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Abstract

In this paper, we propose a complete model handling the physical simulation of deformable 1D objects. We formulate continuous expressions
for stretching, bending and twisting energies. These expressions are mechanically rigorous and geometrically exact. Both elastic and plastic
deformations are handled to simulate a wide range of materials. We validate the proposed model in several classical test configurations. The use of
geometrical exact energies with dynamic splines provides very accurate results as well as interactive simulation times, which shows the suitability
of the proposed model for constrained CAD applications. We illustrate the application potential of the proposed model by describing a virtual
system for cable positioning, which can be used to test compatibility between planned fixing clip positions, and mechanical cable properties.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

One-dimensional flexible models are a key CAD element
in number of practical situations. Cables of largely varying
mechanical properties are nowadays used in industry. In fields
such as car and plane design, virtual prototyping is used
to improve quality and to reduce development costs. As a
matter of fact, virtual prototyping includes more and more
assembly simulations: it allows the early detection of potential
problems, and also permits the study of ease of assembly.
This implies the ability to accurately represent geometry,
but also the mechanical behavior of involved parts. Among
the many objects to be simulated, flexible one-dimensional
objects are of significant importance. They are involved in
vehicle engineering (e.g. electrical cable laying within the
car structure [1]), but also in fields such as architecture
(e.g. stiff electrical cable positioning within virtual buildings),
or even in medical simulation (surgical thread simulation is
currently an active research question in the medical simulation
community [2]). For most unconstrained Computer Aided
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Design applications, splines are probably the most classical
tool for 1D objects. As a matter of fact, NURBS have become
an industry-standard representation for 1D objects. Dynamic
splines have been introduced by Qin and Terzopoulos [3].
They combine physics-based constraining equations with spline
geometry, in order to improve the design process. In this article,
we propose an approach that extends the mechanical accuracy
of previously proposed approaches. We propose, wherever
possible, geometrically exact formal expressions that, along
with spline analytical expressions, to provide a powerful, real-
time model. We call this model Geometrically Exact Dynamic
Splines, or GEDS for short.

In this paper, we propose a spline-based model for the real-
time, mechanically accurate, simulation of one-dimensional
objects. Our model can handle both reversible (elastic) and
irreversible (plastic) deformations. The proposed formalism
and energy expressions model stretching, bending and twisting
loads; at the very limit of material constraint, we show how our
model can be used to detect break points. We also show that the
interactive rate is provided for a wide range of configurations.
Finally, we describe a practical application of our model, oone
that permits us to virtually validate electrical cable positioning
and clipping along a path on a car door. Our specific scientific
contributions are the following:
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Fig. 1. Virtual cable positioning on a car door.
- An improvement in the dynamic spline state-of-the-art,
namely a formulation of stretching, twisting and bending
deformations in large rotations (or large displacements),
through geometrically exact energy expressions. Such terms
allow accurate results, while still running in interactive
times. The proposed method is fully compatible with
Lagrangian multipliers;

- The handle of twisting with an extended spline formulation,
by decomposition of twisting in a geometrical part and a
roll part. Such a separation ensures numerical stability for
twisting energy evaluation. In addition to that, solving of the
proposed mechanical model does not require a local frame,
which makes it all the more accurate (frames are classically
stabilized along a 1D curve using non-mechanical methods,
see Section 8);

- An easy and efficient inclusion of plasticity within the
Lagrange spline model.

The remainder of the paper is organized as follows: next
section describes related work. In Section 3, we provide
a short summary of elasticity and plasticity theory, which
constitutes the core mechanical knowledge for understanding
the remainder of the article. Then we define in Section 4
the formalism we use to describe geometrical model
configurations. In Section 5, we propose a method (including
elegant formalism) for handling elastic deformations of the
model in a geometrically exact manner. In Section 6, we
show how elastic deformation simulation can be combined
with plastic behavior detection and simulation. For the sake
of completeness, we provide in Section 7 the (classical) tools
we use to handle the world’s interaction with the 1D model.
Section 8 provides some comments about twisting handling
in the proposed deformation model, which is one of the very
crucial points in the method. Finally, Section 9 describes
tests and practical results: first, for ease of understanding,
we provide a complete overview of the animation algorithm,
which links the equations all together. Second, we compare
numerical results of our model to several classical reference
configurations. Third, we describe an advanced practical
application of the model: a virtual system for electrical cable
position testing on a car door (see visual example of Fig. 1).

2. Previous works

A constraints solver has now become a standard part
of most CAD models, and is still a very active research
field [4]; the range of applications of such techniques is
potentially very large (e.g see [5]). Constraint solving most
often relates to finding a compatible solution between user
modeling requirements and pre-imposed geometric constraints.
Variational modeling [6] minimizes the global energy of a
constrained geometric deformable object, and can be seen as
an introduction of physical behavior into constraint solving.
Physics-based modeling is more and more involved in the field
of constrained geometrical design: it permits one to extend
constraints to the intrinsic mechanical properties of the modeled
object.

The study of one-dimensional deformable objects has been a
recurrent problem in computer graphics for about 20 years [7].
Many existing results, from the most computationally efficient
to the most numerically accurate, try to capture the complexity
of one-dimensional deformable models. Simple models, like
particles, networks of mass-springs [8] or rigid articulated
bodies [9], provide solutions on arbitrary linear discretization.
Most of these models provide fast and interactive simulations,
but are difficult to precisely tune for some given material,
as their parameters do not directly relate to the coefficients
provided by mechanics. These shortcomings have been
addressed by developing more accurate models that underlie the
physics. Inspired by classical numerical simulation methods,
finite element and boundary element methods (see [10,11]) are
known to yield accurate numerical results for fine discretization
of the studied objects; such accuracy is difficult to combine with
reasonable computation time in practice, however.

