
Implicit Surfaces that Interpolate

Greg Turk and Huong Quynh Dinh
GVU Center, College of Computing

Georgia Institute of Technology

James F. O’Brien
EECS, Computer Science Division
University of California, Berkeley

Gary Yngve
Dept. of Computer Science and Engineering

University of Washington

Abstract

Implicit surfaces are often created by summing a collec-
tion of radial basis functions. Recently, researchers have
begun to create implicit surfaces that exactly interpolate a
given set of points by solving a simple linear system to as-
sign weights to each basis function. Due to their ability to
interpolate, these implicit surfaces are more easily control-
lable than traditional “blobby” implicits. There are several
additional forms of control over these surfaces that make
them attractive for a variety of applications. Surface nor-
mals may be directly specified at any location over the sur-
face, and this allows the modeller to pivot the normal while
still having the surface pass through the constraints. The
degree of smoothness of the surface can be controlled by
changing the shape of the basis functions, allowing the sur-
face to be pinched or smooth. On a point-by-point basis the
modeller may decide whether a constraint point should be
exactly interpolated or approximated. Applications of these
implicits include shape transformation, creating surfaces
from computer vision data, creation of an implicit surface
from a polygonal model, and medical surface reconstruc-
tion.

1. Introduction

In the field of computer graphics, the first complex
shapes that were created using implicit functions appeared
nearly 20 years ago. As often happens, two groups who
were unaware of each others work independently discov-
ered this new method of representing surfaces. Both James
Blinn and Hitoshi Nishimura and his co-workers realized
that a surface can be modeled using an implicit function that
is the sum of several Gaussian radial basis functions [3, 16].
Such models (sometimes called blobbies or metaballs),
have been used in a number of animations, including The
Great Train Rubbery, the blood floating in zero gravity in

Star Trek VI, and the creatures in Flubber. Despite these
successes, blobby implicit surfaces are seldom the method
of choice in 3D modelling and animation. We believe that
the main reason for this is the lack of control that the mod-
eller has when using blobby implicits. In particular, it is dif-
ficult to specify 3D points that the surface will pass through.

This paper describes a relatively new method of creating
implicit surfaces that overcomes this chief limitation of im-
plicit surfaces. We will use the phrase interpolating implic-
its to refer to this form of surface because they are created
primarily by specifying points through which the surface
will pass. The implicit functions that define these surfaces
are similar to blobby implicits in that they are both defined
as the sums of radial basis functions. Interpolating implicits
differ from blobby implicits in a couple of ways, however.
First, the weights of the basis functions are not specified by
the modeller but are instead determined by solving a ma-
trix equation. Second, the basis functions of interpolating
implicits typically have much wider support than Gaussian
implicits, and the reason for this is to create a smoother sur-
face.

The remainder of this paper will describe interpolating
implicits in greater detail. First, we will review the formu-
lation of blobby implicits. We will then show how interpo-
lating implicits differ from these by going over how various
constraints are defined by the modeller when creating a new
surface. We then survey several applications of interpolat-
ing implicits, including conversion of polygons to implicits,
shape transformation, and surface reconstruction for com-
puter vision and medicine. We end by describing several
open problems having to do with interpolating implicits.

2. Blobby Implicit Surfaces

Before describing the math behind interpolating implic-
its, we will first review the notion of an implicit surface and
go over the more traditional blobby implicit formulation.

Implicit functions can describe shapes in any dimension,
although we will restrict ourselves to 2D and 3D shapes in
this paper. An implicit function is a function that, given a
point p, returns a scalar value f(p) that specifies whether
the point is inside, on, or outside the shape that is being de-
scribed. In this paper, we will use positive function values,
f(p) > 0, to mean that the point p is inside a shape, and
f(p) < 0 will mean that the point is outside. Those posi-
tions where the function evaluates to zero are exactly on the
shape. In 2D, the set {p | f(p) = 0} (locations where the
function is zero) is an implicit curve and in 3D this set is
an implicit surface. The set {p | f(p) = 0} is sometimes
referred to as a level set of the function f for the value zero.
Unfortunately the term level set has also recently come to be
associated with a method that uses partial differential equa-
tions to create an evolving implicit surface over time.

