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Introduction

This technical sketch describes how a standard analysis technique
known as modal decomposition can be used for real-time model-
ing of viscoelastic deformation. While most prior work on inter-
active deformation has relied on geometrically simple models and
advantageously selected material parameters to achieve interactive
speeds, the approach described here has two qualities that we belive
should be required of a real-time deformation method: the simula-
tion cost is decoupled from both the model’s geometric complexity
and from stiffness of the material’s parameters. Additionally, the
simulation may be advanced at arbitrarily large time-steps without
introducing objectionable errors such as artificial damping.

Background

Modal decomposition is a commonly used tool for analyzing phys-
ical systems. A thorough review of the technique may be found
in [Maia and Silva, 1998], but we will describe it very briefly here.

A physical system that has been discretized using a finite ele-
ment, finite differencing, or other similar method can be expressed
in the following general form:

Kd+Cd+Md=f (1)

where d is the vector of node displacements, an over-dot indicates a
derivative with respect to time, and K, C, are M are respectively
known as the system’s stiffness, damping, and mass matrices. In
general the system matrices are not constant, but if the expected
deformations are small then the system may be linearized. This
linearization is the main limitation of the technique we describe. It
means that we cannot use it for materials such as cloth, but we can
use it for solid rubbery materials.

Modal decomposition treats (1) as a generalized eigenvalue
problem and transforms it into a diagonalized system such as

Az+(a1A+agI)2+2):g (2)

where A is a diagonal matrix of eigenvalues, z is the displacement
vector expressed in the eigen-basis, and a1 and - ae the Raleigh
coefficients.

This idea has been used previously in the graphics community
for modeling deformation by [Pentland and Williams, 1989], how-
ever they did not actually use a modal decomposition, they only
approximated it with global linear and quadratic basis functions.
When done properly, (2) is not an approximation of (1), it is exactly
(2), but expressed in a much more efficient basis. Furthermore since
(2) is decoupled, analytical solutions may be used for each of the
modes so that numerical time integration is no longer necessary.
Instead the object’s behavior may be computed by convolving the
analytic solutions with any externally applied forces.

Real-Time Modeling

To model an object using modal analysis first require having a suit-
able discrete model of the object. We are using the finite element
formulation described by [O’Brien and Hodgins, 1999] to compute
the system matrices. The eigen-system is then computed using [Wu
and Simon, 1999]. These two steps may require a few hours, but
they are pre-computation that only needs to be done once for a given
object.

At run-time, our system uses the modal decomposition for com-
puting the response of an object to user interaction. Only the modes
that are over-damped, critically-damped, or under-damped with a
frequency below half the frame rate are used. Under-damped modes
with a frequency greater than half the frame rate would only create
temporal aliasing.

The behavior of each retained mode is modeled with a pair of
complex oscillators. Interaction forces from the user are projected
onto the eigen-basis and used to excite the oscillators. Because the
oscillators do not require numerical time integration, we can run the
simulation at arbitrarily large time-steps. The computation cost of
the simulation is determined by the number of retained modes, not
the geometric complexity of the model.

We have implemented this method. A 4000 vertex model can
be modeled in real-time on a 500 MHz laptop PC. The bulk of the
computation time is consumed by the graphics functions, not the
simulation.
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Figure 1: A screen shot from an interactive deformation applica-
tion.



