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We introduce new techniques for modelling with interpolating implicit surfaces. This form of implicit surface was first used for
problems of surface reconstruction and shape transformation, but the emphasis of our work is on model creation. These implicit
surfaces are described by specifying locations in 3D through which the surface should pass, and also identifying locations that
are interior or exterior to the surface. A 3D implicit function is created from these constraints using a variational scattered
data interpolation approach, and the iso-surface of this function describes a surface. Like other implicit surface descriptions,
these surfaces can be used for CSG and interference detection, may be interactively manipulated, are readily approximated by
polygonal tilings, and are easy to ray trace. A key strength for model creation is that interpolating implicit surfaces allow the
direct specification of both the location of points on the surface and the surface normals. These are two important manipulation
techniques that are difficult to achieve using other implicit surface representations such as sums of spherical or ellipsoidal
Gaussian functions (“blobbies”). We show that these properties make this form of implicit surface particularly attractive for
interactive sculpting using the particle sampling technique introduced by Witkin and Heckbert. Our formulation also yields a
simple method for converting a polygonal model to a smooth implicit model, as well as a new way to form blends between objects.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Curve, surface,
solid, and object representations

General Terms: Algorithms

Additional Key Words and Phrases: Implicit surfaces, thin-plate techniques, function interpolation, modeling

1. INTRODUCTION

The computer graphics, computer-aided design and computer vision literatures are filled with an amaz-
ingly diverse array of approaches to surface description. The reason for this variety is that there is no
single representation of surfaces that satisfies the needs of every problem in every application area.
This paper is about modelling with interpolating implicit surfaces, a surface representation that we
believe will be useful in several areas in 3D modeling. These implicit surfaces are smooth, exactly pass
through a set of given constraint points, and can describe closed surfaces of arbitrary topology.

In order to illustrate our basic approach, Figure 1 (left) shows an interpolating implicit curve, the 2D
analog of an interpolating implicit surface. The small open circles in this figure indicate the location
of constraints where the 2D implicit function must take on the value of zero. The single plus sign
corresponds to an additional constraint where the implicit function must take on the value of some
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Fig. 1. Curves defined using interpolating implicit functions. The curve on the left is defined by four zero-valued and one positive,
constraint. This curve is refined by adding three new zero-valued constraints (shown in red at right).

arbitrary positive constant, which for this example is one. These constraints are passed along to a
scattered data interpolation routine that generates a smooth 2D function meeting the given constraints.
The desired curve is defined to be the locus of points at which the function takes on the value of
zero. The curve exactly passes through each of the zero-value constraints, and its defining function is
positive inside this curve and negative outside. For this 2D example, we use a variational technique
that minimizes the aggregate curvature of the function that it creates, and this technique for creating
a function is often referred to as thin-plate interpolation.

We can create surfaces in 3D in exactly the same way as the 2D curves in Figure 1. Zero-valued
constraints are defined by the modeler at 3D locations, and positive values are specified at one or more
places that are to be interior to the surface. A variational interpolation technique is then invoked that
creates a scalar-valued function over a 3D domain. The desired surface is simply the set of all points
at which this scalar function takes on the value zero. Figure 2 (left) shows a surface that was created
in this fashion by placing four zero-valued constraints at the vertices of a regular tetrahedron and
placing a single positive constraint in the center of the tetrahedron. The result is a nearly spherical
surface. More complex surfaces such as the branching shape in Figure 2 (right) can be defined simply
by specifying more constraints. Figure 3 shows an example of an interpolating implicit surface created
from polygonal data.

The remainder of this paper is organized as follows. In Section 2 we examine related work, including
implicit surfaces and thin-plate interpolation techniques. We describe in Section 3 the mathematical
framework for solving variational problems using radial basis functions. Section 4 presents three strate-
gies that may be used together with variational methods to create implicit surfaces. These strategies
differ in where they place the non-zero constraints. In Section 5 we show that interpolating implicit
surfaces are well suited for interactive sculpting. In Section 6 we present a new method of creating soft
blends between objects, based on interpolating implicits. Section 7 describes two rendering techniques,
one that relies on polygonal tiling and another based on ray tracing. In Section 8 we compare interpo-
lating implicit surfaces with traditional thin-plate surface modeling and with implicit functions that
are created using ellipsoidal Gaussian functions. Finally, Section 9 indicates potential applications and
directions for future research.
ACM Transactions on Graphics, Vol. 21, No. 4, October 2002.
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Fig. 2. Surfaces defined by interpolating implicit functions. The left surface is defined by zero-valued constraints at the corners
of a tetrahedron and one positive constraint in its center. The branching surface at the right was created using constraints from
the vertices of the inset polygonal object.

Fig. 3. Polygonal surface of a human fist with 750 vertices (left) and an interpolating implicit surface created from the polygons
(right).

2. BACKGROUND AND RELATED WORK

Interpolating implicit surfaces draw upon two areas of modeling: implicit surfaces and thin-plate inter-
polation. In this section we briefly review work in these two sub-areas. Interpolating implicit surfaces
are not new to graphics, and at the close of this section we describe earlier published methods of creating
interpolating implicit surfaces.

2.1 Implicit Surfaces

An implicit surface is defined by an implicit function, a continuous scalar-valued function over the
domain R3. The implicit surface of such a function is the locus of points at which the function takes on
the value zero. For example, a unit sphere may be defined using the implicit function f (x) = 1−|x|, for
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points x ∈ R3. Points on the sphere are those locations at which f (x) = 0. This implicit function takes
on positive values inside the sphere and is negative outside the surface, as will be the convention in
this paper.

