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(a) our method, 37 spp (samples per pixel) (b) equal time,
unfiltered, 37 spp

(c) our method,
37 spp

(d) ground truth
4000 spp

(e) equal error,
unfiltered, 153 spp

Figure 1: (a) Soft shadows from a planar area light are computed accurately by raytracing at 2.3 fps, with adaptive sampling and filtering
using our method. The scene has 300K vertices and complex shadows. Our method is simple, requires no precomputation and directly plugs
into NVIDIA’s OptiX or other real-time raytracer. (b) Soft shadows without filtering, equal time; note the considerable noise. (c) Our method
compares well to ground truth (d). (e) Equal error without filtering still has some noise making it visually less acceptable. The scene is based
on one first used in [Overbeck et al. 2006]. Readers are encouraged to zoom into the PDF in all figures to see the noise and shadow details.

Abstract

We develop a simple and efficient method for soft shadows from
planar area light sources, based on explicit occlusion calculation by
raytracing, followed by adaptive image-space filtering. Since the
method is based on Monte Carlo sampling, it is accurate. Since the
filtering is in image-space, it adds minimal overhead and can be per-
formed at real-time frame rates. We obtain interactive speeds, us-
ing the Optix GPU raytracing framework. Our technical approach
derives from recent work on frequency analysis and sheared pixel-
light filtering for offline soft shadows. While sample counts can
be reduced dramatically, the sheared filtering step is slow, adding
minutes of overhead. We develop the theoretical analysis to instead
consider axis-aligned filtering, deriving the sampling rates and filter
sizes. We also show how the filter size can be reduced as the num-
ber of samples increases, ensuring a consistent result that converges
to ground truth as in standard Monte Carlo rendering.
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1 Introduction

This paper focuses on accurate and efficient rendering of soft shad-
ows from planar area lights. Soft shadows are a key effect in photo-
realistic rendering, but are expensive because every location on the
area light must be considered and sampled. While real-time tech-
niques [Hasenfratz et al. 2003; Johnson et al. 2009] have achieved
impressive results, they rely on a variety of approximations, mak-
ing no guarantee of convergence to ground truth while retaining
some artifacts. On the other hand, Monte Carlo shadow-ray trac-
ing is the preferred offline rendering method since it is physically-
based, accurate and artifacts (noise that goes away with more sam-
ples) are well understood. Monte Carlo rendering can now be
GPU-accelerated, and ready-to-use raytracers are available; we use
NVIDIA’s Optix [Parker et al. 2010]. However, the number of sam-
ples per pixel for soft shadows remains too large for interactive use.

We build on [Egan et al. 2011b] to significantly reduce the number
of Monte Carlo samples needed, while still keeping the benefits
of accurate raytraced occlusion. [Egan et al. 2011b] developed a
sheared filter in the 4D pixel-light space, that combines samples
from many different pixels, at different light locations. However,
the filtering step introduces considerable overhead of minutes, and
the technique is offline. In this paper, we use simpler axis-aligned
(rather than sheared) filters. (In this context, axis-aligned or sheared
refers to the shadow light field in the pixel-light domain, rather than
the 2D image—we also use separable 1D filters along the image
axes as a practical optimization, but this is less critical.)

While the number of samples per pixel is somewhat increased
in our axis-aligned method as opposed to sheared filtering, post-
processing reduces to a simple adaptive 2D image-space filter,
rather than needing to search over the irregular sheared filter for
samples in the full 4D shadow light field. Our method is easily in-
tegrated with existing Monte Carlo renderers, reducing the samples
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required by 4×-10×. The main benefit is that overhead is minimal
(about 5ms), even in GPU raytracers, and interactive performance
can therefore be achieved. Our specific contributions are:

1. Derivation of adaptive sampling rates and adaptive filter sizes
for axis-aligned pixel-light filtering of soft shadows.

2. Consistent sampling, wherein the filter size is adjusted for
the sampling rate, ensuring convergence as in standard Monte
Carlo. (Previous sheared filtering approaches still contain
some artifacts and typically do not guarantee convergence).

3. A simple Optix implementation where the filtering has mini-
mal overhead. We achieve interactive frame rates (Fig. 1).

2 Previous Work

Real-Time and Accelerated Soft Shadows: The shadow map-
ping method [Williams 1978] can be extended to soft shadow maps
that consider occlusion from the entire area source [Guennebaud
et al. 2006; Annen et al. 2008]. As noted in [Johnson et al. 2009],
these methods make various tradeoffs of speed and accuracy. Soler
and Sillion [1998] provide an analytic solution, but only for ge-
ometry in parallel planes. Shadow volumes [Crow 1977] can also
be extended to soft shadows using geometric ideas like penumbra
wedges [Assarsson and Möller 2003; Laine et al. 2005] An analytic
approach based on beam tracing is proposed by [Overbeck et al.
2007], but is not yet fast enough for real-time use, especially on
complex scenes. Another body of work is precomputed relight-
ing [Sloan et al. 2002], but these are usually limited to static scenes
lit by environment maps. We require no precomputation and ray-
trace each frame independently, allowing for dynamic scenes.