There are many kinds of functions that have been used
to describe implicit surfaces. Quadratic functions can be
used to describe simple surfaces such as spheres, ellipsoids
and cylinders [13]. Higher degree polynomial functions
can be used to create more complex shapes, although con-
trolling these shapes can be quite difficult [19, 12]. Alge-
braic patches can be used to gain more control over sur-
face creation, although there is a price to pay in terms
of the machinery needed to maintain smoothness between
patches [2]. These and many other kinds of implicit sur-
faces are described in the excellent book that is edited by
Bloomethal [6]. We will now look at one formulation of
implicit surfaces in more detail, namely blobby implicits.

A radial basis function is a function that can be described
in terms of a center point c and a function h(x) over the non-
negative real numbers. A radial basis function b(p) can be
written as b(p) = h(|c − p|), which means that the func-
tion b gets its value by evaluating h of the distance between
p and the center c. The term radial comes from the fact that
b(p) evaluates to exactly the same value for all of the points
that are at a fixed radius from the c. There is no restriction
on the behavior of the function h(x) that defines a radial
basis function b(p), although h is nearly always monotoni-
cally decreasing when used for 3D modelling.

A blobby implicit function is a sum of Gaussian radial
basis functions. Typically these functions have the follow-
ing form:

f(p) = O +

n
∑

i=1

hi(|ci − p|)) (1)

In the above equation there is a distinct center point
ci and an associated function hi(x) that together are used
to create each individual radial basis function. The scalar
quantity O (which may be negative) is an offset term. Each
Gaussian radial basis function may be written in the follow-
ing form:

hi(x) = aie
x2/b2

i (2)

In this equation, the values ai and bi specify the maxi-
mum value and the standard deviation of each basis func-
tion. The basic controls that a modeller has over a blobby
implicit function are the values for ci, ai and bi. Notice
that none of these parameters allow the modeller to specify
exactly where the surface is located. The implicit surface
may or may not pass near a given center position ci, de-
pending on where other centers are located. This means
that the modeller has only indirect control over the shape of
a a blobby implicit surface.

Some research has been done on how to make modelling
with blobby implicits more direct. In particular, Witkin
and Heckbert created a way of allowing the user to di-
rectly move control points that a blobby surface is to pass
through [21]. Unfortunately, the user must also specify ex-
actly which parameters of which basis functions are free and
which are fixed while dragging around the surface. Such
a method is reasonable for modelling simple shapes, but
quickly becomes unwieldy for modelling complex shapes.

3. Interpolating Implicit Surfaces

We advocate a different method of creating implicit func-
tions, one that allows the modeller to directly specifies
points through which the surface will pass. As was the case
for blobby implicits, these interpolating implicit functions
were independently discovered by more than one research
group. The earliest paper of which we are aware that uses
this approach is by Savchenko et al. [18]. They make use
of interpolating implicit functions to construct a 3D sur-
face from scattered points. Turk and O’Brien also used this
same basic approach to create implicit functions that they
use to produce shape transformations [20]. Both of these
approaches use the same matrix formulation to weight a col-
lection of radial basis functions. The methods differ only in
how they specify the location of the interior of a shape, and
in this paper we will follow the approach in [20].

3.1 Constraint Specification

An interpolating implicit function is defined in terms
of a collection of constraint locations and the values at
each of these locations. We will use the set of points
{p1,p2, . . . ,pk} to represent the constraint locations, and
we will use {v1, v2, . . . , vk} to specify the values at these
locations. For now, let us consider the case where we wish
to specify a curve in 2D, so that the constraint positions
lie in the plane. The modeller may wish to think of these
constraints as falling into several categories, although they
are all treated identically when solving for the unknowns

2

Figure 1. Interior constraints.

that will define the implicit function. One category of con-
straint is a boundary constraint, which are those locations
where the modeller wishes the surface to pass through. At a
boundary constraint position pi, the value is equal to zero:
vi = 0. Another category of constraint is the interior con-
straint, and at these locations the value of the constraint
is positive. In most cases it suffices for all such locations
to have vi = 1. These are the locations that the modeller
knows should be interior to the shape. Figure 1 (left) shows
four boundary constraints, shown as open circles, and one
interior constraint, shown as a plus sign. The shape that is
defined by these constraints is also drawn, and it is the curve
that passes through the boundary constraints. On the right
of this figure three additional constraints have been added
to refine the shape.