An important class of implicit surfaces are the blobby or meta-ball surfaces [Blinn 1982; Nishimura
et al. 1985]. The implicit functions of these surfaces are the sum of radially symmetric functions that
have a Gaussian profile. Here is the general form of such an implicit function:

f (x) = −t +
n∑

i=1

gi(x) (1)

In the above equation, a single function gi describes the profile of a “blobby sphere” (a Gaussian
function) that has a particular center and standard deviation. The bold letter x represents a point in
the domain of our implicit function, and in this paper we will use bold letters to represent such points,
both in 2D and 3D. The value t is the iso-surface threshold, and it specifies one particular surface from
a family of nested surfaces that are defined by the sum of Gaussians. When the centers of two blobby
spheres are close enough to one another, the implicit surface appears as though the two spheres have
melted together. A typical form for a blobby sphere function gi is the following:

gi(x) = e|x−ci |2/σ 2
i (2)

In this equation, the constant σi specifies the standard deviation of the Gaussian function, and thus
is the control over the radius of a blobby sphere. The center of a blobby sphere is given by ci. Evaluating
an exponential function is computationally expensive, so some authors have used piecewise polynomial
expressions instead of exponentials to define these blobby sphere functions [Nishimura et al. 1985;
Wyvill et al. 1986]. A greater variety of shapes can be created with the blobby approach by using
ellipsoidal rather than spherical functions.

Another important class of implicit surfaces are the algebraic surfaces. These are surfaces that are
described by polynomial expressions in x, y and z. If a surface is simple enough, it may be described
by a single polynomial expression. A good deal of attention has been devoted to this approach, and
we recommend Taubin [1993] and Keren and Gotsman [1998] as starting points in this area. Much of
the work on this method has been devoted to fitting an algebraic surface to a given collection of points.
Usually it is not possible to interpolate all of the data points, so error minimizing techniques are sought.
Surfaces may also be described by piecing together many separate algebraic surface patches, and here
again there is a large literature on the subject. Good introductions to these surfaces may be found in the
chapters by Bajaj and Rockwood in Bloomenthal [1997]. It is easier to create complex surfaces using
a collection of algebraic patches rather than using a single algebraic surface. The tradeoff, however, is
that a good deal of machinery is required to create smooth joins across patch boundaries.

We have only described some of the implicit surface representations that are most closely related to
our own work. There are many other topics within the broad area of implicit surfaces, and we refer the
interested reader to the excellent book by Bloomenthal and his co-authors, Bloomenthal [1997].

2.2 Thin-Plate Interpolation

Thin-plate spline surfaces are a class of height fields that are closely related to the interpolating implicit
surfaces of this paper. Thin-plate interpolation is one approach to solving the scattered data interpolation
problem. The two-dimensional version of this problem can be stated as follows: Given a collection of k
constraint points {c1, c2, . . . , ck} that are scattered in the x y-plane, together with scalar height values
at each of these points {h1, h2, . . . , hk}, construct a “smooth” surface that matches each of these heights
at the given locations. We can think of this solution surface as a scalar-valued function f (x) so that
ACM Transactions on Graphics, Vol. 21, No. 4, October 2002.
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f (ci) = hi, for 1 ≤ i ≤ k. If we define the word smooth in a particular way, there is a unique solution
to such a problem, and this solution is the thin-plate interpolation of the points. Consider the energy
function E( f ) that measures the smoothness of a function f :

E(f ) =
∫
Ä

f 2
xx(x)+ 2 f 2

xy(x)+ f 2
yy(x) dx (3)

The notation fxx means the second partial derivative in the x direction, and the other two terms
are similar partial derivatives, one of them mixed. This energy function is basically a measure of
the aggregate curvature of f (x) over the region of interest Ä (a portion of the plane). Any creases
or pinches in a surface will result in a larger value of E. A smooth function that has no such re-
gions of high curvature will have a lower value of E. Note that because there are only squared terms
in the integral, the value for E can never be negative. The thin-plate solution to an interpolation
problem is the function f (x) that satisfies all of the constraints and that has the smallest possi-
ble value of E. Note that thin-plate surfaces are height fields, and thus they are in fact parametric
surfaces.

This interpolation method gets its name because it is much like taking a thin sheet of metal, laying
it horizontally and bending it so that it just touches the tips of a collection of vertical poles that are
set at the positions and heights given by the constraints of the interpolation problem. The metal plate
resists bending so that it smoothly changes its height in the positions between the poles. This springy
resistance is mimicked by the energy function E. Thin-plate interpolation is often used in the computer
vision domain, where there are often sparse surface constraints [Grimson 1983; Terzopoulos 1988]. The
above curvature minimization process is sometimes referred to as regularization, and can be thought
of as an additional constraint that selects a unique surface out of an infinite number of surfaces that
match a set of given height constraints. Solving such constrained problems draws from a branch of
mathematics called the variational calculus, thus thin-plate techniques are sometimes referred to as
variational methods.

The scattered data interpolation problem can be formulated in any number of dimensions. When
the given points ci are positions in n-dimensions rather than in 2D, this is called the n-dimensional
scattered data interpolation problem. There are appropriate generalizations to the energy function and
to thin-plate interpolation for any dimension. In this paper we will make use of variational interpolation
in two and three dimensions.