Monte Carlo and Ray-Traced Shadows: A number of acceler-
ations that exploit coherence have been proposed [Hart et al. 1999;
Agrawala et al. 2000], as well as methods to separate near and
far-field effects [Arikan et al. 2005], prefilter visibility [Lacewell
et al. 2008] and accelerate ray packets [Benthin and Wald 2009].
In contrast, we directly leverage a GPU raytracing framework in
Optix [Parker et al. 2010] but add an adaptive image-space filter in
post-processing.

A few recent works have explored GPU acceleration of occlusion
queries [Eisemann and Decoret 2007; Forest et al. 2008] and sam-
pled visibility [Sintorn and Assarsson 2008]. It should be possible
in future to combine our image-space filtering approach with these
GPU methods, but we currently only use the basic Optix raytracer.

Adaptive Sampling and Sheared Reconstruction: Our
method adaptively samples the image plane, inspired by the offline
rendering methods of [Guo 1998], and more recently [Hachisuka
et al. 2008] and [Overbeck et al. 2009]. We build most closely
on recent approaches for frequency analysis of shadows and light
transport [Chai et al. 2000; Durand et al. 2005; Lanman et al. 2008].
In particular, Egan et al. [2011b] develop a method for caching the
4D shadow light field with very low sampling density, followed by
a sheared pixel-light filter for reconstruction. Several other recent
papers have explored similar ideas for motion blur, depth of field,
ambient occlusion and more general effects [Egan et al. 2009; Soler
et al. 2009; Egan et al. 2011a]. However, the filtering phase is slow,
often taking longer than actual shadow casting. Sheared filtering
must store the full 4D light field, and perform an irregular search
over it at each pixel. [Lehtinen et al. 2011] use a GPU-accelerated
reconstruction, but are still too slow for interactive use. We use sim-
pler axis-aligned filtering to develop a very efficient post-processing
algorithm that reduces to simple 2D adaptive screen-space filtering.

De-Noising: Our post-process is essentially an image de-noising
operator, building on [Rushmeier and Ward 1994; McCool 1999;
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Figure 2: (a) The basic setup and coordinate system for analyzing
occlusion, (b) The binary occlusion function for flatland, and (c)
Fourier spectrum of the occlusion function.

Xu and Pattanaik 2005]. Recently, [Sen and Darabi 2012] describe
an iterative approach to filter Monte Carlo noise, but this is still
an offline procedure for global illumination. We are also inspired
by many recent image-processing algorithms, such as [Dabov et al.
2007]. However, these previous approaches are not designed for
real-time use, and also assume limited a-priori information about
the scene. We use our theoretical analysis to estimate the precise
extent of the filter needed adaptively at each pixel.

3 Background

We now briefly introduce the basic spatial and frequency domain
analysis of the occlusion function. The ideas are summarized in
Fig. 2. In the next section, we define the various frequency ban-
dlimits precisely in physical units, and then proceed to derive filter
sizes and sampling rates. As in previous work, we introduce the
theory with a 2D occlusion function (1 spatial dimension on the re-
ceiver and light source); the extension to 2D images and lights is
straightforward and we provide details later of our implementation.

Assumptions: We use y for light coordinates and x for coor-
dinates on a parameterization plane parallel to the light source as
shown in Fig. 2(a); Our goal is to compute the result h(x),

h(x) = r(x)

∫
f(x, y)l(y) dy, (1)

where f(x, y) is the occlusion or shadow function1, and l(y) is the
light source intensity. We assume planar area lights and generally
use a gaussian form for l(y). We also focus on the diffuse intensity
(assuming the specular term will be added by a separate pass, as
is common in many applications), and that the irradiance from the
light can be approximated at its center with r(x), so we can focus
purely on the occlusion f(x, y). These assumptions are similar to
many previous works [Soler and Sillion 1998; Egan et al. 2011b].
Textures can be included directly in r(x). Glossy or other BRDFs
can also be combined into the lighting function l(y), as discussed
in [Egan et al. 2011a], and simply require us to modify the effective
light frequency bandlimit in our formulae. However, we do not in-
clude these effects in most of our examples, to focus on shadows. In
practice, our method also works fairly well, without modifications,
when including only the cosine falloff in l(y), as seen in Fig. 11(a).

Occlusion Function: From the geometry of Fig. 2(a), we can
derive the 2D occlusion function f(x, y) in terms of a 1D visibility

1Note that [Egan et al. 2011b] first define f in terms of a ray-space pa-
rameterization with a plane one unit away and then compute the occlusion;
we directly use f(x, y) to denote the occlusion.



(g(·) is defined along the occluder plane parallel to the light plane),

f(x, y) = g

(
d2(x− y)

d1
+ y

)
, (2)

where d2 is the distance from the light to the occluder and d1 is
the distance from the light to the receiver (note that d1 can depend
on x since the receiver may not be planar). The occlusion function
f(x, y) has a regular structure with diagonal bands due to equa-
tion 2; the slope of the bands will be given by −d2/(d1 − d2). If
the occluder depths vary between dmin

2 < d2 < dmax
2 , f typically

looks like Fig. 2(b).