Another category of constraint is the exterior constraint.
These are the locations that the modeller knows should be
exterior to the shape. At an exterior constraint, the con-
straint value is negative, typically vi = −1. Figure 2 (left)
shows a shape that is defined in terms of just two boundary
constraints that are surrounded by eight exterior constraints.
The ellipse-like curve that is created is quite a reasonable
closed shape that passes through the two constraints. A
more complex shape is shown in the right portion of this fig-
ure. Notice that in this figure as well, the curves pass exactly
through the boundary constraints. This is due to the interpo-
lating property of this form of implicit function. Boundary,
interior and exterior constraints may be freely mixed when
specifying the constraints for a shape. At least one interior
or exterior constraint is necessary in order for the resulting
implicit function to be non-degenerate. For many shapes
just a few interior or exterior constraints are necessary.

There is one final category of constraint that is closely
related to interior and exterior constraints, and this is the
normal constraint. A normal constraint is simply an interior
or exterior constraint that has been placed near a boundary
constraint. (For the purposes of this discussion we will limit
ourselves to normal constraints that are interior constraints,
but everything we say also applies to exterior constraints.)
Due to the nature of interpolating implicit functions, pairing

Figure 2. Exterior constraints.

up an interior constraint with a boundary constraint actually
has the effect of specifying the surface normal at the corre-
sponding boundary constraint. Figure 3 (left) illustrates six
boundary constraints (open circles) that each have a normal
constraint (plus signs) near to them. If the upper left nor-
mal constraint is moved, we get the shape that is shown in
the right portion of this figure. If we drew a line through
a boundary constraint and its paired normal constraint, we
would find that this line was almost exactly perpendicular to
the curve, that is, this line is nearly parallel to the normal of
the curve. The closer the normal constraint is to its bound-
ary constraint, the more exact this match is. This means that
a modeller not only has control over the location of a curve
or a surface, but also control over the normal to the curve
or surface. This is another property that blobby implicits do
not possess.

3.2 Creating the Implicit Function

We have just described how a modeller creates a shape
by specifying a collection of constraints. Now we will dis-
cuss how these constraints define an implicit function. Inter-
polating implicit functions are created using a method that
is well-known for performing scattered data interpolation.
We wish to create a function f(p) so that this function will
take on the constraint value vi at each of the constraint po-

Figure 3. Normal constraints.

3

sitions pi:

f(pi) = vi (3)

Our goal is to find weights for a number of radial ba-
sis functions, one basis function that is centered on each of
our constraints. We will do this by creating a set of linear
equations, one equation for each constraint. The implicit
function will have the following form:

f(p) =

n
∑

j=1

wjh(|p − pj |) (4)

In the above equation, the values wj are the unknown
weights that we must find. We will discuss suitable choices
for the scalar function h(x) later. Note that we use the same
function h(x) for all of the constraints, and that only the
weights change at the different constraint locations. Of-
ten there is an additional low-order polynomial term that is
added to this equation, but we have found this unnecessary
when there are more than about a dozen constraints.

Now that we have seen the general form of the implicit
function, we are ready to create one linear equation for each
constraint. If we examine just a single constraint with po-
sition pi and value vi and combine equations 3 and 4, we
get:

vi =

n
∑

j=1

wjh(|pi − pj |) (5)

The only unknowns in the above equation are the weights
wj . If we have k constraints, then we can create k equations
similar to equation 5, giving us k equations and k unknowns
{w1, w2, . . . , wk}. If we let hij = h(|pi−pj |), then the en-
tire set of equations can be written as a single matrix equa-
tion:

h11 h12 . . . h1k

h21 h22 . . . h2k

...
...

...
hk1 hk2 . . . hkk

w1

w2

...
wk

=

v1

v2

...
vk

(6)

There are many ways this matrix equation can be solved
to find the unknowns {w1, w2, . . . , wk}. We have often
solved it using LU decomposition, but at times we have also
found SVD (singular value decomposition) or the conjugate
gradient method to be useful. Once the values for all wj

have been determined, then equation 4 gives us our implicit
function. By construction, this function evaluates to zero
at all boundary constraints, thus the shape it defines exactly
passes through all boundary constraints.

The only issue that we have left until now is the na-
ture of the function h(x). For reasons first discovered by
Duchon [9] and discussed in [20], h(x) = x2 log x is a
good choice when creating 2D curves, and h(x) = x3 is a
good choice for creating 3D surfaces. These basis functions
create very smooth implicit functions, which is often a goal
when creating free-form models. We will discuss additional
choices of basis functions later in this paper.

Now that we have seen the basic formulation of interpo-
lating implicit functions, we can start to look at applications
that make use of this shape representation.