2.3 Related Work on Implicit Surfaces

The first publication on interpolating implicits of which we are aware is that of Savchenko et al. [1995].
We consider this to be a pioneering paper in implicit surfaces, and feel it deserves to be known more
widely than it is at present. Their research was on the creation of implicit surfaces from measured data
such as range data or contours. Their work did not, however, describe techniques for modelling. Their
approach to implicit function creation is similar to our method in the present paper in that both solve a
linear system to get the weights for radial basis functions. The work of Savchenko et al. differs from our
own in that they use a carrier solid to suggest what part of space should be interior to the surface that is
being created. We believe that the three methods that we describe for defining the interior of a surface
in Section 4 of this paper give more user control than a carrier solid and are thus more appropriate for
modelling.

The implicit surface creation methods described in this paper are an outgrowth of earlier work in
shape transformation by Turk and Turk and O’Brien [1999]. They created implicit functions in n+ 1
dimensions to interpolate between pairs of n-dimensional shapes. These implicit functions were created
using the normal constraint formulation of interpolating implicit surfaces, as described in Section 4.3 of
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this paper. The present paper differs from that of Turk and O’Brien [1999] in its introduction of several
techniques for defining interpolating implicit surfaces that are especially useful for model creation.

Recently, techniques have developed that allow the methods discussed above to be applied to systems
with large numbers of constraints [Morse et al. 2001; Carr et al. 2001]. The work of Morse et al. uses
Gaussian-like compactly supported radial basis functions to accelerate the surface building process;
they are able to create surfaces that have tens of thousands of constraints. Carr et al. use fast evaluation
methods to reconstruct surfaces using up to a half millions basis functions. They use the radial basis
function φ(x) = |x|, the biharmonic basis function. Both of these improvements for creating surfaces
with many constraints are complementary to the work of the present paper, and the new techniques
that we describe in Sections 4, 5 and 6 should work gracefully with the methods in both of these
papers.

3. VARIATIONAL METHODS AND RADIAL BASIS FUNCTIONS

In this section we review the necessary mathematical background for thin-plate interpolation. This will
provide the tools that we will then use in Section 4 to create interpolating implicit surfaces.

The scattered data interpolation task as formulated above is a variational problem where the de-
sired solution is a function, f (x), that will minimize Equation 3 subject to the interpolation constraints
f (ci) = hi. There are several numerical methods that can be used to solve this type of problem. Two
commonly used methods, finite elements and finite differencing techniques, discretize the region of
interest, Ä, into a set of cells or elements and define local basis functions over the elements. The
function f (x) can then be expressed as a linear combination of the basis functions so that a solution
can be found, or approximated, by determining suitable weights for each of the basis functions. This
approach has been widely used for height-field interpolation and deformable models, and examples
of its use can be found in [Terzopoulos 1988; Szeliski 1990; Celniker and Gossard 1991; Welch and
Witkin 1994]. While finite elements and finite differencing techniques have proven useful for many
problems, the fact that they rely on discretization of the function’s domain is not always ideal. Prob-
lems that can arise due to discretization include visibly stair-stepped surfaces and the inability to
represent fine details. In addition, the cost of using such methods grows cubically with the desired
resolution.

An alternate approach is to express the solution in terms of radial basis functions centered at the
constraint locations. Radial basis functions are radially symmetric about a single point, or center, and
they have been widely used for function approximation. Remarkably, it is possible to choose these
radial functions in such a way that they will automatically solve differential equations, such as the one
required to solve Equation 3, subject to constraints located at their centers. For the 2D interplation
problem, Equation 3 can be solved using the biharmonic radial basis function:

φ(x) = |x|2 log(|x|) (4)

This is commonly know as the thin-plate radial basis function. For 3D interpolation, one commonly
used radial basis function is φ(x) = |x|3, and this is the basis function that we use. We note that Carr
et al. [2001] used the basis function φ(x) = |x|. Duchon [1977] did much of the early work on variational
interpolation, and the report by Girosi, Jones and Poggio is a good entry point into the mathematics of
variational interpolation [Girosi et al. 1993].

Using the appropriate radial basis functions, we can write the interpolation function in this form:

f (x) =
k∑

j=1

wjφ(x− c j )+ P (x) (5)
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In the above equation, c j are the locations of the constraints, wj are the weights, and P (x) is a
degree one polynomial that accounts for the linear and constant portions of f . Solving for the weights
wj and the coefficients of P (x) subject to the given constraints yields a function that both interpolates
the constraints and minimizes Equation 3. The resulting function exactly interpolates the constraints
(if we ignore numerical precision issues), and is not subject to approximation or discretization errors.
Also, the number of weights to be determined does not grow with the size of the region of interest Ä.
Rather, it is only dependent on the number of constraints.

To solve for the set of wj that will satisfy the interpolation constraints, we begin with the criteria
that the surface must interpolate our constraints:

hi = f (ci) (6)

We now substitute the right side of Equation 5 for f (ci) to give us:

hi =
k∑

j=1

wjφ(ci − cj)+ P (ci) (7)

Since the above equation is linear with respect to the unknowns, wj , and the coefficients of P (x), it
can be formulated as a linear system. For interpolation in 3D, let ci = (cx

i , c y
i , cz

i ) and let φi j = φ(ci−c j ).
Then this linear system can be written as follows:



φ11 φ12 . . . φ1k 1 cx
1 c y

1 cz
1

φ21 φ22 . . . φ2k 1 cx
2 c y

2 cz
2

...
...

...
...

...
...