In the robotics community, several recent works use Cosserat
theory. A Cosserat medium was first described in 1909 by
Cosserat brothers [12]. This medium is described by a set of
oriented micro-solids. Pai [13] first introduced Cosserat’s rod
theory in computer graphics to model cantilever objects. In
this work, the animation step is done in two passes: the first
one calculates the forces and torques iteratively along the rod
discretization, and the second one evaluates the geometrical
configuration in backward iterations. Wakamatsu [14] achieves
a very accurate static solution of a cable simulation by
considering it as a succession of oriented frames and by
minimizing its potential energy; this approach is mechanically
accurate, but demands a very high computation cost. Bertails
et al. [15] define Super-Helices for simulating the dynamics of
human hair strands. A Lagrangian formulation of inextensible
Kirchhoff rods is used. This method is fast to compute
and visually realistic for low resolution rods; the quadratic
complexity of the algorithm is still a key problem for the real-
time simulation of high complexity rods. The main drawback
of these three methods is that it is difficult to combine such
models with constraints. Moreover, these methods need at least
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a reference point for calculation, which might not always be
available in practical cases (e.g. modeling rest state position
of a deformable cable within a recipient shape). Grégoire [16]
very recently proposed a mass-spring model based on Cosserat
theory, which resembles realistic and interactive twisting and
bending deformations. This model uses consistent mechanics,
and is based on simple, continuous, energy terms that provide
efficient computation time; it is anyhow unclear in which
measure this model is numerically accurate, when compared to
real-life objects with known material properties.

Spline-based techniques are still quite isolated within the
physical animation literature. Terzopoulos et al. initiated
deformable models in Computer Graphics, including physics-
based curves [7], using a Lagrangian form of Newton’s equa-
tion. The model of Qin and Terzopoulos [3], Dynamic Non-
Uniform Rational B-Splines (DNURBS), first combined spline
representation with physics laws. Nocent and Rémion [17] de-
fine the Dynamic Material Splines (DMS), a full Lagrange-
based simulation framework for splines. They consider spline
control points as the degrees of freedom of the underlying con-
tinuous object. Continuous stretching energy is defined. La-
grange multipliers are used to constrain point position and tan-
gent orientation. Lenoir [18] propose a curvature energy for-
mulation for DMS that is not geometrically exact, but provides
real-time manipulations, as well as adaptive simulations [19].
We do not address in the present article the simulation of frac-
tures: Lenoir et al. [19] provide an elegant manner to compute
topological changes, by combining Lagrangian mechanics with
B-Splines knot-refinement properties.

None of the previously mentioned works deals with irre-
versible deformations. One-dimensional objects like electrical
wires, telephone cables, and suturing threads remain partially
deformed after relaxation. Few papers deal with plasticity. Ter-
zopoulos and Fleischer [20] first introduced non-elastic be-
havior in the Computer Graphics community. They proposed
physically-based models to simulate viscoelasticity, plasticity
and fracture effects, for the purposes of animation, in the case
of volumic objects. [21] describes a point-based method for
animation that can handle fracture on shells. O’Brien et al.
[22] propose a method for realistic ductile fracture animation
in common solid materials, such as plastics and metals. In the
present work, we use a similar decomposition of strains to han-
dle plasticity.

3. Mechanics background

This section provides a very short overview of the
mechanical background, which is necessary for understanding
the extension of Dynamic spline we propose in the next section.

When a force is applied to a deformable object, object
geometry is extended or compressed, and local topology may
even change (i.e. material might break) if the force is large
enough. Although both load and extension/compression are
primary quantities, material scientists tend to use two derived
quantities, stress σ and strain ε to analyze materials under
load. Stress is the force per unit area and strain is the
extension/compression per unit length. In the general case,
Fig. 2. Schematic representation of a typical stress–strain curve. Elasticity is
usually linear, whereas plasticity is assumed to be perfect.

both σ and ε are manipulated using tensors. However, in most
practical cases, the relationship between the stress applied to a
material and the resulting strain is described in mechanics by
a simple relation separately in each direction: a curve can be
produced that is characteristic of the material. Fig. 2 is a typical
representation of a stress–strain curve.

The behavior of the material fully depends on the strain
magnitude: elastic (i.e. reversible) deformations occur for
small strains, and plasticity (i.e. non-reversible) for more
significant strain magnitudes. When strain intensity reaches the
fracture point, the geometry of the local topology changes, and
continuous mechanics can no longer be applied.

3.1. Elasticity

When strain magnitude is relatively small (assumption of
small strains in mechanics), it can be considered as directly
proportional to stress (Hooke law). The elasticity domain only
contains reversible deformations: when stress is relaxed, the
material returns to its rest state. A nonlinear elastic region
needs to be studied at some point, depending on the material:
the mechanical model is then said to be defined for large
strains. In practice, a wide range of materials available in
real-life one-dimensional objects do not need such non-linear
methods for good simulation accuracy. A a result, we only
consider in this paper small strains (we show in Section 9.2 that
this approximation anyhow allows to reach good mechanical
accuracy).

Several parameters characterize an elastic material. The
longitudinal rate and the transversal rate between a stress and
a related strain (i.e. the strain in the direction and the strain
orthogonal to the stress, respectively) are given by Young’s
modulus E (longitudinal elasticity modulus) and shear modulus
G (transversal elasticity modulus), respectively. These two
moduli are interrelated by a formula incorporating Poisson’s
ratio ν, which links longitudinal and transversal rates:

G =
E

2(1+ ν)
. (1)

The units of the two moduli are Pascals (1 Pa = 1 N m−2),
whereas Poisson’s ratio is dimensionless; specific values for
several materials are provided in Table 1. These parameters
completely identify a given material.
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Table 1
Physical parameters for several materials [23]

Material E (GPa) ν µ (Mg/m3)

Nylon 2.7 0.33 1.1
Alluminium alloys 71.7 0.34 2.8
Copper 120.7 0.35 8.9
Steel, carbon 206.8 0.28 7.8
Steel, stainless 189.6 0.28 7.8

3.2. Plasticity and fracture

If the stress in a material exceeds the elastic limit A, also
called the yield point, for the material, then the stress is no
longer linearly proportional to strain, and the deformations
become non-reversible; when the stress is relaxed, the material
remains partially deformed. After a plastic deformation, the
strain–stress curve and the elastic region is translated along the
strain axis. In the case of perfect plasticity, measured stress
is independent of the applied strain: external work above the
threshold value is fully turned into material, non-reversible,
deformations. Under growing strain, when material strain limit
is reached, a break (potentially fracture if applied strain is more
important) occurs.