4. Free-Form Modelling

The first application of interpolating implicit surfaces
that we will examine is free-form modelling. As described
in the previous section, the main task in constructing these
surfaces is in specifying the constraint points. One approach
is to allow a user to directly specify 3D points that con-
strain the surface. We have written a 3D modelling program
that lets a user do exactly this. Our program initializes the
surface as a collection of four boundary constraints placed
at the corners of a regular tetrahedron, and these are sur-
rounded by a group of exterior constraints that are at the
corners of a cube. This 3D arrangement is similar to the
way the curves in Figure 2 were specified in 2D. Figure 4
(left) shows the shape that this initial 3D configuration de-
fines. A user can perform several operations on the current
shape:

• Move a boundary constraint.

• Create a new boundary constraint.

• Create and move a normal constraint.

The most basic of these operations is to move an already
existing boundary constraint. When the user drags a bound-
ary constraint with a pointer, this changes the position of
the boundary constraint. We re-solve the matrix equation 6,
and this gives a new set of weights for the basis functions.
Due to the interpolating nature of these functions, the new
surface that these weights define will still pass through the
moved constraint. For up to a few dozen constraint points,
the matrix solution can be performed at interactive rates.

When the user wishes to add more constraints to the sur-
face, he or she clicks the pointer over the existing surface.
A ray is cast from this position into the image, and the in-
tersection point with the surface becomes the position of
a new boundary constraint. This new boundary constraint
is now included in the collection of already existing con-
straints. Notice that because all boundary constraints have
constraint values of zero, this new constraint will not affect
the surface in any way. Now, however, the user can push or

4

Figure 4. Sculpted implicit surfaces.

pull on the surface at this location by dragging the new con-
straint. Adding a new boundary constraint exactly on the
existing surface is much like adding a new knot in a spline
curve – the curve remains the same shape but the user now
has an additional degree of freedom that may be changed.
Figure 4 (right) shows a torus that was made by creating a
number of boundary constraints that forced the surface to
re-join itself.

Another operation that the user may perform is to cre-
ate a normal constraint. The user selects a boundary con-
straint and indicates that he or she wishes to change the
surface normal at this location. Suppose that the bound-
ary constraint is at position p and that the surface normal
at this location is n. The system adds a new external con-
straint with a position p + n and a value of f(p + n). The
user may then grab the normal constraint (represented as a
long cone) and pivot its position around its corresponding
boundary point. Thus the position of the normal constraint
is moved, but the value remains fixed. This has the effect of
altering the surface normal at the boundary constraint while
still creating a surface that passes through it. Figure 5 (and
Color Plate 1) shows a surface with a normal constraint.
The left and right portions of the figure contain exactly the
same boundary constraints, but the normal constraint has
been pivoted to two different positions and this creates two
different shapes.

Our modelling system borrows a very successful display
technique from Witkin and Heckbert, namely their “floater”
particles. A floater particle is a point that remains on the
surface over time, even when the surface is changing shape.
The floaters repel one another in order to evenly populate
the surface, and floaters may be divide or removed in order
to maintain an even coverage of the surface if its surface
area changes. These floater particles are passive particles,
and do not participate in the definition of the surface. This is
in contrast to Witkin and Heckbert’s control particles, which
they use as a way to manipulate the surface. We do not use
control particles. Our boundary constraints give the user
fine control, but do not require the user to specify the free
and fixed parameters of the surface, as is necessary when

Figure 5. Changing a normal constraint.

using Witkin and Heckbert’s control particles.

5. From Polygons to Implicits

Despite the ability to model free-form shapes using in-
terpolating implicit surfaces, many applications require the
use of models that have already been constructed. Thus it
is important to be able to convert an already existing model
into an implicit form. Collections of polygons are by far
the most common representations of 3D models. There are
actually several ways that an existing polygonal model may
be converted to an interpolating implicit surface.

The first method was originally described in [20], and
this method used the vertices and surface normals of a
polygonal model to create boundary and normal constraints
for an implicit surface. Creating boundary constraints is
easy – each vertex position is used for a boundary con-
straint. If a vertex v has a surface normal n, then a normal
constraint may be placed at the location v+n, and any nega-
tive value (e.g. −1) may be used as the value of this normal
constraint. Once the boundary and normal constraints are
defined, the implicit surface is created using the technique
that is described in Section 3. This method is quite success-
ful when the model is described by polygons that are fairly
uniform in size over the entire surface. Figure 7 shows a
polygonal bunny with 800 vertices (left) and the interpolat-
ing implicit version of this model (right) that was created in
the manner just described.