...
φk1 φk2 . . . φkk 1 cx

k c y
k cz

k

1 1 . . . 1 0 0 0 0
cx

1 cx
2 . . . cx

k 0 0 0 0
c y

1 c y
2 . . . c y

k 0 0 0 0
cz

1 cz
2 . . . cz

k 0 0 0 0





w1

w2

...
wk

p0

p1

p2

p3


=



h1

h2

...
hk

0
0
0
0


(8)

The sub-matrix in Equation 8 consisting of the φi j ’s is conditionally positive-definite on the subspace
of vectors that are orthogonal to the last four rows of the full matrix, so Equation 8 is guaranteed to have
a solution. We used symmetric LU decomposition to solve this system of equations for all of the examples
shown in this paper. Our implementation to set up the system, call the LU decomposition routine and
evaluate the interpolating function of Equation 5 for a given x consists of about 100 lines of commented
C++ code. This code plus the public-domain polygonalization routine described in Section 7.1 is all that
is needed to create interpolating implicit surfaces.

Two concerns that arise with such matrix systems are computation times and ill-conditioned systems.
For systems with up to a few thousand centers, including all of the examples in this paper, direct solution
techniques such as LU decomposition and SVD are practical. However as the system becomes larger,
the amount of work required to solve the system grows as O(k3). We have used direct solution methods
for systems with up to roughly 3,000 constraints. LU decomposition becomes impractical for more
constraints than this. We are pleased that other researchers, notably the authors of [Morse et al. 2001;
Carr et al. 2001], have begun to address this issue of computational complexity.

As the number of constraints grows, the condition number of the matrix in equation 8 is also likely
to grow, leading to instability for some solution methods. For the systems we have worked with,

ACM Transactions on Graphics, Vol. 21, No. 4, October 2002.



862 • G. Turk and J. F. O’Brien

ill-conditioning has not been a problem. If problems arise for larger systems, variational interpola-
tion is such a well-studied problem that methods exist for improving the conditioning of the system of
equations (see Dyn [1987]).

4. CREATING INTERPOLATING IMPLICIT SURFACES

With tools for solving the scattered data interpolation problem in hand, we now turn our attention to
creating implicit functions. In this section we will examine three ways in which to define a interpolating
implicit surface. Common to all three approaches, is the specification of zero-valued constraints through
which the surface must pass. The three methods differ in specifying where the implicit function takes
on positive and negative values. These methods are based on using three different kinds of constraints:
interior, exterior, and normal. We will look at creating both 2D interpolating implicit curves and 3D
interpolating implicit surfaces. The 2D curve examples are for illustrative purposes, and our actual
goal is the creation of 3D surfaces.

4.1 Interior Constraints

The left portion of Figure 1 (earlier in this paper) shows the first method of describing a interpolating
implicit curve. Four zero-valued constraints have been placed in the plane. We call such zero-value
constraints boundary constraints because these points will be on the boundary between the interior
and exterior of the shape that is being defined. In addition to the four boundary constraints, a single
constraint with a value of one is placed at the location marked with a plus sign. We use the term interior
constraint when referring to such a positive-valued constraint that helps to determine the interior of
the surface. We construct an implicit function from these five constraints simply by invoking the 2D
variational interpolation technique described in earlier sections. The interpolation method returns a
set of scalar coefficients wi that weight a collection of radially symmetric functions φ that are centered
at the constraint positions. The implicit curve shown in the figure is given by those locations at which
the variationally-defined function takes on the value zero. The function takes on positive values in-
side the curve and is negative at locations outside the curve. Figure 1 (right) shows a refinement of the
curve that is made by adding three more boundary constraints to the original set of constraints in the
left portion of the figure.

Why does an interior constraint surrounded by zero-valued constraints yield a function that is neg-
ative beyond the boundary constraints? The key is that the energy function is larger for functions
that take on positive values on both sides of a zero-valued constraint. Each boundary constraint acts
much like a see-saw. If we pull the surface up on one side of a boundary constraint (using an interior
constraint), then the other side tends to move down.

Creating surfaces in 3D is accomplished in exactly the same way as the 2D case. Zero-valued con-
straints are specified by the modeler as those 3D points through which the surfaces should pass, and
positive values are specified at one or more places that are to be interior to the surface. Variational
interpolation is then invoked to create a scalar-valued function over R3. The desired surface is simply
the set of all points at which this scalar function takes on the value zero. Figure 2 (left) shows a surface
that was created in this fashion by placing four zero-valued constraints at the vertices of a regular
tetrahedron and placing a single interior constraint in the center of the tetrahedron. The resulting
implicit surface is nearly spherical.

Figure 2 (right) shows a recursive branching object that is an interpolating implicit surface. The basic
building block of this object is a triangular prism. Each of the six vertices of a large prism specified
the location of a zero-valued constraint, and a single interior constraint was placed in the center of
this prism. Next, three smaller and slightly tilted prisms were placed atop the first large prism. Each
of these smaller prisms, like the large one, contributes boundary constraints at its vertices and has a
ACM Transactions on Graphics, Vol. 21, No. 4, October 2002.
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Fig. 4. Curves defined using surrounding exterior constraints. Just two zero-valued constraints yield an ellipse-like curve (on
the left). More constraints create a more complex curve (at right).

single interior constraint placed at its center. Each of the three smaller prisms had even smaller prisms
placed on top of them, and so on.