These material properties are handled by simulation using
equations that define the dynamic relation between the
geometry of the object (i.e. its deformations) and the applied
forces.

3.3. Energy balance

The principle of least action, first formulated by de
Maupertuis in 1747, is that nature always finds the most
efficient path from one configuration to another. The Lagrange
equations are deduced from this principle. They involve the
kinetic energy T and the potential energy U of the system. The
kinetic energy is the energy of motion, whereas the potential
energy is the stored energy of position possessed by an object.
F is the sum of external forces. Assuming the mass distribution
to be homogeneously distributed between the n degrees of
freedom qi of the object, the Lagrange equation, which can be
used for movement resolving, is formulated as follows:

∀i ∈ {1, . . . , n},
d
dt

(
∂T

∂q̇i

)
= Fi −

∂U

∂qi
(2)

where Fi is the sum of the generalized external forces at qi (see
7 for more details).

In the case of Dynamic Splines, control points are used as
the degrees of freedom if the object.

4. GEDS definition

4.1. Beam geometry definition

Beam theory is the study of one-dimensional objects in
mechanics. Consider a cross-section of diameter D and area S,
as shown in Fig. 3. The neutral fiber or neutral axis, denoted
f , is the oriented curve of length L that passes through the
center of every cross-section. The volume defined by these
cross-sections is a beam.
Fig. 3. Scheme of a beam with its geometrical parameters and local frame.

4.2. Spline formulation

The beam configuration is entirely described by two fields: a
position field r = (x, y, z), which determines the neutral fiber
f position, and a rotation field θ , which provides the roll of
the cross-section. We propose to combine these two fields in
a unique field described by a set of polynomial spline curves:
q = (r, θ) = (x, y, z, θ). Each resulting spline is given by

q(u) =

n∑
i=1

bi (u)qi (3)

where bi are the i th spline basis functions of the control points
qi, and u is between 0 and `, the length of the neutral fiber. The
j th derivative of q with respect to u is given by:

q(j)(u) =

n∑
i=1

bi
( j)(u)qi. (4)

Arc length is denoted by s. The derivative of control point q,
position r and roll θ , with respect to u, are denoted by q′, r′

and θ ′ respectively. The displacement elements ds and du are
interrelated by ds = ‖r ′‖du.

Since control points completely define the position of the
spline and the orientation of the cross-sections, they can be
considered as the degrees of freedom of the system and used
in the Lagrange equation (2).

Any kind of spline can potentially be used. In our test
and without loss of generality, we used two different spline
models: the cubic interpolatory Catmull–Rom spline, and the
non-uniform rational B-spline (NURBS). The first model has
the advantage of interpolating control points, which makes it
quite easy to handle; in addition to that, scene definition is quite
simple. By comparison, NURBS demand specific conversion
numerical schemes to evaluate control points from sampling.
Yet, this model has the nice potential feature of being available
for geometric exact subdivision, which makes it interesting for
further adaptive methods [19] (which is beyond the scope of
this paper).

Once we have described our one-dimensional object
geometrically with splines, we may now use mechanics to
make it evolve in space. In the following subsection, we
define the physical part of the spline, using linearly elastic but
geometrically exact deformations.

5. GEDS in the elastic domain

To obtain the motion of control points with the Lagrange
equations, deformation energies must be first formulated from
physical parameters, and then differentiated with respect to
the degrees of freedom. In this section, we propose a unified
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Fig. 4. From left to right: rest state, stretching, twisting and bending on a beam.

formulation to describe the deformations of a one dimensional
object and the exact calculation of the corresponding forces.

5.1. Constitutive laws and strain energies

Every action on a beam can be modeled by forces and
torques on the neutral fiber f ; we express the force and the
torque in the local frame instead of using stresses. They are here
proportional to stresses, and moreover are easier to manipulate.

We elucidate here some terminology and notation, as shown
in Fig. 4.

The normal force to the cross-section, which results in
stretching, is denoted by FS . The cross-section may rotate
around the neutral fiber, due to the torsional torque, denoted
by FT . The bending torque, denoted by FB , corresponds to
the oriented curvature of the neutral fiber f . The Kirchhoff
assumption presumes that cross-sections are stiff; only the
neutral axis is distorted : we neglect the shearing force in the
plane of the cross-section. This yields the Rayleigh model.

Let us define the vector F as the data of FS , FT and FB :

F =

FS
FT
FB

 (5)

F is related to the strain ε. The rest of the strain is denoted ε0.
The elastic relationship between ε andF is well described in

beam theory by Courbon [24]. Considering that linear elasticity
facilitates the calculation of strain energies of a beam, as strains
are directly proportional to stresses, we use the small strain
assumption, which is accurate if the radius of curvature is
large relative to the radius of the cross-section (usually about
5 times).