Fourier Analysis: The Fourier spectrum for equation 2 lies on a
line with slope s = (d1/d2)− 1 (orthogonal to the spatial domain
slope in Fig. 2(b)). In terms of Fourier spectra F and G,

F (Ωx,Ωy) =
d1

d2
δ(Ωy − sΩx)G

(
d1

d2
Ωx

)
. (3)

As noted in [Chai et al. 2000; Egan et al. 2011b], when we have a
range of depths, most of the spectrum will lie in a union of the lines
for each depth, and hence be confined to a double wedge as shown
in Fig. 2(c).2 Maximum and minimum slopes respectively are

s1 =
d1

dmin
2

− 1 s2 =
d1

dmax
2

− 1. (4)

4 Axis-Aligned Filtering

The frequency spectra define the sampling resolution and hence the
filter sizes. In this section, we derive the axis-aligned filters that we
use. Note that axis-aligned here refers to the 2D (later 4D) pixel-
light space, not the 2D image domain. We begin by introducing the
frequency domain bandlimits; we use precise physical units unlike
many previous works. We then derive filter sizes and apply them in
screen-space (implementation details are later in Sec. 6).

4.1 Preliminaries: Frequency Domain Bandlimits

Frequencies in both dimensions, Ωx and Ωy , are measured inm−1,
assuming world coordinates are measured in meters. The limited
resolution of the output image acts as a low pass filter in the spatial
(pixel) dimension. Ωmax

pix is the maximum displayable frequency
in the pixel space, and following earlier approaches, is taken to be
Ωmax

pix = (1/d) m−1, where d is the projected distance per pixel
(i.e., the length in world coordinates that this pixel corresponds to,
which also accounts for effects like foreshortening).

The occlusion functionF (Ωx,Ωy) is assumed to have a spatial ban-
dlimit imposed due to the smoothness of geometry causing the oc-
clusion.3 There is no definite way to quantify this bandlimit, so we
will introduce it as a parameter Ωmax

x in our analysis. In particular,
we first introduce a parameter α, so that

α =
Ωmax

g

Ωmax
pix

∈ (0, 1], (5)

where Ωmax
g is the (unknown) bandlimit on the occluding geometry.

The conservative approach (which we use in our images) would
simply set α = 1, i.e., use Ωmax

g = Ωmax
pix . From equation 3,

Ωmax
x = α

dmax
2

d1
Ωmax

pix = α(1 + s2)−1Ωmax
pix . (6)

2As discussed in [Egan et al. 2011b], there are unusual configurations
that violate these assumptions, but they do not arise in our practical tests.

3In practice, sharp edges could produce infinite frequencies, but we limit
ourselves here to pixel resolution for practical purposes.
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Figure 3: Schematic of (a) Axis-Aligned Filter, (b) Sheared Filter.

It is also useful to know the Ωy bandlimit of the occlusion function.
From the geometry of Fig. 2(c), it is clear that Ωy = sΩx, which
leads to (d1/d2 − 1)α(d2/d1)Ωmax

pix , and

Ωmax
y = α

(
1− dmin

2

d1

)
Ωmax

pix . (7)

Finally, since effective visibility is the integration of the light intern-
sity with the occlusion function, frequencies in the occlusion func-
tion outside the light’s bandlimits Ωmax

L will be filtered (Fig. 3(a)).

We assume the light is a Gaussian of standard deviation σmeters, so
Ωmax

L = (1/σ) m−1. Of course, Gaussian lights will not perfectly
bandlimit, and the cutoff can also be scaled by a small constant
(e.g., using 2σ instead of σ) without materially affecting the deriva-
tions. The numerical constants used in our paper are consistent, and
agree well with empirical observations. We have also experimented
with constant (non-Gaussian) lights. These become Fourier domain
sincs without a strict frequency cutoff, but they do work in practice,
with more conservative bandlimits (see Fig. 11(b)).

4.2 Frequency Extent of Axis-Aligned Filter

We define the axis-aligned filter in the frequency domain as
[−Ωf

x ,Ω
f
x ]× [−Ωf

y ,Ω
f
y ]. As shown in Fig. 3(a),

Ωf
x = min

[
Ωmax

L

s2
,Ωmax

x

]
Ωf

y = Ωmax
L . (8)

The Ωy bandlimit simply comes from the light, while the Ωx ban-
dlimit is induced by the light. Ωf

x must also be clipped to Ωmax
x .

Even though the size of the axis-aligned filter in Fig. 3(a) is larger
than the sheared filter in Fig. 3(b), one important advantage is the
decoupling of filtering over the spatial x and light y dimensions.
This reduces to a simple screen-space filter, as we will see next.

4.3 Towards filtering in Screen-Space

Spatial Domain Filters: The primal domain analogue of a fre-
quency domain box filter is a sinc filter, which decays slowly.
Hence, we approximate both the fequency and primal domain fil-
ters with Gaussians. In the primal or pixel domain, the standard
deviation4 is β(x) = 1/Ωf

x .

4As described in equation 13, we actually find it better to use a value
β(x) = k−1Ωf

x where k accounts for the Gaussian energy being spread
over multiple standard deviations, and we usually set k = 3.



Similarly, the standard deviation in the y-dimension γ(y) = 1/Ωf
y.

However, Ωf
y = Ωmax

L = (1/σ), and γ(y) = σ, which is sim-
ply the standard deviation of the original light source (in meters).
Thus, the filter in the y dimension simply integrates against the light
source l(y). This integral can be performed first and simply gives
the standard noisy Monte Carlo result. Thereafter, we can apply
the x filter only in the spatial dimensions.