Why does this method of creating an implicit function create a smooth surface? We are creating the
scalar-valued function in 3D that matches our constraints, and that minimizes a 3D energy functional
similar to Equation 3. This energy functional selects a smoothly changing implicit function that matches
the constraints. The iso-surface that we extract from such a smoothly changing function will almost
always be smooth as well. It is not the case in general, however, that this iso-surface is also the minimum
of a curvature-based functional over surfaces. Satisfying the 3D energy functional does not give any
guarantee about the smoothness of the resulting 2D surface.

Placing one or more positive-valued constraints on the interior of a shape is an effective method
of defining interpolating implicit surfaces when the shape one wishes to create is well-defined. We
have found, however, that there is another approach that is even more flexible for interactive free-form
surface sculpting.

4.2 Exterior Constraints

Figure 4 illustrates a second approach to creating interpolating implicit functions. Instead of placing
positive-valued constraints inside a shape, negative-valued constraints can be placed on the exterior of
the shape that is being created. We call each such negative-valued constraint an exterior constraint. As
before, zero-valued constraints specify locations through which the implicit curve will pass. In Figure 4
(left), eight exterior constraints surround the region at which a curve is being created. As with positive-
valued constraints, the magnitude of the values is unimportant, and we use the value-negative one.
These exterior constraints, coupled with the curvature-minimizing nature of variational method, induce
the interpolation function to take on positive values interior to the shape outlined by the zero-valued
constraints. Even specifying just two boundary constraints defines a reasonable closed curve, as shown
by the ellipse-like curve at the left in Figure 4. More boundary constraints result in a more complex
curve, as shown on the right in Figure 4.

We have found that creating a circle or sphere of negative-valued constraints is the approach that is
best suited to interactive free-form design of curves and surfaces. Once these exterior constraints are
defined, the user is free to place boundary constraints in any location interior to this cage of exterior
constraints. Section 5 describes the use of exterior constraints for interactive sculpting.

ACM Transactions on Graphics, Vol. 21, No. 4, October 2002.
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Fig. 5. Two curves defined using nearly identical boundary and normal constraints. By moving just a single normal constraint
(the north-west one, shown in red), the curve on the left is changed to that shown on the right.

4.3 Normal Constraints

For some applications we may have detailed knowledge about the shape that is to be modeled. In
particular, we may know approximate surface normals at many locations on the surface to be created.
In this case there is a third method of defining an interpolating implicit function that may be preferred
over the two methods described above, and this method was originally described in Turk and O’Brien
[1999]. Rather than placing positive or negative values far from the boundary constraints, we can
create constraints very close to the boundary constraints. Figure 5 shows this method in the plane. In
the left portion of this figure, there are six boundary constraints and in addition there are six normal
constraints. These normal constraints are positive-valued constraints that are placed very near the
boundary constraints, and they are positioned towards the center of the shape that is being created. A
normal constraint is created by placing a positive constraint a small distance in the direction−n, where
n is an approximate normal to the shape that we are creating. (Alternatively, we could choose to place
negative-valued constraints in the outward-pointing direction.) A normal constraint is always paired
with a boundary constraint, although not every boundary constraint requires a normal constraint.
The right part of Figure 5 shows that a normal constraint can be used to bend a curve at a given
point.

There are at least two ways in which a normal constraint might be defined. One is to allow a user
to hand-specify the surface normals of a shape that is being created. A second allows us to create
smooth surfaces based on polyhedral models. If we wish to create an interpolating implicit surface from
a polyhedral model, we simply need to create one boundary constraint and one normal constraint for
each vertex in the polyhedron. The location of a boundary constraint is given by the position of the vertex,
and the location of a normal constraint is given by moving a short distance in a direction opposite to the
surface normal at the vertex. We place normal constraints 0.01 units from the corresponding boundary
constraints for objects that fit within a unit cube. Figure 6 (right) shows an interpolating implicit surface
created in the manner just described from the polyhedral model in Figure 6 (left). This is a simple yet
effective way to create an everywhere smooth analytically defined surface. This stands in contrast to
ACM Transactions on Graphics, Vol. 21, No. 4, October 2002.
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Fig. 6. A polygonal surface (left) and the interpolating implicit surface defined by the 800 vertices and their normals (right).

Table I. Constraint Types
Constraint Types When to Use 2D Figure 3D Figure
Interior constraints Planned model construction Figure 1 Figure 2
Exterior constraints Interactive modelling Figure 4 Figures 7, 8, 10
Normal constraints Conversion from polygons Figure 5 Figures 3, 6, 9

the complications of patch stitching inherent in most parametric surface modeling approaches. Figure 3
is another example of converting polygons (a fist) to an implicit surface.

4.4 Review of Constraint Types

In this section we have seen three methods of creating interpolating implicit functions. These methods
are in no way mutually exclusive, and a user of an interactive sculpting program could well use a
mixture of these three techniques to define a single surface. Table I lists each of the three kinds of
constraints, when we believe each is appropriate to use, and which figures in this paper were created
using each of the methods.

5. INTERACTIVE MODEL BUILDING

Interpolating implicit surfaces seem ready-made for interactive 3D sculpting. In this section we will
describe how they can be gracefully incorporated into an interactive modeling program.