From these considerations, we provide the following result,
which derives from Hooke’s law:

F = H
(
ε − ε0

)
=

ES 0 0
0 GIo 0
0 0 EIs

 (
ε − ε0

)
(6)

where Io is the polar momentum of inertia whereas Is is the
cross-section momentum of inertia; ES, GIo and E Is are the
stretching, the twisting and the bending rigidities respectively
(see [24]). We call H the Hooke matrix.
Assuming the cross-section is circular and its diameter
constant, we can obtain the following expression for H:

H =
D2π

4


E 0 0

0
GD2

8
0

0 0
ED2

16

 (7)

Strain energy U is formulated by the following integration
along the beam:

U =
1
2

∫ L

0

(
ε − ε0

)t
Fds. (8)

Using expression (6) of F , we get:

U =
1
2

∫ L

0

(
ε − ε0

)t
H

(
ε − ε0

)
ds. (9)

We now have all the background in mechanics necessary to
determine the motion of our one-dimensional object by solving
the Lagrange equation (2). In the two next subsections, we will
study the two terms of the equations so as to obtain a numerical
solution.

5.2. Handling twisting in dynamic splines

Since the one-dimensional object is specified by position
and rotation, its kinetic energy comprises translational energy
and rotational energy. Translation energy corresponds to the
displacement of control points and rotation energy is due to the
motion of cross-sections around the neutral axis. We define the
inertia matrix, denoted J, which is the same everywhere along
the spline, since the diameter is constant:

J =


µ 0 0 0
0 µ 0 0
0 0 µ 0
0 0 0 Io

 (10)

µ corresponds to linear density and Io to the polar momentum
of inertia. We thus propose a simple definition of the spline
kinetic energy T :

T =
1
2

∫ L

0

dq
dt

t

J
dq
dt

ds (11)

where t denotes a transpose. Differentiating kinetic energy T
with respect to qi yields the left term of the Lagrange equations:

d
dt

∂T

∂q̇i
=

1
2

∫ L

0

d
dt

∂
dq
dt

t
J dq

dt

∂q̇i
ds. (12)

Replacing q by the expression given in Eq. (3) in a similar way
to that described by Nocent and Rémion [17], yields:

d
dt

∂T

∂q̇i
=

n∑
j=1

J
∫ L

0
(bi (s)b j (s))ds

d2q j

dt2 . (13)

Considering a matrix M and vector A of components Mi, j =

J
∫ L

0 (bi (s)b j (s))ds and A j =
d2q j

dt2 respectively, this equation
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yields:

d
dt

∂T

∂q̇i
=

n∑
j=1

Mi, j A j . (14)

Considering all degrees of freedom, this sum or Kinetic term
can consequently be written as a matrix–vector product:

MA. (15)

To obtain Nocent and Rémion kinetic energy, replace J by the

following matrix:
(

µ 0 0
0 µ 0
0 0 µ

)
. The use of J considers twisting

inertia.

5.3. Geometrically exact energy evaluation

In this subsection, we propose an expression of the
derivatives of strain energies with respect to generalized
coordinates. They compose the right hand term of the Lagrange
equation (2);

P i
= −

∂U

∂qi
= −

1
2

∫ L

0

∂
(
ε − ε0

)t H
(
ε − ε0

)
∂qi

ds (16)

they are homogeneous to three generalized forces : the
stretching force Ps , twisting force Pt and bending force Pb.

To solve the Lagrange equations, we need to express these
generalized forces about position r and its derivatives r′, r′′, r′′′,
and the spline basis functions bi and their derivatives b′i , b′′i , b′′′i .
This allows us to evaluate the integral terms using classical
Riemann sums [25].

The expressions involving generalized forces are quite
complicated, but fast enough to compute. For the sake of clarity
and brevity, we will provide them here, but not every detail of
the calculation; please see the Appendix A for more details. We
also consider separatly differentiations of strains with respect
to position r and roll θ . Note that ∂r( j)

∂ri
= b j

i and ∂θ ( j)

∂θi
= b( j)

i ,

where b( j)
i is the j th derivative of bi with respect to u.

Furthermore, we introduce the following variables for
compactness of the equations:

- C = r′ × r′′

- P = ∂r′×r′′
∂ri

- T = Cb′′′i − P × r′′′ − 2τ (C × P).

where × denotes the cross product. The geometrical twisting τ

will be detailed ahead.
We lay stress on the fact again that we consider our object

to be materially linear elastic (small strains) but geometrically
exact (large transformations).

- Stretching force
In small strains, the stretching strain is defined by εs =

1 − ‖r′‖. Nocent [17] used the large strain assumption, but
the difference of accuracy between small strains and large
strains is not significative for high rigidities.

The stretching force term P i
s yields:

P i
s (r) = −

πED2

4

∫ L

0

(
1−
‖r′0‖

‖r′‖

)
r′b′i ds. (17)
Since stretching strain energy Us does not depend on θ ,

P i
s (θ) = 0. (18)

- Twisting force
The twisting comprises two scalar parts: geometrical or

Frenet twisting τ and roll θ . Geometrical twisting is due
to the bending of the neutral fiber and is reponsible for
bending-twisting coupling, whereas roll corresponds to the
rotation of the material around the neutral fiber, as described
in [26]. Chouaı̈eb [27] established that twisting is the sum of
Frenet twisting and a rotation about the tangent.

The twisting results in the following expression:

εt = θ ′ + τ

τ =
r′ × r′′ · r′′′

‖r′ × r′′‖2
=
C · r′′′

‖C‖2
.

(19)

This expression is also considered in [16].
The geometrical twisting contribution P i

t (r) yields:

P i
t (r) = −

πGD4

32

∫ L

0

(
εt − ε0

t

) T
‖C‖2

ds. (20)

The roll contribution P i
t (θ) yields:

P i
t (θ) = −

πGD4

64

∫ L

0

(
εt − ε0

t

) (
bi
′

‖r ′‖

)
ds. (21)

- Bending force
The bending force is a function of the scalar Frenet

curvature k, which is equal to bending strain εb:

εb = k =
‖r′ × r′′‖
‖r′‖3

=
‖C‖
‖r′‖3

. (22)

Lenoir approximated k by r ′′, considering small rotations.
In order to have accurate results, we keep the original
definition of the curvature in our calculation.