Shading Equations: Note that the x and y dimensions are
treated separately in equation 1 (we also omit r(x) in equation 1
for simplicity since it just multiplies the final result). The y dimen-
sion involves an integral of the light and the visibility, which can
be performed in any orthonormal basis (either spatial or frequency
domain). On the other hand, the x dimension is related to the final
image, and we must apply the axis-aligned filter (a spatial convolu-
tion) to remove replicas from sampling. Putting this together,

h(x) =

∫
x′

∫
y

w(x− x′;β(x))f̄(x′, y)w(y; γ(y)) dy dx′, (9)

wherew() are the spatial domain Gaussian filters, and f̄ is the sam-
pled (noisy) visibility. To simplify further, note per the earlier dis-
cussion thatw(y; γ(y)) = l(y) is just the light source itself. Hence,
we can pre-integrate the lighting to obtain a noisy result h̄(x) to
which we then apply a simple Gaussian filter,

h̄(x′) =

∫
y

f̄(x′, y)l(y) dy

h(x) =

∫
x′
h̄(x′)w(x− x′;β(x)) dx′. (10)

The Gaussian filter w(x− x′) is given in the standard way by

w(x− x′;β) =
1√
2πβ

exp

[
−‖ x− x

′ ‖2

2β2

]
, (11)

where in the 3D world, we set ‖ x−x′ ‖ to be the distance between
two world-space locations, but measured along the plane parallel to
the light (motion normal to the light is excluded). In other words, if
| · | measures Euclidean distance and n is the light normal,

‖ x− x′ ‖2=| x− x′ |2 −
[
n · (x− x′)

]2
. (12)

Discussion: The simplicity of equation 10 is key for our algo-
rithm. In essence, we are just computing the standard noisy visi-
bility h̄(x) followed by a denoising or filtering step to obtain h(x).
Our analysis is simply telling us exactly how much to filter (giving
the value of β(x)) for each spatial location, and β(x) is spatially-
varying, depending on the local geometry and occluders. So far, all
of the discussion has been in world-space, but the filtering can be re-
duced to image-space as discussed in our implementation (Sec. 6).

Unlike sheared filtering, we do not need to keep track of the full
occlusion light field, which is a major memory savings. Moreover,
filtering happens only on the image, and we do not need to search
the light field for samples that fall inside an irregular sheared filter.

Finally, β(x) ∼ 1/Ωf
x and is given from equations 4 and 8 as,

β(x) =
1

k
· 1

µ
max

[
σ

(
d1

d2,max
− 1

)
,

1

Ωmax
x

]
, (13)

where σ = 1/Ωmax
L is the standard deviation of the Gaussian for

the light, and the factor of k (we use k = 3) corrects for the spread
of energy from the Gaussian filter across multiple standard devia-
tions. For now, µ = 1; it is a parameter we introduce later to allow
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Figure 4: Packing of spectra for axis-aligned filtering. The packing
in (a) is denser, and will be used in the rest of our analysis.

the frequency (and hence spatial) width of the filter to adapt to the
number of samples, as described in Sec. 5.2.

This equation simply expresses the intuitive notion that shadows
from close occluders can be sharper and should be filtered less,
while those from further occluders (smaller d2,max) can be filtered
more aggressively (see filter widths in Fig. 7(a,c)). Also, the lower
frequency the light (the larger σ is), the more we can filter.

5 Adaptive Sampling Rates

Besides adaptive (spatially-varying) filtering, a second component
of our method is to adaptively choose the number of samples per
pixel, and we now derive this sampling rate from the frequency
analysis. So far, we have considered the “critical” sampling and
filtering, which is just adequate to produce antialiased results. In
practice, because of non-idealities in sampling and reconstruction
(including the use of Gaussian filters without perfect bandlimits),
we would like to increase the number of samples beyond the mini-
mum required, just as in standard Monte Carlo rendering. Our next
contribution is to show how the image filter size can be decreased
with inreasing sampling rate, in the limit reducing to the standard
pixel filter and guaranteeing a result consistent with ground truth.

To determine the minumum sampling rates, we must pack the spec-
tra such that adjacent copies do not overlap the axis-aligned filter, to
avoid aliasing error. The resulting frequency space separations are
denoted Ω∗x and Ω∗y. Note that the occlusion spectra themselves can
overlap, but not in the region of the filter—only frequencies in the
axis-aligned filter are relevant for the final image; higher frequen-
cies are filtered out by the light source. The two possible compact
packings of the repeated spectra are shown in Fig. 4.

Packing (Fig. 4) Ω∗x Ω∗y

(a) Ωf
x + Ωmax

x Ωf
y + min(s1Ωf

x ,Ω
max
y )

(b) 2Ωf
x Ωf

y + s1Ωmax
x

The difference in the sampling rates Ω∗x × Ω∗y between the two is:

(Ω∗x×Ω∗y)(a)− (Ω∗x×Ω∗y)(b) = (Ωmax
x −Ωf

x)(Ωf
y − s1Ωf

x) ≤ 0
(14)

since Ωmax
x ≥ Ωf

x and s1Ωf
x = s1Ωf

y/s2 ≥ Ωf
y . So, (a) repre-

sents a tighter packing than (b). It also corresponds intuitively to
sampling at pixel resolution in x (if Ωmax

x ≈ Ωmax
pix ). In fact, as we
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Figure 5: Sampling beyond the minimum rate. (a) The number of
samples varies quadratically with µ. The values of nmin are shown
for µ = 2. (b) The filter width β varies inversely with µ, in the limit
approaching a single pixel as in standard Monte Carlo.

shall see next, we sample at each pixel as in standard Monte Carlo,
and use the analysis above to set per-pixel sampling rates.