In 1994, Andrew Witkin and Paul Heckbert presented an elegant method for interactive manipulation
of implicit surfaces [Witkin and Heckbert 1994]. Their method uses two types of oriented particles that
lie on the surface of an implicitly defined object. One class of particles, the floaters, are passive elements
that are attracted to the surface of the shape that is being sculpted. Floaters repel one another in order
to evenly cover the surface. Even during large changes to the surface, a nearly constant density of
floaters is maintained by particle fissioning and particle death. A second type of particle, the control
point, is the method by which a user interactively shapes an implicit surface. Control points provide
the user with direct control of the surface that is being created. A control point tracks a 3D cursor
position that is moved by the user, and the free parameters of the implicit function are adjusted so
that the surface always passes exactly through the control point. The mathematical machinery needed
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Fig. 7. Interactive sculpting of interpolating implicit surfaces. The left image shows an initial configuration with four boundary
constraints (the red markers). The right surface is a sculpted torus.

to implement floaters and control points is presented clearly in Witkin and Heckbert’s paper, and the
interested reader should consult it for details.

The implicit surfaces used in Witkin and Heckbert’s modeling program are blobby spheres and blobby
cylinders. We have created an interactive sculpting program based on their particle sampling tech-
niques, but we use interpolating implicit surfaces instead of blobbies as the underlying shape descrip-
tion. Our implementation of floaters is an almost verbatim transcription of their equations into code.
The only change needed was to represent the implicit function as a sum of φ(x) = |x|3 radial basis
functions and to provide an evaluation routine for this function and its gradient. Floater repulsion,
fissioning, and death, work for interpolating implicits just as well as when using blobby implicit func-
tions. As in the original system, the floaters provide a means of interactively viewing an object during
editing that may even change the topology of the surface.

The main difference between our sculpting system and Witkin and Heckbert’s is that we use an en-
tirely different mechanism for direct interaction with a surface. Witkin/Heckbert control points provide
an indirect link between a 3D cursor and the free parameters of a blobby implicit function. We do not
make use of Witkin and Heckbert’s control particles in our interactive modelling program. Instead, we
simply allow users to create and move the boundary constraints of an interpolating implicit surface.
This provides a direct way to manipulate the surface.

We initialize a sculpting session with a simple interpolating implicit surface that is nearly spherical;
this is shown at the left in Figure 7. It is described by four boundary constraints at the vertices of a unit
tetrahedron (the thick red disks) and with eight exterior (negative) constraints surrounding these at
the corners of a cube with a side width of six. (The exterior constraints are not drawn.) A user is free to
drag any of the boundary constraint locations using a 3D cursor, and the surface follows. The user may
also create any number of new boundary constraints on the surface. The location of a new boundary
constraint is found by intersecting the surface with a ray that passes through the camera position and
the cursor. After a user creates or moves a boundary constraint, the matrix equation from Section 3 is
solved anew. The floaters are then moved and displayed. The right portion of Figure 7 shows a toroidal
surface that was created using this interactive sculpting paradigm. The interactive program repeatedly
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Fig. 8. Changing a normal constraint. Left image shows the original surface, and right image shows the same surface after
changing a normal constraint (shown as a red spike).

executes the following steps:

1. Create or move constraints based on user interaction.
2. Solve new variational matrix equation.
3. Adjust floater positions (with floater birth and death).
4. Render floaters.

An important consequence of the matrix formulation given by Equation 8 is that adding a new
boundary constraint on the existing surface does not affect the surface shape at all. This is because
the implicit function already takes on the value of zero at the surface, so adding a new zero-valued
constraint on the surface will not alter the surface. Only when such a new boundary constraint is
moved, does it begin to affect the shape of the surface. This ability to retain the exact shape of a surface
while adding new boundary constraints is similar in spirit to knot insertion for polynomial spline curves
and surfaces. We do not know of any similar capability for blobby implicit surfaces.

In addition to control of boundary constraints, we also allow a user to create and move normal
constraints. By default, no normal constraint is provided for a newly created boundary constraint. At
the user’s request, a normal constraint can be created at any specified boundary constraint. The initial
direction of the normal constraint is given by the gradient of the current implicit function. The value for
such a constraint is given by the implicit function’s value at the constraint location. A normal constraint
is drawn as a spike that is fixed at one end to the disk of its corresponding boundary point. The user
may drag the free end of this spike to adjust the normal to the surface, and the surface follows this new
constraint. Figure 8 shows an example of changing a normal constraint during an interactive modelling
session.

What has been gained by using interpolating implicit functions instead of blobby spheres and cylin-
ders? First, the interpolating implicit approach is easier to implement because the optimization ma-
chinery for control points of blobby implicits is not needed. Second, the user has control over the surface
normal as well as the surface position. Finally, the user does not need to specify which implicit param-
eters are to be fixed and which are to be free at different times during the editing session. Using the
blobby formulation, the user must choose, at any given time, which parameters such as sphere centers,
radii of influence, and cylinder endpoints may be altered by moving a control point. With the variational
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formulation, the user is always changing the position of just a single boundary or normal constraint. We
believe that this direct control of the parameters of the implicit function is more natural and intuitive.
Witkin and Heckbert [1994] state the following:

Another result of this work is that we have discovered that implicit surfaces are slippery:
when you attempt to move them using control points they often slip out of your grasp.
(emphasis from the original paper)

In contrast to blobby implicits, we have found that interpolating implicit surfaces are not at all
slippery. Users easily grasp and re-shape these surfaces with no thought to the underlying parameters
of the model.

