimization is dominated by the pose
updates ∆θ. This imbalance is evident in both keypoint-
only optimization approaches [33] as well as data-driven
models trained with only keypoint losses [10, 22, 45]. Both
tend to produce shape coefficients biased towards the zero
mean vector. More recent shape-aware approaches either
optimize in 3D [11] or use 3D losses during training [9].

Seeking to improve our optimization loop, we separate
the parameter updates of the shape β and pose θ compo-
nents in an alternating fashion for stage s: (βs

i ,θ
s
i+1) =

(βs
i−1 + ∆βs

i−1,θ
s
i + ∆θs

i ). Similar to block coordinate
optimization, the shape β parameters are only updated in
even iterations i, while the pose parameters θ are only up-
dated in odd iterations i + 1. This method exhibits signifi-
cantly better joint optimization of these parameters even in
the highly ill-posed monocular case. However, as this ap-
proach suffers from local minima, it can only be introduced
later in the optimization process.

Virtual Joints (VJ). An iterative fitting approach cru-
cially relies on high quality correspondences. Defining
proper joint locations on the body to match the keypoint
estimates has troubled past approaches, with the hip joints
ignored from the optimization [33], or regressed via em-
pirically defined and manually created joint regressor func-
tions [22]. However, the location of the keypoints k are
typically inferred from a data-driven model which aggre-
gates numerous annotations and thus, includes their biases

Figure 3. From left to right: i) the SMPL-X torso with the
barycentric parameterization comprising the triangles formed by
raw and manually picked [22] joints, ii) our best-estimated vir-
tual joints, and their comparison with iii) manually picked open-
pose joints [4, 5] and iv) the learned regressor joints fit to Hu-
man3.6M [16].

as well. Recent works that acknowledge this have resorted
to learning a joint regressor for a specific dataset [16] which
comes with new challenges like properly constraining the
joints’ locations inside the human body.

Our approach also seeks to identify better matching loca-
tions, but not for a specific dataset, instead matching the in-
ference distribution of a pre-trained 2D keypoint estimator.
We introduce the concept of virtual joints jvj = V(b, js),
by parameterizing joint locations as a linear combination of
weights b and pre-defined (empirically or anthropomorphi-
cally) joint subsets js, s ∈ [1, . . . , S]. More specifically,
we focus on the more ambiguous torso joints, which carry a
two-fold importance, i) they are high in the kinematic chain,
and thus, highly influential of the articulated body fit, and
ii) they are highly dependent on human shape, and thus,
are necessary to avoid cross data-term conflicts between the
keypoint and the silhouette terms.

Virtual joint localisation is restricted to planes formed
by joint triangles (i.e. S = 3), illustrated in Fig. 3, us-
ing a barycentric formulation for the virtual joints. This
allows for the reduction of the number of weights b to 2
(or 1 for joints that need to lie on one of the triangle’s al-
titudes) by exploiting

∑
b∈b b = 1. While this relies on a

non-holding rigidity assumption for the joints subset, albeit
relaxed in the torso area, the goal is to better localize joints
matching those inferred by a 2D estimation model, which
itself exhibits limited expressivity at the torso. Finding the
best matching locations is an one-off process that involves
fitting a variety of pre-defined poses to inferred keypoints
and identifying the best performing weights using a perfor-
mance indicator.

Asymmetric Distance Fields (ADF). Silhouette-based
representations have long been used in parametric model
fitting approaches [2, 39], and have lately appeared in both
optimization or single-shot approaches [6,15,17,24,29,37,
38, 40]. They are usually coupled with differentiable ren-
dering [19, 34] and L1/2 losses. This loss is inefficient,
suffering from an irregular loss landscape and the lack of



directional information for parameter updates [29].
To supplement the L1 mask loss we use Eadf =

∑Ω
B⊙

F summed over the pixel domain Ω which is minimized
when the two silhouette boundaries align, with B being the
boundary of S and F the asymmetric distance field. The
latter is defined as:

F = λoD(S)⊙ S̄+ λiD(S̄)⊙ S, (4)

with D(·) being the distance field function and (̄·) denoting
pixel-wise binary inversion. The asymmetry derives from
the different inner (λi) and outer (λo) distance field weights.

4. Results
We refer to the approach depicted in Fig. 2 as KBody

and implement it using SMPL-X [33] (H), OpenPose [8]
(K), MODNet [20] (S, producing S after binary threshold-
ing the estimated matte at 0.85), and ExPose [10] (P). The
objective is optimized with L-BFGS [43] for 30 iterations
per stage. Similar to prior work we perform annealed op-
timization with the early stages using stronger regulariza-
tion to make the objective function more convex, and then
progressively reduce the regularization term weights and in-
crease the data terms of the details (hands, face). Differen-
tiable rendering R is implemented using high-performance
rasterization [23]. We use the pose prior and regularization
terms from SMPLify-X [33], but relax the latter’s weights
due to the better initialization and the silhouette constraints.