5.1 Per-Pixel Sampling Rate

Extending the 2D analysis to 4D, the sampling rate is given by
(Ω∗x)2(Ω∗y)2. Note that frequencies are in units of m−1. To convert
this to samples per pixel n, we multiply by the area of the pixel Ap

as well as the area of the light source Al (both in square meters),

n = (Ω∗x)2(Ω∗y)2 ×Ap ×Al. (15)

We will make the following simplifications
(1) For the pixel, (Ωmax

pix )2 ×Ap = 1.
(2) For the area light, (Ωmax

L )2×Al = 4. (Ωmax
L = σ−1 and we as-

sume that the effective width of the light is 2σ, so thatAl = (2σ)2.)

In the common case (where we need not consider the min/max ex-
pressions), we know that Ωf

x = Ωmax
L /s2, Ωf

y = Ωmax
L (equa-

tion 8), and Ωmax
x is given by equation 6. Hence, the sampling rates

for packing scheme (a) in Fig. 4 are

(Ω∗x)2 ×Ap =

[
Ωmax

L

s2
+ α(1 + s2)−1Ωmax

pix

]2

×Ap

=

(
2

s2

√
Ap

Al
+ α(1 + s2)−1

)2

(16)

(Ω∗y)2 ×Al =

[
Ωmax

L

(
1 +

s1

s2

)]2

×Al = 4

(
1 +

s1

s2

)2

,

from which we can derive the final sampling rate

n = 4

(
1 +

s1

s2

)2
(

2

s2

√
Ap

Al
+ α(1 + s2)−1

)2

. (17)

Note that the sampling rate depends on s1 and s2 and is therefore
spatially-varying (adaptive for each pixel), as shown in Fig. 7(b,d).

Discussion: It is instructive to compare this sampling rate to
that predicted by theory if no filtering were done (we sample each
point x separately as in standard Monte Carlo rendering). In that

case, the sampling rate Ω∗y = 2Ωmax
y ; substituting equation 7,

nnofilter = 4

[
α

(
1− dmin

2

d1

)
Ωmax

pix

]2

×Al

= 4

[
α

(
1− dmin

2

d1

)]2
Al

Ap
, (18)

which can be very large because of theAl/Ap factor, since the light
source area is usually much larger than the area seen by a single
image pixel. While Monte Carlo analysis is typically in terms of
statistical noise reduction (although see [Durand 2011] for a Fourier
view), this frequency analysis also helps explain the large number
of samples often needed to obtain converged soft shadows.

The minimum sampling rate required for a sheared filter (a similar
result was derived in the Appendix to [Egan et al. 2011b] but not
used in their actual algorithm) under the same conditions, is

nshear ≈ 4

(
1− s2

s1

)2 (
Ωsh · d+ α(1 + s2)−1)2 , (19)

where d =
√
Ap is the linear size of the scene for one pixel. To

make a comparison to axis-aligned filtering, we can make Ωf
x ex-

plicit in the second factor in equation 17,

naxis = 4

(
1 +

s1

s2

)2 (
Ωf

x · d+ α(1 + s2)−1
)2

, (20)

It can be seen that nshear < naxis as expected, since the sheared fil-
ter scale Ωsh < Ωf

x and s2 < s1. However, the reduction in Monte
Carlo samples is more than offset by the additional complexity of
implementing the sheared filter which can introduce overheads of
minutes. Our method is intended to be a practical alternative where
speed is of essence, somewhat increasing the needed samples per
pixel, but making the filter very fast and simple to implement.

5.2 Sampling beyond the minimum sampling rate

We now show how we can adapt the spatial filter to the samples per
pixel. As we increase the sampling rate, the replicas are separated
by more than the minimum required for accurated antialiased im-
ages. We can take advantage of this by using a more conservative
smaller filter in the primal domain (or a larger filter in the frequency
domain), to provide more leeway for imperfect reconstruction. This
approach has the desirable property that the image is consistent, im-
proving with more samples and converging to ground truth (in the
limit, our filter will be a single pixel).

The free parameter is Ωf
x , with the spatial filter width depending on

β ∼ 1/Ωf
x . We will denote Ωf

x = µΩf
x0, where µ measures how

much the critical spatial filter Ωf
x0 is scaled. Making the parameter

µ explicit in equation 17,

n(µ) = 4

(
1 + µ

s1

s2

)2
(
µ

2

s2

√
Ap

Al
+ α(1 + s2)−1

)2

. (21)

Given a desired value of µ, we can find the number of samples n
(we typically use µ = 2). Note that the number of samples is a
quadratic function of µ, as shown in Fig. 5(a). The variation of
β = 1/Ωf

x with the number of samples per pixel n is shown in
Fig. 5(b), and is inversely related to µ. We see that a small in-
crease in sampling density enables a more conservative filter—that
is faster to compute and reduces artifacts.



