
New 3D Graphics Rendering Engine Architecture for
Direct Tessellation of Spline Surfaces

Dr. Adrian Sfarti, Prof. Brian Barsky, Todd Kosloff, Egon Pasztor, Alex Kozlowski, Eric Roman

Alex Perelman, Ali El-Annan, Tim Wong, Grace Chen, Clarence Tam and Chris Lai

Abstract

In current 3D graphics architectures, the bus between the triangle server and the rendering engine GPU is clogged
with triangle vertices and their many attributes (normal vectors, colors, texture coordinates). We develop a new
3D graphics architecture using data compression to unclog the bus between the triangle server and the rendering
engine. The data compression is achieved by replacing the conventional idea of a GPU that renders triangles with
a GPU that tessellates surface patches into triangles.

Categories and Subject Descriptors (according to ACM
CCS): B.4.2 [Computer Graphics]: Hardware Architec-
ture/Graphics Processors; I.3.3 [Computer Graphics]: Pic-
ture/Image Generation/Curve Generation

1. Introduction

3D Application

3D API

Programmable

Vertex
Processor

Primitive

Assembly

Rasterization &

Interpolation

Programmable

Pixel
Processor

Raster

Operations

Framebuffer

CPU

GPU

AGP

 Triangle Vertices

3D Application

3D API

Programmable

Control Point

Processor

Tessellation

Programmable

Vert
ex
Processor

Primitive

Assembly

Rasterization &

Interpolation

Programmable

Pixel
Processor

Raster

Operations

Framebuffer

CPU

AGP

 Surface Control points

GPU

Triangle Vertices

Figure 1: Conventional programmable architecture (left),
new architecture (right). The new architecture adds two
stages to the GPU pipeline, which are shown in grey.

The main goal of this paper is to develop a new graph-
ics architecture that exploits faster arithmetic such that the

CPU will serve parametric patches and the rendering engine
(GPU) will triangulate these patches in real time.

The proposed architecture handles freeform parametric
rational and non-rational spline surfaces such as Bézier and
B-spline/NURBS. In comparison with current graphics ar-
chitectures, which are based on transferring triangle vertices,
the amount of data sent over the bus between the CPU and
the GPU will be reduced by a factor that is linear in the
number of triangles forming each surface patch. That is, if
a surface patch is tessellated into n triangles, then the bus
bandwidth required is 1/n of the bandwidth that would have
been required by the conventional method of transferring tri-
angle vertices. Since this approach stores control points of
the surface patch instead of triangle vertices, the memory
footprint will also be reduced by this same factor. For ex-
ample, today’s top of the line GPUs are capable of render-
ing about 500 million meshed triangles per second. At about
30 bytes/vertex (color, texture coordinates, geometry, nor-
mals) this results into a bus bandwidth requirement of about
15Gbytes/second while the fastest buses available have a
peak bandwidth about 4 times lower.

Since today’s Transformation Units are programmable
processors, we envisage our implementation not as a silicon
implementation but rather as reprogramming an already ex-
istent Transformation Unit inside an already existent GPU.

Our algorithm uses a distance-dependent deCasteljau sub-
division of the geometric boundaries of the surfaces.

2 Dr. Adrian Sfarti, Prof. Brian Barsky, Todd Kosloff, Egon Pasztor, Alex Kozlowski, Eric RomanAlex Perelman, Ali El-Annan, Tim Wong, Grace Chen, Clarence Tam and Chris Lai New 3D Graphics Rendering Engine Architecture forDirect Tessellation of Spline Surfaces

o

2. Previous Work

There have been very few implementations of real time tes-
selation in hardware. In the mid-1980’s, Sun developed an
architecture for this that was described in [LSP87] and in
a series of associated patents. The implementation was not
a significant technical or commercial success because it did
not exploit triangle based rendering; instead it attempted to
render the surfaces in a pixel-by-pixel manner [LS87]. The
idea was to use adaptive forward differencing to interpolate
infinitesimally close parallel cubic curves imbedded into the
bicubic surface.

More recently, Henry Moreton from NVIDIA has resur-
rected the real time tesselation unit [Mor03]. This method
does not directly tesselate patches in real time; rather, it uses
off-line pre-tesselated triangle meshes in conjunction with a
proprietary stitching method that avoids cracking and pop-
ping at the seams. Using this approach, the tessellation unit
exists in front of the transformation unit and outputs triangle
databases to be rendered by the existent components of the
3D graphics hardware.

The current paper is based on a recent patent [Sfa03] that
is the first to introduce a real time tesselation processor into
a GPU pipeline. To date, there is no GPU built with a real
time tesselator processor but we hope that the current article
will spark the design of such a device.