6. OBJECT BLENDING

A blend is a portion of a surface that smoothly joins two sub-parts of an object. One of the more useful
attributes of implicit surfaces is the ease with which they allow two objects to be blended together.
Simply summing together the implicit functions for two objects often gives quite reasonable results for
some applications. In some instances, however, traditional implicit surface methods have been found
to be problematic when creating certain kinds of blends. For example, it is difficult to get satisfactory
results when summing together the implicit functions for two branches and a trunk of a tree. The
problem is that the surface will bulge at the location where the trunk and the two branches join. Bulges
occur because the contribution of multiple implicit functions causes their sum to take on large values
in the blend region, and this results in the new function reaching the iso-surface threshold in locations
further away from the blend than is desirable. Several solutions have been proposed for this problem
of bulges in blends, but these methods are either computationally expensive or are fairly limited in
the geometry for which they can be used. For an excellent description of various blending methods, see
Chapter 7 of Bloomenthal [1997].

Interpolating implicit surfaces provide a new way in which to create blends between objects. Objects
that are blended using this new approach are free of the bulging problems found using some other
methods. Our approach to blending together surfaces is to form one large collection of constraints by
collecting together the constraints that define of all the surfaces to be blended. The new blended surface
is the surface defined by this new collection of constraints. It is important to note that simply using all
of the constraints from the original surfaces will usually produce poor results. The key to the success
of this approach is to throw out those constraints that would cause problems.

Consider the task of blending together two shapes A and B. If we used all of the constraints from both
shapes, the resulting surface is not likely to be what we wish. The task of selecting which constraints
to keep is simple. Let f A(x) and f B(x) be the implicit functions for shapes A and B respectively. We
will retain those constraints from object A that are outside of B. That is, a constraint from A with
position ci will be kept if f B(ci) < 0. All other constraints from A will be discarded. Likewise, we will
keep only those constraints from object B that are outside of object A. To create a blended shape, we
collect together all of the constraints that pass these two tests and form a new surface based on these
constraints.

This approach can used to blend together any number of objects. Figure 9 (left) shows three polygonal
tori that overlap one another in 3D. To blend these objects together, we first create a set of boundary
and normal constraints for each object, using the approach described in Section 4.3. We then keep
only those constraints from each object that are outside of each of the other two objects, as determined
by their implicit functions. Finally, we create a single implicit function using all of the constraints from
the three objects that were retained. Figure 9 (right) shows the result of this procedure. Notice that
there are no bulges in the locations where the tori meet.
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Fig. 9. Three polygonal tori (left), and the soft union created with interpolating implicits (right).

7. RENDERING

In this section we examine two traditional approaches for rendering implicit surfaces that both perform
well for interpolating implicits.

7.1 Conversion to Polygons

One way to render an implicit surface is to create a set of polygons that approximate the surface and
then render these polygons. The topic of iso-surface extraction is well-studied, especially for regularly
sampled volumetric data. Perhaps the best known approach of this type is the Marching Cubes algo-
rithm [Lorensen and Cline 1987], but a number of variants of this method have been described since
the time of its publication.

We use a method of iso-surface extraction known as a continuation approach [Bloomenthal 1988] for
many of the figures in this paper. The models in Figure 2 and in the right images of Figures 6 and 9 are
collections of polygons that were created using the continuation method. This method first locates any
position that is on the surface to be tiled. This first point can be thought of as a single corner of a cube
that is one of an infinite number of cubes in a regular lattice. The continuation method then examines
the values of the implicit function at neighboring points on the cubic lattice and creates polygons within
each cube that the surface must pass through. The neighboring vertices of these cubes are examined in
turn, and the process eventually crawls over the entire surface defined by the implicit function. We use
the implementation of this method from Bloomenthal [1994] that is described in detail in Bloomenthal
[1988].

7.2 Ray Tracing

There are a number of techniques that may be used to ray trace implicit surfaces, and a review of these
techniques can be found in Hart [1993]. We have produced ray traced images of interpolating implicit
surfaces using a particular technique introduced by Hart [1997] that is known as sphere tracing. Sphere
tracing is based on the idea that we can find the intersection of a ray with a surface by traveling along
the ray in steps that are small enough to avoid passing through the surface. At each step along the
ray the method conservatively estimates the radius of a sphere that will not intersect the surface. We
declare that we are near enough to the surface when the value of f (x) falls below some tolerance ε. We
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Fig. 10. Ray tracing of interpolating implicit surfaces. The left image shows reflection and shadows of two implicit surfaces, and
the right image illustrates constructive solid geometry.

currently use a heuristic to determine the radius of the spheres during ray tracing. We sample the space
in and around our implicit surface at 2000 positions, and we use the maximum gradient magnitude over
all of these locations as the Lipschitz constant for sphere tracing. For extremely pathological surfaces,
this heuristic may fail, although it has worked well for all of our images. Coming up with a sphere
radius that is guaranteed not to intersect the surface is a good area for future research. We think it is
likely that other ray tracing techniques can also be successfully applied to ray tracing of interpolating
implicits, such as the LG-surfaces approach of Kalra and Barr [1989].

Figure 10 (left) is an image of two interpolating implicit surfaces that were ray traced using sphere
tracing. Note that this figure includes shadows and reflections. Figure 10 (right) illustrates constructive
solid geometry with interpolating implicit surfaces. The figure shows (from left to right) intersection and
subtraction of two implicit surfaces. This figure was created using standard ray tracing CSG techniques
as described in Roth [1982].

The rendering techniques of this section highlight a key point—interpolating implicit surfaces may
be used in almost all of the contexts in which other implicit formulations have been used. This new
representation may provide fruitful alternatives for a number of problems that use implicit surfaces.

8. COMPARISON TO RELATED METHODS

At this point it is useful to compare interpolating implicit surfaces to other representations of surface
geometry. Although they share similarities with existing techniques, interpolating implicits are distinct
from other forms of surface modeling. Because interpolating implicits are not yet well known, we provide
a comparison of them to two more well-known modelling techniques.