(a) our method, 27 samples per pixel (spp) (b) error vs. spp,
our method
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Figure 6: (a) The ‘Grids’ scene, (b) Difference images (scaled up 20×) show that our method converges to ground truth with increasing
sampling rate, (c) The RMS error (with respect to ground truth) versus sampling rate. These plots show that our method is consistent, and
that we obtain the best results by combining adaptive sampling and adaptive filtering. (d) through (i) show equal sample and equal RMS
error comparisons for adaptive vs. non-adaptive sampling and filtering vs. no filtering. Note that our method produces visually higher quality
results than the somewhat noisy equal error comparisons. (Readers are encouraged to zoom into the PDF to inspect the images and noise).

5.3 Evaluation and Discussion

Figure 6 evaluates our method on the grids scene (taken from [Egan
et al. 2011b]). While the geometry is simple, the shadows are in-
tricate. Figure 6(a) shows that our method produces smooth results
without artifacts, while Fig. 6(b) shows scaled-up error images with
respect to ground truth. We see that the errors are small even nu-
merically, and decrease rapidly with increasing sample count. Our
algorithm converges in the limit, because we adjust the filter size to
the number of samples. The graph in Fig. 6(c) plots numerical error
vs the number of samples n for various combinations of sampling
and filter. The minimum number of samples in these graphs is 9,
which is our initial sampling pass (as described later in Sec. 6).

First, consider unfiltered (UF) results, both with standard Monte
Carlo (non-adaptive sampling NAS) and adaptive sampling AS. We
clearly see that our adaptive sampling method significantly reduces
error. We can also run NAS and AS with a fixed non-adaptive filter
(NAF), with the filter width chosen to best match the final image.
A fixed-width filter cannot capture the complexity of the shadows
however, and the error of the red and yellow curves remains flat
and does not converge with increasing numbers of samples. Finally,
consider the bottom two curves, where we apply our adaptive filter-
ing (AF) from Sec. 4. The error is considerably reduced. Adaptive
Sampling (AS) in addition to adaptive filtering further reduces er-
ror, though more modestly than without filtering. For a fixed error,
our method (dark blue curve, bottom AS, AF) reduces the sample
count by 6×, compared to standard unfiltered Monte Carlo (ma-

genta curve, top NAS, UF). With only 27 samples, we are able to
produce high quality renderings that closely match ground truth;
more samples improve the results even further (Fig. 6(b)).

Finally, we show equal sample and equal error images in the bottom
row of Fig. 6. Our method has almost no noise, and is visually
superior even to equal error comparisons that exhibit some noise.

6 Implementation

We implemented our method within OptiX, on an NVIDIA GTX
570 GPU. Scenes used Wavefront OBJ files and the BVH acceler-
ation structure built into Optix. Therefore, our code only needs
to implement the adaptive sampling and filtering steps. For all
scenes, the parameters used in equations 13 and 21 were k = 3,
α = 1 and µ = 2. The full source code is available from:
http://graphics.berkeley.edu/papers/UdayMehta-AAF-2012-12

Sparse Sampling for Filter Size and Samples Per Pixel: In
the first stage, we use a sparse sampling of 9 rays (stratified over
the light source) at each pixel, from which we compute d1 and d2.
Since the sampling is coarse, we can sometimes observe noise in
these estimates (leading to some noise visible in animations in our
video).5 Most of the noise in the resulting filter width calculation

5Some occluders may also be missed with only 9 rays leading to inaccu-
rate estimates of filter sizes; however, we are interested only in overall depth

http://graphics.berkeley.edu/papers/UdayMehta-AAF-2012-12


(a) ‘Bench’, scale β (b) ‘Bench’, spp n

(c) ‘Grids’, scale β (d) ‘Grids’, spp n

Figure 7: Visualization of filter width parameter β for bench (a)
and grids (c) and samples per pixel n (b) and (d). Unoccluded
pixels, shown in black, are not filtered. The unoccluded pixels have
the minimum sample count of 9 from the first pass.

arises from completely unoccluded pixels. Therefore, for these un-
occluded pixels, we store the average values of d1 and d2 in a 5
pixel radius. We then compute the filter width β from equation 13,
visualized in Fig. 7(a,c). Notice how the filter width is smaller in
more complex shadow regions, such as those with close occluders.
Finally, we compute the number of samples at each pixel n using
equation 21, visualized in Fig. 7(b,d).6 Notice how more samples
are needed in regions with smaller filter width.

Adaptive Sampling and Filtering: We now cast n rays per pixel
(including the original 9 rays); each pixel can have a different n. We
may thus obtain the noisy visibility h̄ (such as Fig. 6(e)). We then
filter to obtain the final image h per equation 10 (such as Fig. 6(a,f)).

Screen-Space Adaptive Filter: A practical challenge in adap-
tive filtering is that β corresponds to object-space and is derived
for a single spatial dimension x. But we need to develop an effi-
cient 2D screen-space filter. We utilize the world-space distances
between objects to compute the filter weights in equation 11 using
a depth buffer. Our practical system also uses a check on normal
variation to avoid filtering different objects or regions. (Spatial dif-
ferences and depth discontinuities are handled automatically by the
Gaussian filter in equation 11. If available, a per-pixel object ID
check may also be used,7 but is not required.)