The bending force term P i
b yields:

P i
b(r) = −

πED4

64

∫ L

0

εb − ε0
b

‖r ′‖2

(
C × P
‖C‖‖r′‖

− 3kb′ir
′

)
ds.

(23)

Since the bending strain energy Ub does not depend on θ ,
P i

b(θ) = 0.

The strain force is the sum of vectors provided by the strain
equations in stretching (17), twisting (20) and (21) and bending
(23), and its calculation is expanded in Appendix A.

Specifying some arbitrary rest state configuration of the
GEDS is quite simple. Yet, deformation energies calculated
from an initial geometric configuration have to remain
“reasonable” for preserving numerical stability.

5.4. Numerical solving of the Lagrange equations

The Lagrange equation (2) can now be transformed into its
matrix form,

MA = F + P. (24)
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Fig. 5. Strain regions that rule one-dimensional objects: linear elasticity,
perfect plasticity and break point. ∆ε p corresponds to the elastic strain offset
induced by a plastic strain.

The four sub-systems corresponding to x, y, z and θ can be
solved independently. Since the spline possesses the local
control property, the matrix M is banded with width 2l − 1,
where l is the spline locality.

We solve the system by using a simple LU decomposition at
each simulation step. Accelerations are then integrated, at every
time step, to determine control point velocities and positions.
We use two integration methods: the explicit Runge Kutta
method is fast but unstable for high rigidities; the implicit
Euler Broyden method described in [28] guarantees numerical
stability, but adds damping to the simulation.

We can now simulate an elastic physically-based spline.
Adding plasticity to the model only requires a few other
considerations, which we describe in the following section.

6. GEDS in the plastic domain

In this paper, we may also treat one-dimensional objects as
perfectly plastic and breakable, with a stress–strain curve of the
form shown in Fig. 2 with perfect plasticity. It is possible to
simulate real plasticity using a function of ε and εA, which
gives the part of the force F to convert into strain ε. In
practice, we used ideal plasticity materials: as one can see
Section 9.4, our practical results show convincing simulations
using ideal plasticity. In addition to that, it is known that
such an approximation provides almost exact results for some
specific material, such as nylon wires or soft steel. In fact, this
curve is quite similar to the curve for nylon wire given by
Shuttleworth [29]; this justifies in this paper the use of perfect
plasticity.

Stress and strain are not proportional beyond the elastic
limits A+ or A−, as shown in Fig. 5.

In perfect plasticity, the force cannot exceed the positive
yield force FA+ or be less than the negative yield stress FA− ;
more external works are entirely turned into a plastic strain
offset ∆ε p. The elastic region is translated by ∆ε p. When the
strain is greater than the breaking point strain εB+ or smaller
than εB− , the material irreversibly breaks.

Very little calculation is required to model perfect plasticity
or to detect break points. Algorithm 1 can be used separately
for each strain scalar component, since the strains are all
independent. We do not directly use elastic limit stress, but
we precompute corresponding strains εA+ and εA− . We also
assume that the plastic strain offset ∆ε p is zero everywhere
at the start of the simulation, since the material is not damaged
yet. At each simulation step, we check if the stress εe

= ε − ε0

has exceeded the elastic region. If εe exceeds εA+ + ∆ε p,
irreversible strain occurs and the elastic region is translated by
their difference ε+. So we update ∆ε p by adding ε+.

Algorithm 1 Plasticity and break point algorithm
Initialization
for all spline samples do

Compute ε0

∆ε p
← 0

end for
while simulation do

for all spline samples do
εe
← ε − ε0

εe−p
← εe

−∆ε p

ε+← εe−p
− εA+

ε−← εe−p
− εA−

if ε+ > 0 then
∆ε p
← ∆ε p

+ ε+
if εe > εB+ then

Simulate fracture
end if

else if ε− < 0 then
∆ε p
← ∆ε p

+ ε−
if εe < εB− then

Simulate fracture
end if

end if
end for

end while

To deal with plasticity, the energy formulation (9) now
yields:

U =
1
2

∫ L

0

(
ε − ε0

−∆ε p
)t

H
(
ε − ε0

−∆ε p
)

ds (25)

εA+ implicitly becomes εA′+
. When εe exceeds εB+ , the material

breaks. The algorithm is the same for negative algebraic values.

7. World interaction

The spline-based model is continuous, that is, mechanically
defined everywhere along the one-dimensional object. An
applied force F on the point q of the spline provides generalized
forces Fi . Differentiating the power W = Fq with respect to the
generalized coordinate qi yields the corresponding generalized
force Fi :

∂W

∂qi
= F

∂q
∂qi
= Fbi . (26)

A force may consequently be applied everywhere, but
interacting with the manipulated object remains quite difficult.
This is the reason why we use Lagrangian multipliers: they
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allow us to set the position or the direction of any point of
the one-dimensional object. Introducing them into the Lagrange
equation (2), we get:

∀i ∈ {1, . . . , n},


d
dt

(
∂K

∂q̇i

)
= Fi −

∂T

∂qi
+ Lt

· λ

φ
(
qi , q̇i

)
= 0

(27)

where L is a matrix defined using the different constraints φ

relative to all degrees of freedom [30], and λ are the Lagrange
multipliers which correspond to the force required to maintain
the constraints; t still denotes a transpose. The derived linear
system thus yields:(

M Lt

L 0

) (
A
−λ

)
=

(
F + P

E

)
(28)

where E is a vector coding the desired behavior of the
constraint, position or orientation.

Collision is dealt with using a classical penalty method.

8. Comments about twist control

8.1. From mechanical point of view

A cross-sectional orientation field is not required to solve
mechanics, but only to visualize twisting and apply textures. As
a matter of fact, bending and geometrical twisting only depend
on control point positions, whereas the roll is not directly
considered in the mechanical equations, but its derivative with
respect to the spline parameter u. A major convenience of our
model is that its accuracy does not rely on frames. This allows
a real continuity of the one-dimensional object.