First we validate the effectiveness of the virtual joint lo-
calization by running only 2 stages of fitting to K after ini-
tializing with P , without involving S for a fair compar-
ison, and with only the second stage optimizing the de-
tails. We use the EHF [33] dataset to run a hierarchi-
cal and empirically defined search to identify the param-
eters b. Performance is measured with the indicator i =
(1−IoU)×RMSE, aggregating the keypoints’ RMSE and
the body’s IoU using the service generated masks. We the
compare against other approaches fitting to EHF in Tab. 1.
Performance is assessed via procrustes-aligned vertex-to-
vertex error on the SMPL-X body’s vertices (PA-V2V-X)
[33]. As also shown in Pose-NDF [42] and the first 3 rows
of Tab. 1, simply optimizing the initial estimates of a data-
driven model does not necessarily lead to improved fits. Us-
ing better priors [12, 42] slightly improves results over the
baseline single-shot data-driven estimate [33], while a man-
ually selected joint regressor [4, 5] (Fig. 3 iii) does not re-
sult in improved fits. The virtual joints produce the most
significant gain, showcasing the importance of higher qual-
ity correspondences between the estimated keypoints used
as constraints and the body’s joints. It should be noted that,
apart from the last 2 rows, bad joint-to-keypoint correspon-
dences (e.g. hips) are ignored during optimization.

Next we evaluate the full KBody approach by adding the
silhouette constraints using S, a DO stage, and a final stage

Initialization Optimization Joints Prior PA-V2V-X↓
SMPLify-X [33] jrj VPoser [33] 60.3 mm

ExPose [10] jrj 54.8 mm
ExPose [10] SMPLify-X [33] jrj VPoser [33] 67.2 mm

SMPLify-X [33] jrj PoseNDF [42] 57.4 mm
ExPose [10] SMPLify-X [33] jrj PoseNDF [42] 53.8 mm
ExPose [10] SMPLify-X [33] jrj GAN-S [12] 54.1 mm
ExPose [10] SMPLify-X [33] jop [4, 5] VPoser [33] 57.5 mm
ExPose [10] SMPLify-X [33] jrj|vj VPoser [33] 49.3 mm

Table 1. Virtual joints improvement analysis on EHF [33]. The
columns indicate parameter initialization and optimization, which
joints are optimized, and with which pose prior.

for detail (hands, face) capture. Two experiments are pre-
sented, on EHF and SSP3D [36] focusing on pose and shape
performance respectively. Pixel-based IoU and use the PA-
V2V and PVE-T-SC [36] metrics are used. Both experi-
ments use the SMPL meshes to calculate metrics instead of
the SMPL-X ones to reduce the effect of the densely sam-
pled head via pre-calculated mesh-to-mesh vertex transfer
maps [30]. Tab. 2 shows that how KBody outperforms the
other methods with respect to pose estimation (EHF), and
shape capturing (SSP3D) capacity. Evidently, KBody pro-
duces the best pixel alignment and also an ablation shows
the benefit of disentangled optimization for shape capture.

EHF [33] SSP3D [36]
Method PA-V2V↓ IoU↑ PVE-T-SC↓ IoU↑

ExPose [10] 71.7 mm 84.72% 33.0 mm 71.00%
SMPLify-X [33] 95.9 mm 81.46% 33.9 mm 76.60%
PyMAF-X [45] 66.6 mm 85.57% 30.6 mm 75.87%
SHAPY [9] 71.1 mm 81.29% 29.3 mm 72.65%
KBody (w/o DO) - - 28.1 mm 77.87%
KBody 64.2 mm 87.72% 25.6 mm 80.35%

Table 2. Results on the the EHF [33] & SSP3D [36] datasets.

Finally, KBody’s efficacy is qualitatively illustrated in
Fig. 1 using images collected online. For these represen-
tative examples, KBody provides more balanced solutions,
capturing pose and shape in high-quality for both heavy and
lighter subjects, while also achieving good pixel alignment.
An extended set of 112 randomly selected in-the-wild ex-
amples can be found in our supplemental material.

5. Conclusion
While the conflicts between pose and shape performance

as well as world scale outputs and image alignment remain
to be solved, we believe KBody is a step towards more bal-
anced performance. However, relying on externally esti-
mated constraints limits applicability in situations where the
constraint models under-perform. Still, improving 2D esti-
mation models is more practical than acquiring 3D data for



supervision [11] or a wide-range of images and correspond-
ing measurements [9].
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