Finally, greater efficiency can be achieved if we can use two 1D
separable filters along the image dimensions. To do so, we write
equation 11 as w(xij − xkl) = w(xij − xkj)w(xkj − xkl), where

ranges. Note that this concern is shared by almost all adaptive methods. Our
results include self-shadowing, bumpy occluders and receivers, and contact
shadows, showing that the initial sparse sampling is robust.

6Unlike some previous works, β and n always come directly from our
equations (our implementation includes appropriate min and max bandlim-
its where needed), with no need to identify special-case pixels that need
brute force Monte Carlo, as in [Egan et al. 2011b].

7In the unusual case that a pixel is surrounded entirely by objects of
different IDs, we will not filter and provide the standard Monte Carlo result.

ij and kl are pixel coordinates. This is a standard separation of the
2D distance metric along the individual coordinates and is common
for gaussian convolutions. In our case involving spatially-varying
filters, it is exact if the filter width β is the same within the pixels
of interest (ij and kj). In practice, it is a good approximation since
β varies slowly, and we found almost no observable differences
between the 2D filter and our two separable 1D filters in practice.

Discussion: Our final implementation is entirely in screen space
(with the additional information of a depth buffer to compute world-
space distances). Unlike previous work, we do not need to store
each ray sample individually, but rather operate directly on the in-
tegrated (noisy) occlusion values at each pixel. This enables a very
much smaller memory footprint. Moreover, our linearly separable
adaptive filter has an algorithmic complexity essentially equal to
that of a typical gaussian blur, making the method very efficient.

7 Results

We tested our method on four scenes of varying complexity, includ-
ing some used in previous papers [Overbeck et al. 2006; Egan et al.
2011b]. Besides moving viewpoint and light source, our method
supports fully dynamic geometry since no precomputation is re-
quired. We show examples of animations and real-time screen cap-
tures in the accompanying video.

Sampling Rate and Timings: Table 1 has details on the perfor-
mance for our scenes. In all cases, our theory predicted an average
sampling rate of between 14 and 34 samples. Comparable images
with brute force raytracing typically required at least 150-200 sam-
ples. The total overhead added by our algorithm averaged under
5 milliseconds, of which adaptive filtering took about 1.3 ms, and
the time for determining the filter size and samples per pixel took
about 3.6 ms. The timings for the base OptiX raytracer are scene-
dependent but substantially larger in all cases.

Note that our filter operates in image-space, and is therefore in-
sensitive to the geometric complexity of the scene; the memory
requirements are also small. Our 5ms filtering time is 3 orders
of magnitude faster than the reconstruction reported by [Lehtinen
et al. 2011] and 4-5 orders of magnitude faster than the minutes of
overhead in [Egan et al. 2011b]. This substantial speedup allows
our method to be used in the context of a real-time raytracer, which
has not previously been possible. We are able to achieve interactive
performance—the simpler grids scene renders at over 30 frames
per second, while we achieve a performance of 2-4 fps on the other
scenes, which have between 72K and 309K vertices. This is an or-
der of magnitude faster than what brute-force OptiX raytracing can
achieve, and enables raytraced soft shadows at interactive rates.

Accuracy: Our scenes are chosen to show a variety of soft
shadow effects. First, Fig. 8 shows that we can accurately cap-
ture curved objects casting shadows on other curved objects, and
that an equal sample standard raytrace is considerably noisier. We
have already evaluated the grids scene, which has soft shadows of
varying sizes, in Fig. 6. Our method does not under or overblur,
and reproduces accurate soft shadows across the entire image. Fig-
ure 1 shows intricate shadows cast by fairly complex geometry, and
also includes visual equal time and equal error comparisons with
standard Monte Carlo raytracing. It is clear that the noise is con-
siderably reduced, and our images match closely with ground truth.
Finally, Fig. 9 shows shadows from thin occluders being cast on a
wavy ground plane. While the shadows form complex patterns, our
method produces an accurate result. Moreover, our results are vi-
sually better than even the equal error basic comparisons, that still
have noise, even with 4× to 9× more samples.



Base Raytraced Occlusion Our Algorithm Total
scene vertices avg. spp 1st pass

(ms)
2nd pass
(ms)

total
raytracing(ms)

compute β
and n (ms)

adaptive
filtering (ms)

total
overhead (ms)

total time
(ms)

fps (with/
without alg)

Grids 0.2 K 14.2 6.56 13.8 20.4 3.70 1.31 5.01 25.4 39 / 49
Bench 309 K 28.0 50.9 374 425 3.51 1.27 4.78 430 2.3 / 2.3
Tentacles 145 K 26.3 49.0 239 288 3.50 1.29 4.79 293 3.4 / 3.5
Spheres 72 K 33.8 56.9 285 342 3.70 1.29 4.99 347 2.9 / 2.9

Table 1: Timings of our scenes rendered at 640 × 480. The last column shows that our precomputation and filtering overheads (a total of
about 5ms) have negligible impact on the total rendering time or frames per second.

(a) our method, 30 spp

(b) equal time,
unfiltered, 30 spp

(c) our method,
30 spp

(d) equal error,
200 spp

Figure 8: Interactive soft shadows from a curved occluder onto a
curved receiver, with an average of 30 samples per pixel.