Sometimes a model will contain polygons that vary a
great deal in size over different portions of the model. In
such an instance, the simple method of creating bound-
ary and normal constraints from the vertices is not suffi-
cient. Yngve describes an iterative approach to converting
a polygonal model to an implicit model that does not have
this polygon size restriction. We will give a brief overview
of this method, and refer the reader to [22] for the details.

The first step in the iterative conversion process is to cre-
ate a sampled signed distance function for the input model.
This is a 3D grid in which each voxel contains the distance
to the nearest point on the input model. Using this, the

5

Figure 6. Conversion from polygons to interpolating implicits, performed using the iterative approach.

method places an initial set of boundary, interior and ex-
terior constraints on and around the original surface. Then
an implicit function is created for these constraints, and the
volume is queried to find out how good a match this im-
plicit function is to the original surface. In places where the
match is poor, more constraints are added and then a new
implicit function is created using the original constraints
and the new ones. This process of refinement continues un-
til the implicit function is a close match to the input model.

Figure 6 shows the result of the iterative method of con-
verting polygonal models to interpolating implicit surfaces.
The first input model (far left) is a collection of human foot
bones, and the implicit version of this model is shown at in
the second image. The third image in this figure is a dragon
model with over 800,000 faces, and the image at the far
right shows the implicit form.

6. Surface Reconstruction

Polygonal models are just one source of 3D data points
that can be used to make constraints for an implicit surface.
Another form of data that may be used to create a surface is

Figure 7. A polygonal model (left) and an inter-
polating implicit version of the model (right).

computer vision data. There are a wide variety of methods
that use multiple photographs to determine the location of
3D points on the surfaces of objects. Some of these methods
include shape from shading, voxel coloring, various forms
of triangulation, structure from motion, and so on. Many
of these techniques may produce noisy or sparse range im-
ages, and reconstructing a surface from such data can be
quite difficult. Interpolating implicit functions may be used
to reconstruct surfaces from noisy and sparse data, and we
describe work on this problem by Dinh et al. [8]. The orig-
inal paper by Savchenko et al. also addresses the surface
reconstruction problem [18].

Given computer vision data in the form of a range image,
boundary constraints for an implicit function can be created
simply by using the positions of the range points. A more
difficult problem is determining where to place interior or
exterior constraints. If only 3D data points are given, there
is no obvious answer to this problem. If, however, we also
know the position of the camera use to determine the sur-
face points, then we can put this information to use. The
region of space swept out by a line from the camera to a
range point on the surface must be entirely unblocked, thus
exterior points can be placed anywhere along such a line.
Using data taken from several range images, it is also pos-
sible to determine with high confidence the 3D locations
of points that can be used as interior constraints. Using
boundary, interior and exterior constraints from computer
vision data, objects such as the toy dinosaur in Figure 8 (and
Color Plate 2) may be reconstructed. At the left of this fig-
ure is a surface reconstruction using a polygonal approach
called Crust [1], in the middle is the interpolating implicit
reconstruction, and at the right is the implicit surface col-
ored from the photographs of the object. Notice how much
smoother the implicit reconstruction is than the polygonal
reconstruction.

Often there is a certain amount of noise associated with
the positions of points in a range image. When this is the
case, it is preferable to approximate rather than to exactly
interpolate the data. The matrix equation 6 can be modified

6

Figure 8. Dinosaur model reconstructed us-
ing Crust (left), interpolating implicits (mid-
dle), and as an implicit surface with color
(right).

to allow the constraint points to be approximated or interpo-
lated on a point-by-point basis. Here is the modified matrix
equation:

λ1 + h11 h12 . . . h1k

h21 λ2 + h22 . . . h2k

...
...

...
hk1 hk2 . . . λk + hkk

w1

w2

...
wk

=

v1

v2

...
vk

When constraint number i is to be exactly matched, then
the value λi should be set to zero. If this constraint is to be
approximated instead, then λi should be set to be non-zero.
The larger the value of λi, the further the implicit surface is
allowed to deviate from the constraint point. We refer the
reader to [8] for more details.