8.1 Thin-Plate Surface Reconstruction

The scientific and engineering literature abound with surface reconstruction based on thin-plate in-
terpolation. Aren’t interpolating implicits just a slight variant on thin-plate techniques? The most
important difference is that traditional thin-plate reconstruction creates a height field in order to fit
a given set of data points. The use of a height field is a barrier towards creating closed surfaces and
surfaces of arbitrary topology. For example, a height field cannot even represent a simple sphere-like
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object such as the surface shown in Figure 2 (left). Complex surfaces can be constructed using thin-
plate techniques only if a number of height fields are stitched together to form a parametric quilt over
the surface. This also pre-supposes that the topology of the shape to be modelled is already known.
Interpolating implicit surfaces, on the other hand, do not require multiple patches in order to represent
a complex model. Both methods create a function based on variational methods, but they differ in the
dimension of the scalar function that they create. Traditional thin-plate surfaces use a function with a
2D domain to create a parametric surface, whereas the interpolating implicit method uses a function
with a 3D domain to specify the location of an implicit surface.

8.2 Sums of Implicit Primitives

Section 3 shows that an interpolating implicit function is in fact a sum of a number of functions that
have radial symmetry (based on the |x|3 function). Isn’t this similar to constructing an implicit function
by summing a number of spherical Gaussian functions (blobby spheres or meta-balls)? Let us consider
the process of modeling a particular shape using blobby spheres. The unit of construction is the single
sphere, and two decisions must be made when we add new sphere to a model: the sphere’s center and its
radius. We cannot place the center of the sphere where we want the surface to be—we must displace it
towards the object’s center and adjust its radius to compensate for this displacement. What we are doing
is much like guessing the location of the medial axis of the object that we are modeling. (The medial
axis is the locus of points that are equally distant from two or more places on an object’s boundary.) In
fact, the task is more difficult than this because summing multiple blobby spheres is not the same as
calculating the union of the spheres. The interactive method of Witkin and Heckbert [1994] relieves the
user from some of this complexity, but still requires the user to select which blobby primitives are being
moved and which are fixed. These issues never come up when modeling using interpolating implicit
surfaces because we can directly specify locations that the surface must pass through.

Fitting blobby spheres to a surface is an art, and indeed many beautiful objects have been sculpted
in this manner. Can this process be entirely automated? Muraki [1991] demonstrated a way in which
a given range image may be approximated by blobby spheres. The method begins with a single blobby
sphere that is positioned to match the data. Then the method repeatedly selects one blobby sphere and
splits it into two new spheres, invoking an optimization procedure to determine the position and radii of
the two spheres that best approximates the given surface. Calculating a model composed of 243 blobby
spheres “took a few days on a UNIX workstation (Stardent TITAN3000 2 CPU).” Similar blobby sphere
data approximation by Bittar et al. [1999] was limited to roughly 50 blobby spheres. In contrast to these
methods, the bunny in Figure 6 (right) is an interpolating implicit surface with 800 boundary and 800
normal constraints. It required 1 minute 43 seconds to solve the matrix equation for this surface, and
the iso-surface extraction required 7 minutes 43 seconds. Calculations were performed on an SGI O2
with a 195 MHz R10000 processor.

9. CONCLUSION AND FUTURE WORK

In this paper we have introduced new approaches for model creation using interpolating implicit sur-
faces. Specific advantages of this method include:

• Direct specification of points on the implicit surface
• Specification of surface normals
• Conversion of polygon models to smooth implicit forms
• Intuitive controls for interactive sculpting
• Addition of new control points that leave the surface unchanged (like knot insertion)
• A new approach to blending objects
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A number of techniques have been developed for working with implicit surfaces. Many of these tech-
niques could be directly applied to interpolating implicits, indicating several directions for future work.
The critical point analysis of Stander and Hart [1997] could be used to guarantee topologically correct
tessellation of such surfaces. Interval techniques, explored by Duff, Snyder and others, might be applied
to tiling and ray tracing of interpolating implicits [Duff 1992; Snyder 1992]. The interactive texture
placement methods of Pedersen [1995; 1996] should be directly applicable to interpolating implicit sur-
faces. Finally, many marvelous animations have been produced using blobby implicit surfaces [Blinn
1982; Wyvill et al. 1986]. We anticipate that the interpolating properties of these implicit surfaces may
provide animators with an even greater degree of control over implicit surfaces.

Beyond extending existing techniques for this new form of implicit surface, there are also research
directions that are suggested by issues that are specific to our technique. Like blobby sphere implicits,
interpolating implicit surfaces are everywhere smooth. Perhaps there are ways in which sharp features
such as edges and corners can be incorporated into an interpolating implicit model. We have shown
how gradients of the implicit function may be specified indirectly, using positive constraints that are
near zero constraints, but it may be possible to modify the approach to allow the exact specification of
the gradient.

Another direction for future research is to find higher-level interactive modelling techniques for
creating these implicit surfaces. Perhaps several new constraints could be created simultaneously,
maybe arranged in a line or in a circle for greater surface control. It might also make sense to be able
to move the positions of more than one constraint at a time. Another modelling issue is the creation of
surfaces with boundaries. Perhaps a second implicit function could specify the presence or absence of a
surface. Another issue related to interactivity is the possibility of displaying the surface with polygons
rather than with floaters. With sufficient processor power, creating and displaying a polygonal isosurface
of the implicit function could be done at interactive rates.
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