Dynamic Local Remeshing for Elastoplastic Simulation

Martin Wicke Daniel Ritchie Bryan Klingner Sebastian Burke Jonathan Shewchuk James O'Brien

Overview

• Dynamic, local remeshing

Plasticity using material space remeshing

Finite Element Simulation

Material Space

World Space

Finite Element Simulation

Material Space

World Space

Finite Element Simulation

Material Space

World Space

Plasticity

Material Space

World Space

Plasticity

Material Space

World Space

Plasticity

Material Space

World Space

Material Space

World Space

Material Space

World Space

Material Space

World Space

Material Space

World Space

Sunday, August 1, 2010

8

Material Space

World Space

Material Space

World Space

Material Space

World Space

Artificial Plasticity

World Space Remeshing

Artificial Plasticity

Material Space Remeshing World Space Remeshing

Artificial Plasticity

Material Space Remeshing

World Space Remeshing

World Space

11

Material Space

Material Space

Sunday, August 1, 2010

World Space

11

World Space 11

Material Space

Material Space

Sunday, August 1, 2010

World Space 12

Material Space

World Space 13

Material Space

Sunday, August 1, 2010

13

Resampling

Material Space

Elastic Material

Material Space

High Plasticity

Material Space

Medium Plasticity

Material Space

Low Plasticity

Material Space

Mixed Plasticity

Material Space

Adaptive refinement

Why Dynamic Remeshing?

completely reshape domain

Why Dynamic Remeshing?

completely reshape domain

control element quality

Why Dynamic Remeshing?

completely reshape domain

control element quality

adaptive refinement and coarsening

• Remesh as little as possible

- Remesh as little as possible
 - Target only bad tets

- Remesh as little as possible
 - Target only bad tets
 - Improve mesh in every time step

Dynamic Local Remeshing Local operations:

Require improvement after each operation

Dynamic Local Remeshing Local operations:

- Require improvement after each operation
- Schedule most local operations first

Mesh Quality

Mesh Quality

Mesh Quality

Vertex smoothing modifies surface

Vertex smoothing modifies surface

Control surface modification using quadric error

Contributions

Dynamic, local remeshing is possible and necessary

 Maintaining a minimum strain energy mesh greatly reduces artificial plasticity

Conclusions (I)

Dynamic Local Remeshing

- Maintains high quality throughout
- Enables adaptivity
- More accurate than remeshing from scratch

Conclusions (II)

Strain energy minimizing material space mesh

• Lower resampling error, lower artificial plasticity

Materials from purely elastic to very plastic

Conclusions (II)

Strain energy minimizing material space mesh

• Lower resampling error, lower artificial plasticity

• Materials from purely elastic to very plastic

http://graphics.berkeley.edu/papers/Wicke-DLR-2010-07/

Sunday, August 1, 2010

Sunday, August 1, 2010