In addition to describing how to reconstruct surfaces
from range data, Dinh also demonstrated the uses of a dif-
ferent family of radial basis functions. These basis func-

δ = 0.25
τ = 0.01

δ = 0.25
τ = 0.1

δ = 0.25
τ = 0.5

Figure 9. Effect of varying τ on the smooth-
ness of the surface. implicits (middle), and
as an implicit surface with color (right).

tions, first described by Chen and Suter [7], allow the user
to select the degree of smoothness of the implicit surface.
Figure 9 shows the effect of varying one of the smoothness
parameters (τ) of this radial basis family. When τ is close
to zero, the surface can capture sharp features of a model
(left). When τ is larger the surface is more smooth, but
some of the more fine features are lost. Again, see [8] for
the details.

7. Shape Transformation

There are several geometric operations that are best per-
formed using models that are in an implicit form. We be-
lieve that shape transformation is such an operation. The
goal of shape transformation is that, given two shapes A
and B, produce a sequence of shapes that smoothly change
from A to B. Interpolating implicit functions can be used
to perform shape interpolation by casting the problem as a
shape creation problem in one higher dimension [20]. To
transform a 3D surface A into another surface B, we place
the constraints that describe each shape into a 4D space de-
scribed by coordinates of the form (x, y, z, w). For each
constraint (x, y, z) of shape A, we create a 4D constraint at
the position (x, y, z, 0). Similarly, the constraints of shape
B are placed in the w = 1 sub-space, so each of these
constraints is of the form (x, y, z, 1). The 4D constraints
from both shapes are collected together into one large set
of constraints, and these constraints define an implicit func-
tion in four dimensions. A three dimensional slice through
this function at the value w = 0 yields shape A, and a slice
at w = 1 gives us shape B. Slices between these two lo-
cations, 0 < w < 1, result in shapes that are intermediate
between the two original shapes.

Figure 10 illustrates a shape transformation sequence be-
tween a knot and a human fist. Note that this method of
shape interpolation gracefully handles changes of topology.

8. Rendering

In this section we examine two traditional approaches for
rendering iso-surfaces that both perform well for interpolat-
ing implicit surfaces.

8.1 Iso-Surface Extraction

One way to render an implicit surface is to create a set of
polygons that approximate the surface. The most common
method of creating polygons for an implicit surface is to
divide up a region of 3-space into regular cells such as cubes
or tetrahedra, and to create polygons that approximate the
surface within each cell. Perhaps the best known approach
of this type is the Marching Cubes algorithm [14].

7

Figure 10. Shape transformation between a knot and a fist.

When an implicit function is to be extracted from a mea-
sured dataset such as from medical CT or MRI, an isosur-
face extraction algorithm typically examines each voxel of
the given volume. For an analytically-defined implicit func-
tion such as the kind described in this paper, there is no
pre-defined set of voxels to traverse. We may perform iso-
surface extraction using an algorithm known as a continua-
tion approach. The model in Figure 7 (right) was rendered
from an iso-surface that was created using the continuation
method. This method first locates any position that is on the
surface to be tiled. The continuation method then examines
the values of the implicit function at neighboring points on
the cubic lattice and creates polygons within each cube that
the surface must pass through. The neighboring vertices of
these cubes are examined in turn, and the process eventu-
ally crawls over the entire surface defined by the implicit
function. We use the implementation of this method from
[5] that is described in detail by Bloomenthal in [4].

8.2 Ray Tracing and CSG

There are a number of techniques that may be used to ray
trace implicit surfaces, and a review of these techniques can
be found in [10]. We have produced ray traced images of
interpolating implicit surfaces using a particular technique

introduced by Hart that is known as sphere tracing [11]. The
basis for this method is that some implicit functions (includ-
ing those that we are interested in) have what is called the
Lipschitz property. A function f is said to have the Lips-
chitz property if and only if there exists some positive con-
stant k such that:

|f(x) − f(y)| ≤ k‖x − y‖ (7)

The smallest k that satisfies the above equation is called
the Lipschitz constant.