Note that we have only compared with standard Monte Carlo (the
base OptiX raytracer), since our technique differs fundamentally
from previous rendering methods—we are trying to achieve ray-
traced image quality at close to real-time framerates. Our goal is ac-
curate raytraced occlusion, as opposed to most previous approxima-
tions for real-time soft shadows. Moreover, we are an (many) order
of magnitude faster than most prior work on offline soft shadows,
since we build on a GPU-accelerated raytracer. In the future, further
speedups could potentially be achieved by also GPU-accelerating
the visibility sampling [Sintorn and Assarsson 2008].

Comparison to De-Noising: Our final algorithm is essentially
a denoising filter on the base Monte Carlo image. Therefore, we
include a comparison with image de-noising strategies in Fig. 10.
The fixed-width gaussian and bilateral filters (with parameters cho-
sen by trial and error to produce the best visual results) cannot
achieve the accuracy of our adaptive filter. In particular, a fixed
width gaussian overblurs or underblurs; the latter causes noise to
remain as seen in the insets. Moreover, the fixed width gaussian
is only slightly faster than our method, while the bilateral filter is
considerably slower (although further optimizations are possible).

The bm3d algorithm of [Dabov et al. 2007] is more successful (al-
though without additional information, it can blur across object
boundaries). However, denoising comes at the price of some blocky
artifacts, as seen in Fig. 10. Moreover, that method (like most other

(a) our method, 23 spp

(b) equal time, unfilt., 23 spp (c) our method, 23 spp

(d) ground truth, 5000 spp (e) equal error, 200 spp

Figure 9: Soft shadows for the ‘tentacles’ scene: (a) and (c) Our
method, 23 spp (b) equal samples, no filtering, 23 spp (d) ground
truth (e) equal RMS error for unfiltered 200 spp still has some noise.

previous works) is not designed for efficiency, taking 8 seconds.

Extensions: Initial tests indicate the method extends in prac-
tice to cosine-falloff shading and non-Gaussian lights, without
any modifications to the adaptive sampling or filtering steps. In
Fig. 11(a), we show the bench scene rendered with cosine falloff
(the scene is shown in grayscale to avoid masking subtle shading



(a) fixed blur,
0.003 sec

(b) bilateral
filter, 200 sec

(c) bm3d,
8 sec

(d) our method,
0.005 sec

Figure 10: Comparison of accuracy and overheads of denoising
methods for the ‘tentacles’ scene, all using the same base 23 sam-
ples per pixel unfiltered image. (a) filtering with a constant ker-
nel gaussian takes slightly less time but overblurs contact shadow
edges while retaining noise in low-frequency shadows, (b) bilateral
filtering cannot remove noise effectively in slow-varying shadows,
and is computationally more expensive, (c) bm3d performs quite
well, but produces low frequency artifacts, and takes longer, (d)
our method performs best while being significantly faster.

effects). In Fig. 11(b) we use a more challenging grids scene (where
they also shadow each other) and a uniform light. Although light
band-limits no longer strictly apply, and we do slightly overblur the
shadows as expected, the method still performs well. However, we
did need to use more conservative settings µ = 3 in both examples.

Artifacts and Limitations: One of the main benefits of Monte
Carlo rendering is that artifacts (noise at low sample counts) are
well understood and easily reduced (use more samples). A benefit
of our method is that it shares many of these properties: the main
limitation is slight overblur at some sharp shadow boundaries, and
some flicker in video sequences (as in standard Monte Carlo), both
of which are easily addressed by more samples (higher µ). We
have not undertaken a full comparison to alternative rasterization
and GPU-based soft shadow methods; it is possible that for some
scenes, they may produce comparable results to our system with
smaller µ. However, our method is consistent (Fig. 6), converg-
ing rapidly to ground truth. The framerates in table 1 are at least
an order of magnitude faster than most previous work on accurate
shadow raytracing. Since we introduce minimal overhead, that is
the performance of the base OptiX raytracer. However, our sam-
ple counts per pixel (an average of about n = 25), while low, are
still too high for real-time performance on very complex scenes;
nevertheless we do demonstrate interactive sessions in the video.

8 Conclusions and Future Work

A large body of recent work has indicated that the number of rays
in Monte Carlo rendering can be dramatically reduced if we share
samples between pixels. However, methods based on sheared fil-
tering or light field reconstruction have included an expensive post-
processing step. In this paper, we make a different set of trade-
offs. We use axis-aligned filters to reduce the number of Monte
Carlo samples considerably compared to brute force, but less than
using sheared filtering. However, we benefit in having an extremely
simple filtering step, that just reduces to a spatially-varying image-
space blur. This can be performed extremely fast, and enables our
method to be integrated in a GPU-accelerated raytracer. The final
algorithm is essentially an image de-noiser which is very simple to
implement and can operate with minimal overhead. Therefore, we
are able to achieve interactive frame rates while obtaining the ben-

efits of high quality ray-traced soft shadows. A key contribution of
our work is to precisely identify the necessary sampling rates, and
show how to adjust the filter with the sampling rate, to enable con-
vergence. Of course, soft shadows are only one effect in real-time
rendering and we believe similar methods could be employed for
motion blur, depth of field, specularities and indirect illumination.
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