8.2. From visual point of view

However, we need to visualize the one-dimensional object
to interact with it. A frame that minimizes geometrical twisting
has the following major advantage: the aim is to add only
a rotation about the tangent of an angle equal to the roll,
in the plane of the cross-section. One of the more intuitive
frames is due to Frenet. It consists of a unit length tangent t,
a principal normal n and a binormal b. t is simply the unit
length velocity vector t = r′

‖r′‖ . The Frenet frame is convenient
because it can be analytically computed at any arbitrary point of
the curve, but it is undefined wherever the curvature vanishes.
Bloomenthal [31] proposed to define an initial frame at the
beginning of the curve and to propagate it along the curve using
small, local rotations. We will use the index k to enumerate
frames from the beginning. The rotation matrix R between
two frames may be given by the Olinde–Rodrigues formula.
Boyer [32] gives a convenient expression which does not
involve a rotation angle but only the two successive units
tangents. However, it remains expensive. This is the reason why
we use Kenneth Sloan’s method as described by Bloomenthal
to propagate the frames:{

bk = tk × nk−1
nk = bk × tk .

(29)
Fig. 6. Update of the local frames.

To update the frames between two steps n and n + 1 of
the simulation, we use the Olinde–Rodrigues formula for its
robustness, considering the unit tangents t0n and tn+1

0 , as
described in Fig. 6.

9. Implementation and validations

9.1. Implementation

The overall algorithm 2 recalls the required steps to simulate
a physically-based spline, including elasticity and plasticity.

Algorithm 2 Physically-based spline algorithm
Initialization
for all spline samples do

Compute Initial strains: ε0

∆ε p
← 0

Compute Inertia Matrix: J (Eq. 10)
Compute Hooke Matrix: H (Eq. 6)
Compute first initial frame, then propagate it along the
spline (Eq. 29)

end for
while simulation do

for all spline samples do
Compute Right Term:
Compute potential strain forces: Ps, Pt , Pb (Sec. 5.3)
Add external forces and Lagrange multipliers: F, L
(Sec. 7)
Plasticity and Break Point algorithm (Alg. 1)
Compute Left Term:
Compute M (Sec. 5.2)
Solve matrix form of the Lagrange equations
LU decomposition and solving: get accelerations A (see
[25])
Explicit or Implicit Integration: get new control points
qi (see [28])
Update control points qi
Update frames (Eq. 29)
Display Splines (Eq. 3)

end for
end while

A one-dimensional object is completely defined by a spline
specified by an arbitrary number of control points as well as
by some physical parameters. These parameters comprise the
cross-section diameter D and material density µ, as well as two
parameters of elasticity (that is, two of the three interrelated
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constants of Young’s modulus, shear modulus and Poisson’s
ratio). The yield point A and break point B are optional. Strain
forces are numerically evaluated, using a classical Riemann
sum method with k samples per spline. Sampling is discussed
in next Section 9.2.

Every point of the spline may be constrained in position and
orientation using Lagrange multipliers. Reasonable constraint
violation values may be used to move the GEDS. A value below
5 cm per step ensures stability. We also use a red icosahedron as
an interactor with the scene. We may attach it to any object via
a spring. This provides soft coupling with deformable objects
and allows a more comprehensive interaction, but introduces
oscillations between the interactor and the GEDS.

The model described in this paper has been implemented
in C++. We performed several tests using a 3 GHz
Pentium IV. The following subsections provide some accuracy
measurements in static state, as well as performance and
realism evaluations in motion state.

9.2. Classical static states

To validate our strain formulation, we have performed two
classical experiments. The first one is the catenary whose shape
is that formed by a perfectly flexible chain suspended by its
ends and acted on by gravity. Its equation was obtained by
Leibniz, Huygens and Johann Bernoulli in 1691:

y =
h(Fs)

Sµ

(
ch

(
Sµx

h(Fs)

)
− 1

)
(30)

where h(Fs) is the horizontal component of the normal effort
Fs , µ the density, and S the area of the cross-section. The shape
only relies on stretching and not on bending neither twisting.
h(Fs) can only be numerically computed with the formulation
of the length of the catenary l:

l =
2h(Fs)

Sµ
sh

(
SµL

2h(Fs)

)
(31)

L is the distance between the wire ends.
Several configurations have been tested, corresponding to

theoretical curves.
The second experiment is the classical problem of deflection

of a cantilever beam of linear elastic material, under the action
of an external vertical concentrated load at the free end. It was
analysed by Beléndez [33]. The beam curvature and deflection
only involve bending energy.

The total length l of the beam corresponds to the unknown
slope φ0 at the free end of the beam:

l =

√
EI∆
2F

∫ φ0

0

dφ
√

sin φ0 − sin φ
. (32)

This equation allows us to obtain the slope φ0 at the free end of
the beam as a function of the external load F . The horizontal
and vertical deflections at any point of the neutral axis of the
cantilever beam are found as follows:

x =

√
EI∆
2F

(
√

sin φ0 −
√

sin φ0 − sin φ) (33)
y =

√
EI∆
2F

∫ φ

0

sin φ dφ
√

sin φ0 − sin φ
. (34)

The solutions to this problem are elliptic equations, which
have no closed form solutions: they have to be numerically
solved. Experiments illustrate in Fig. 12 the fact that theoretical
and simulation curves we have computed are close to each
other. Increasing the sampling density improves accuracy,
but only 5 samples between two successive control points
are necessary to provide accurate results. Concerning control
point density, a minimum of 12 control points is required
for the GEDS converge to the exact deflection. However, this
corresponds to only 3 points per meter. Other methods like
mass-springs, FEM or even Strands require many more degrees
of freedom for the same result.

Experimental results demonstrate that the simulation curves
we have computed are close to the theoretical curves, depending
on the number of control points per length unit. Convergence
of the deflection towards theory relies here on geometrical
considerations, not on material ones. The assumption of
small strains/large transformations is consequently validated a
posteriori.