Sphere tracing is based on the idea that we can find the
intersection of a ray with a surface by traveling along the
ray in steps that are small enough to avoid passing through
the surface. We declare that we have intersected the surface
when the value of f(p) falls below some tolerance ε. At any
point p on a ray, we decide on step size by determining the
radius of a sphere that is guaranteed not to intersect the sur-
face. Assuming that k is the Lipschitz constant for the func-
tion f , the radius of such a “safe” sphere at p is f(p)/k.
For interpolating implicit functions, we have used a sim-
ple heuristic to determine an appropriate value for k. We
sample the space in and around our implicit surface at 2000
positions, and we use for k the maximum gradient magni-
tude over all of these locations. For extremely pathological
surfaces this heuristic may fail, although it has worked well

8

Figure 11. Ray tracing of interpolating implicit surfaces. The left image shows reflection and shadows
of two implicit surfaces, and the right image illustrates constructive solid geometry.

for all of our images. Finding guaranteed bounds for the
Lipschitz constant of an interpolating implicit function is a
good area for future work.

Figures 11 (left) is an image of two interpolating implicit
surfaces that were ray traced using sphere tracing. Note
that this figure includes shadows and reflections. Figure 11
(right) illustrates constructive solid geometry with interpo-
lating implicit surfaces. The figure shows (from left to right)
intersection and subtraction of two implicit surfaces. This
figure was created using standard ray tracing CSG tech-
niques as described in [17].

The rendering techniques of this section highlight a key
point – interpolating implicit surfaces may be used in almost
all of the contexts in which other implicit formulations have
been used.

9. Open Problems

Despite the variety of algorithms and applications that
have been developed using interpolating implicit surfaces,
there are still a number of open research problems related
to them. It is our hope that other researchers will become
interested in this new method of creating implicit surfaces
and will resolve some of these issues.

Perhaps the most important issue related to interpolat-
ing implicits is that there is a practical limit on the number
of constraints that may be used to define an implicit surface.
Beyond around 4,000 constraints, solving matrix equation 6
becomes a major computational bottleneck. What would be

ideal is to modify the implicit function formulation or so-
lution method so that even millions of constraints could be
used to construct a surface. One possible avenue towards
this is to explore other radial basis functions whose proper-
ties allow the matrix to be solved faster and would allow the
implicit function to be evaluated more rapidly. Morse et al.
have recently made progress on this problem [15].

Another direction for future research is to find higher-
level interactive modelling techniques for creating these im-
plicit surfaces. Perhaps several new constraints could be
created simultaneously, maybe arranged in a line or in a cir-
cle for greater surface control. It might also make sense to
be able to move the positions of more than one constraint at
a time. Another modelling issue is the creation of surfaces
with boundaries. Perhaps a second implicit function could
specify the presence or absence of a surface. Another issue
related to interactivity is the possibility of displaying the
surface with polygons rather than with floaters. We think it
is likely that with sufficient processor power, creating and
displaying a polygonal isosurface of the implicit function
can be done at interactive rates.

Although we have described how to create normal con-
straints, the method we use only approximately specifies the
normal to the surface. For some applications this approxi-
mation may suffice, but in other cases it may be desirable to
specify the surface normal exactly. How might the process
of creating an implicit function be modified to incorporate
exact surface normals?

9

Finally, what other applications may make use of this
form of implicit surface? Because of its ability to handle
sparse and noisy data, we speculate that some medical ap-
plications may benefit from this surface representation. In
fact, some researchers have already begun to use interpo-
lating implicits for reconstructing surfaces from irregularly
spaced data slices [23]. Another potential application is
to time-varying data. The shape transformation method of
Section 7 shows that we can easily create implicit functions
in four dimensions. Time sequences of 3D shapes can be
thought of as 4D data, and interpolating implicits may be a
good way to represent and manipulate such data.

10. Conclusion

Despite their long history, implicit surfaces have never
really become a widely-used representation for surface in
computer graphics. One possible reason for this is the
difficulty of controlling such surfaces. Interpolating im-
plicit surfaces offer an alternative to the traditional sum-of-
Gaussian implicit surfaces. This method of creating implicit
surfaces has several benefits over other implicit methods,
and we hope that more researchers will start to explore the
possibilities of this approach to surface creation.

11. Acknowledgements

We thank the many friends who have encouraged us in
our research in this area. This work was funded by ONR
grant N00014-97-1-0223.

References

[1] N. Amenta, M. Bern, and M. Kamvysselis. A new voronoi-
based surface reconstruction algorithm. Computer Graphics
Proceedings, Annual Conference Series (SIGGRAPH 98),
pages 415–420, Aug. 1998.

[2] C. L. Bajaj, F. Bernardini, and G. Xu. Automatic re-
construction of surfaces and scalar fields from 3d scans.
Computer Graphics Proceedings, Annual Conference Series
(SIGGRAPH 95), pages 109–118, Aug. 1995.