9.3. Dynamic simulation

There are a number of situations that cannot be handled by
static simulation.

The motion pendulum is a simple animation that very
much depends on physical parameters. Moreover, its behavior
corresponds to its material properties, see Figs. 7 and Table 2.

The modelization of a spring using an helical version of our
model validates the bending and twisting initial states as well
as energies (see Fig. 8). It is an interesting example of what can
be done with initial states. Springs are treated as purely elastic:
they always return to their initial state after being relaxed.

The angular behavior is validated with the following
experiment: twisting one end of an L-shaped cable make the
opposite end have a circular trajectory (see Fig. 9).

9.4. Plastic strains and fracture detection

Plastic deformations can spoil electrical or pneumatic
performance in cable laying, whereas in surgery, they enforce
suturing quality and are thus welcomed by surgeons. We
are able to handle these deformations and determine their
magnitudes in real-time. When the fracture occurs, its location
is indicated by the display of a sphere; here we do not simulate
rupture as the object manipulation having failed, but it could be
easily done with B-Splines [19] We illustrate perfect plasticity
and fractures in Fig. 10.

9.5. A practical example of GEDS use in a constrained CAD
application

We illustrate the potential benefit of our model in an
application of virtual cable positioning on the inner structure
of a car door. A result is shown in Fig. 1. The purpose is to
test the compatibility between the planned fixing clip positions
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Fig. 7. Pendulums with several parameters; from top to bottom: (E = 5e6 Pa,
D = 0.04 m), (E = 1e6 Pa, D = 0.04 m), (E = 1e8 Pa, D = 0.01 m). Varying
the diameter and Young’s Modulus induces different behaviors.

and the mechanical cable properties. Car engineers still need
to build prototypes, since existing solutions are not accurate
enough. Our model can prevent them from undergoing this
fastidious and inevitable step. The simulation has to address the
following properties: elastoplastic stretching, bending, twisting.
In this application, fixing clips are mechanically modeled as a
set of Lagrangian constraints. In our application, we consider
simple fixed point constraints; if larger clips were needed, a
combination of fixed points and fixed first derivative constraints
would provide satisfactory results. During the interactive
manipulation, the cable meets a fixing clip, and we create a
point constraint. Solving these constraints gives the required
forces or multipliers λ to maintain the global equilibrium of the
cable. If a resulting force overwhelms the fixing clip strength
in a determined direction, the clip fails to keep the cable:
Fig. 8. Elongation of spring with 16 control points, E = 1.5e7 Pa, D = 1 cm.

Fig. 9. Successive steps of an experiment, twisting one end of an L-shaped
cable. The opposite end circular trajectory validates our twisting formulation.

Fig. 10. Successive steps from elasticity to plasticity from the companion
video. Pink indicates plastic strain intensity and the green sphere tags a break.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

the corresponding constraint is deleted. This behavior only
requires a simple test to be carried out, which consists in the
following statement: if the scalar product of the force λ with the
normal component N of the fixing clip frame is greater than the
orientated fixing clip strength, the position constraint is deleted.
This test is illustrated in Fig. 11.

Physical parameters and time necessary to compute one step
of the simulation of 1 ms in these experiments is provided in
Table 2. All of these correspond to interactive time and prove
the model’s efficiency.
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Table 2
Average calculation time for various material parameters (simulation timestep 1 ms)

Experiment n ` (m) D (cm) µ (g/cm3) E (MPa) ν PDE solver Comput. cost (ms)

Catenary 16 4.06 2 6 5 0.33 IE 0.60

Cantilever 7 1.60 4 2 35 0.33 IE 0.57
Cantilever 7 1.60 4 2 70 0.33 IE 0.64
Cantilever 7 1.60 4 2 700 0.33 IE 0.84
Cantilever 7 1.60 4 2 7000 0.33 IE 4.7

Pendulum 7 1.14 4 4 7 0.33 RK4 0.39
Pendulum 7 1.14 4 4 35 0.33 RK4 0.41
Pendulum 7 1.14 4 4 700 0.33 RK4 0.42
Pendulum 7 1.14 1 4 700 0.33 IE 0.94

Buckling 8 3.25 4 2.4 56 0.45 RK4 1.54
Buckling 8 2.00 4 2.4 56 0.45 RK4 1.06
Buckling 8 1.25 4 2.4 56 0.45 RK4 0.84
Buckling 8 1.125 4 2.4 56 0.45 RK4 0.77
Buckling 8 0.63 4 2.4 56 0.45 RK4 0.59

Car door 18 2.00 1.08 5 5000 0.33 IE 1.30
Fig. 11. A cable constrained by a fixing clip. Its normal component N and
the force λ are illustrated by an arrow. The green sphere and its blue arrow
correspond to the external force applied to the cable. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

10. Conclusion and future work

Using a background in mechanics consisting of elasticity
and plasticity theories, we have proposed a deformable
model for one-dimensional objects. Our approach addresses
reversible and irreversible deformations, like stretching,
twisting and bending, and can even detect fractures. This
model provides both accurate mechanical simulation as well
as quick calculations. Moreover, we can impose positions
and orientations everywhere along the object. We can also
simulate a wide range of materials in straight or distorted
rest states; this is generally at interactive rates, except for
very hard stiffness, for which the integration method requires
excessive computation time for stability. The next step would
be to provide a more efficient integration method for our
model. Dynamic adaptive repartition of control points would
also reduce computational effort, and therefore lower necessary
computation time. Finally, adding the capability to handle
contact and friction with the environment would improve
realism and simulation possibilities.
Appendix A. Strain force calculation

A.1. Stretching force

The stretching force depends on the square of the stretching

strain defined by εs = 1 − ‖r′‖, that is,
(
εs − ε0

s

)2
= (‖r′0‖ −

‖r′‖)2.
The stretching force term P i

s yields:

P i
s (r) = −

∂Us

∂ri
= −

πED2

8

∫ L

0

∂
(
εs − ε0

s

)2

∂ri
ds. (A.1)

Differentiating
(
εs − ε0

s

)2
with respect to ri yields:

∂
(
εs − ε0

s

)2

∂ri
= −2

(
‖r′0‖ − ‖r

′
‖
) ∂‖r′‖

∂ri
. (A.2)

As the derivation of ‖r′‖ with respect to ri is defined by

∂‖r ′‖

∂ri
=

r′ ∂r′
∂ri

‖r′‖
(A.3)

the differentiation results in:

∂
(
εs − ε0

s

)2

∂ri
= 2

(
1−
‖r′0‖

‖r′‖

)
r′b′i . (A.4)

Thus, substituting Eq. (A.4) in Eq. (A.1) results in the
following expression for the stretching force:

P i
s (r) = −

πED2

4

∫ L

0

(
1−
‖r′0‖

‖r′‖

)
r′b′i ds. (A.5)

A.2. Twisting force

The twisting comprises two scalar parts: geometrical or
Frenet twisting τ and roll θ . Geometrical twisting is due to
the bending of the neutral fiber, and is responsible for bending-
twisting coupling, whereas roll corresponds to the rotation of
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(a) 10 control point spline. (b) 16 control point spline.

(c) 24 control point spline.

Fig. 12. Bending validation of our model with the deflection of a four meter long cantilever beam, loaded with a vertical force at its end. Dots correspond to
simulation results with different samplings (3, 5, 10 and 20 samples between 2 successive control points), whereas lines are theoretical deflections computed with
elliptic equations.
material around the neutral fiber. The twisting results in the
following expression:

εt = θ ′ + τ

τ =
r′ × r′′ · r′′′

‖r′ × r′′‖2
=
C · r′′′

‖C‖2
.

(A.6)

Frenet twisting is not defined for a straight line, but we assume
it is zero in this case.

The geometrical twisting force term P i
t (r) yields:

P i
t (r) = −

∂Ut

∂ri
= −

πGD4

64

∫ L

0

∂
(
εt − ε0

t

)2

∂ri
ds. (A.7)
Differentiating
(
εt − ε0

t

)2
with respect to ri yields:

∂
(
εt − ε0

t

)2

∂ri
= 2(εt − ε0

t )
∂εt − ε0

t

∂ri
(A.8)

and thus after some calculation:

∂
(
εt − ε0

t

)2

∂ri
= 2(εt − ε0

t )

(
T
‖C‖2

)
. (A.9)

Substituting Eq. (A.9) in Eq. (A.7), results in the following
expression for the geometrical twisting force term:
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P i
t (r) = −

πGD4

32

∫ L

0

(
εt − ε0

t

) T
‖C‖2

ds. (A.10)

The roll contribution P i
t (θ) yields:

P i
t (θ) = −

∂Ut

∂θi
= −

πGD4

64

∫ L

0

∂
(
εt − ε0

t

)2

∂θi
ds. (A.11)

Differentiating
(
εt − ε0

t

)2
with respect to θi yields:

∂
(
εt − ε0

t

)2

∂θ
= 2(εt − ε0

t )
bi
′

‖r ′‖
. (A.12)

Substituting Eq. (A.12) in Eq. (A.11), results in the
following expression for the roll force term:

P i
t (θ) = −

πGD4

32

∫ L

0

(
εt − ε0

t

) bi
′

‖r ′‖
ds. (A.13)

A.3. Bending force

The bending force is a function of the scalar Frenet curvature
k which is equal to bending strain εb:

εb = k =
‖r′ × r′′‖
‖r′‖3

. (A.14)

The bending force term P i
b yields:

P i
b(r) = −

∂Ub

∂ri
= −

πED4

128

∫ L

0

∂
(
εb − ε0

b

)2

∂ri
ds. (A.15)

Differentiating
(
εb − ε0

b

)2
with respect to ri yields:

∂
(
εb − ε0

b

)2

∂ri
= 2

εb − ε0
b

‖r ′‖2

(
C × P
‖C‖‖r ′‖

− 3kb′ir
′

)
. (A.16)

Substituting Eq. (A.16) in Eq. (A.15), results in the
following expression for the bending force term:

P i
b(r) = −

πED4

64

∫ L

0

εb − ε0
b

‖r ′‖2

(
C × P
‖C‖‖r ′‖

− 3kb′ir
′

)
ds.

(A.17)

This expression is nevertheless undefined for ‖C‖ = 0
(i.e. r′′ = 0 and k = 0), corresponding to a straight line, but
considering a neighborhood of 0 yields a value of the bending
force term for the rectilinear state. The magnitude of the tangent
vector of the neutral axis must be nonzero; however, C is
zero when the curvature is zero. We may assume that C

‖C‖
∼

0
1.

Consequently, the bending force term for the rectilinear state
yields:

P i
b(r)∼0 −

πED4

64
ε0

b

∫ L

0

P × 1
‖r′‖3

ds. (A.18)

Using this approximation for ‖C‖ < 10−8 does not influence
either the stability or the precision of the GEDS near-rectilinear
states. In our test we use this simple threshold value to
determine whether the initial expression, or approximation,
should be used for small curvature configurations.
Appendix B. Supplementary data

Supplementary data associated with this article can be found,
in the online version, at doi:10.1016/j.cad.2007.05.008.
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[13] Pai D. STRANDS: Interactive simulation of thin solids using Cosserat

models, Computer Graphics Forum 21–3.
[14] Wakamatsu H, Hirai S. Static modeling of linear object deformation based

on differential geometry. The International Journal of Robotics Research
2004;23:293–311.

[15] Bertails F, Audoly B, Cani M-P, Querleux B, Leroy F, Lévêque J-
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