[3] J. F. Blinn. A generalization of algebraic surface drawing.
ACM Transactions on Graphics, 1(3):235–256, 1982.

[4] J. Bloomenthal. Polygonization of implicit surfaces.
Computer-Aided Geometric Design, 5(4):341–355, 1988.

[5] J. Bloomenthal. An implicit surface polygonizer. In P. S.
Heckbert, editor, Graphics Gems IV, pages 324–349. Aca-
demic Press, 1994.

[6] J. Bloomenthal, editor. Introduction to Implicit Surfaces.
Morgan Kaufmann Publishers, Inc., San Francisco, Califor-
nia, 1997.

[7] F. Chen and D. Suter. Multiple order laplacian spline - in-
cluding splines with tension. Technical report, Monash Uni-
versity, July 1986. MECSE 1996-5, Dept. of Electrical and
Computer Systems Engineering Technical Report.

[8] H. Q. Dinh, G. Turk, and G. Slabaugh. Reconstructing sur-
faces by volumetric regularization. Technical report, Col-
lege of Computing, Georgia Institute of Technology, Nov.
2000. Tech Report GIT-GVU-00-26.

[9] J. Duchon. Spline minimizing rotation-invariant semi-norms
in sobolev spaces. In W. Schempp and K. Zeller, edi-
tors, Constructive Theory of Functions on Several Variables,
Lecture Notes in Mathematics 571, Berlin, 1977. Springer-
Verlag.

[10] J. Hart. Ray tracing implicit surfaces. Siggraph 93 Course
Notes: Design, Visualization and Animation of Implicit Sur-
faces, pages 1–16, 1993.

[11] J. Hart. Sphere tracing: A geometric method for the an-
tialiased ray tracing of implicit surfaces. The Visual Com-
puter, 12(10):527–545, 1997.

[12] D. Keren and C. Gotsman. Tight fitting of convex polyhe-
dral shapes. International Journal of Shape Modeling, pages
111–126, 1998.

[13] J. Levin. A parametric algorithm for drawing pictures of
solid objects composed of quadric surfaces. Communica-
tions of the ACM, 19:555–563, 1976.

[14] W. Lorensen and H. E. Cline. Marching cubes: A high reso-
lution 3-d surface construction algorithm. Computer Graph-
ics (SIGGRAPH 87), 21(4):163–169, July 1987.

[15] B. Morse, T. S. Yoo, P. Rheingans, D. T. Chen, and K. Sub-
ramanian. Interpolating implicit surfaces from scattered sur-
face data using compactly supported radial basis functions.
Shape Modelling International, 2001.

[16] H. Nishimura, M. Hirai, T. Kawai, T. Kawata, I. Shirkawa,
and K. Omura. Object modeling by distribution function and
a method of image generation. Transactions of the Institute
of Electronics and Communication Engineers of Japan, J68-
D(4):718–725, 1985.

[17] S. Roth. Ray casting as a method for solid modeling.
Computer Graphics and Image Processing, 18(2):109–144,
1982.

[18] V. V. Savchenko, A. A. Pasko, O. G. Okunev, and T. L.
Kunni. Function representation of solids reconstructed from
scattered surface points and contours. Computer Graphics
Forum, 14(4):181–188, Oct. 1995.

[19] G. Taubin. An improved algorithm for algebraic curve and
surface fitting. In Fourth International Conference on Com-
puter Vision (ICCV ’93), pages 658–665, Berlin, Germany,
May 1993.

[20] G. Turk and J. O’Brien. Shape transformation using varia-
tional implicit functions. Computer Graphics Proceedings,
Annual Conference Series (SIGGRAPH 1999), pages 335–
342, Aug. 1999.

[21] A. P. Witkin and P. S. Heckbert. Using particles to sam-
ple and control implicit surfaces. Computer Graphics Pro-
ceedings, Annual Conference Series (SIGGRAPH 94), pages
269–278, July 1994.

[22] G. Yngve and G. Turk. Creating smooth implicit surfaces
from polygonal meshes. Technical report, College of Com-
puting, Georgia Institute of Technology, Sept. 1999. Tech
Report GIT-GVU-99-42.

[23] T. S. Yoo, B. Morse, K. Subramanian, P. Rheingans, and
M. J. Ackerman. Anatomic modeling from unstructured
samples using variational implicit surfaces. Medicine Meets
Virtual Reality, 2001.

10