3. GPU Architectures

3.1. Current State of the Art

The pseudo code describing the current state of the art GPU
architectures is shown below for the bicubic case. Notation:
Let (si, t j) denote a pair of parameter values used in patch pa-
rameterization, Vi, j a vertex, and Ni, j a vertex normal. Also,
we denote texture coordinates by ui, j and vi, j .

Step 1 (off-line) For each bicubic surface, subdivide the S
and T intervals until each resultant four-sided surface is
below a certain predetermined curvature value.

Step 2 For all bicubic surfaces sharing a common boundary,
take the union of the subdivisions to prevent cracks along
the common boundary.

Step 3 For each bicubic surface, For each pair (si, t j), Cal-
culate (ui, j,vi, j,qi, j,Vi, j), Generate triangles by connect-
ing neighboring vertices.

Step 4 For each vertex Vi, j Calculate the normal Ni, j to that
vertex (used for lighting). For each triangle Calculate the
normal to the triangle (used for culling).

Step 5 (real time) Transform the vertices Vi, j and the nor-
mals Ni, j and the normals to the triangles. For each vertex
Vi, j , Calculate lighting.

3.2. The Tesselator Unit – Principles of Operation

Though we have not implemented our proposed GPU in sili-
con yet we are publishing below the behavioral code
describing the principles of operation.

o

Step 0 (all steps in real time) (For each surface transform
only 16 points instead of transforming all the vertices in-
side the surface. There is no need to transform the normals
to the vertices since they are generated at step 4). For each
bicubic surface Transform the 16 control points and the
single normal that determine the surface.

Step 1 (Simplify the three dimensional surface subdivision
by reducing it to the subdivision of the cubic curves de-
termined by the surface bounding box). For each bicubic
surface, Subdivide the boundary curve representing the s
interval until the projection of the length of the height of
the curve bounding box is below a certain predetermined
number of pixels as measured in screen coordinates. Sub-
divide the boundary curve representing the t interval un-
til the projection of the length of the height of the curve
bounding box is below a certain predetermined number of
pixels as measured in screen coordinates.
(Simplify the subdivision termination criterion by ex-
pressing it in screen (SC) coordinates and by measuring
the curvature in pixels. For each new view, a new sub-
division can be generated, producing automatic level of
detail).

Step 2 For all bicubic surfaces sharing a same parameter
(either s or t) boundary, Choose as the common subdi-
vision the reunion of the subdivisions in order to prevent
cracks showing along the common boundary OR choose
as the common subdivision the finest subdivision (the one
with the most points inside the set) OR insert a zippering
strip to smoothly progress from one patch to its neighbor.
(Prevent cracks at the boundary between surfaces).

Step 3 (Generate the vertices, normals, the texture coordi-
nates and the displacements used for bump and displace-
ment mapping for the present subdivision) For each bicu-
bic surface, For each pair (si, t j) (All calculations employ
some form of direct evaluation of the variables) Calculate
((ui, j,vi, j,qi, j),(pi, j,ri, j),Vi, j) thru evaluation (texture
, displacement map and vertex coordinates as a function
of (si, t j)) Look up vertex displacement (dxi, j,dyi, j,dzi, j).
Generate triangles by connecting neighboring vertices.

Step 4 For each vertex Vi, j Calculate the normal Ni, j to that
vertex (Already transformed in WC)

4. The Subdivision Step

We use the Lane-Carpenter subdivision algorithm described
in [LCWB80] but we apply our own termination criterion.
The geometric adaptive subdivision induces a corresponding
parametric subdivision.

The following discussion assumes that the Bézier surface
patch is bicubic, but that approach is valid for arbitrary de-
gree. The four boundary curves of a Bézier patch are them-
selves Bézier curves, which we subdivide using the follow-
ing formulas. We use the following notation: Let P1, P2, P3,
and P4 denote the four control points of such a curve. We
denote the four control points of the left sub-curve by L1
through L4 and the control points of the right sub-curve by
R1 through R4. Let H denote the midpoint of the line seg-
ment connecting P2 to P3.

Dr. Adrian Sfarti, Prof. Brian Barsky, Todd Kosloff, Egon Pasztor, Alex Kozlowski, Eric RomanAlex Perelman, Ali El-Annan, Tim Wong, Grace Chen, Clarence Tam and Chris Lai New 3D Graphics Rendering Engine Architecture forDirect Tessellation of Spline Surfaces3

P
1

P
2
 P
3

P
4

H

L
4
= R
1

L
2

R
3

R
2

L
3

Figure 2: Curve Subdivision

L1 = P1

L2 =
P1 +P2

2

H =
P2 +P3

2

L3 =
L2 +H

2
R4 = P4

R3 =
P3 +P4

2

R2 =
R3 +H

2

R1 = L4 =
L3 +R2

2

The edge subdivision results in a subdivision of
the parametric intervals s{s0,s1, . . .si, . . .sm} and
t{t0, t1, . . .t j, . . .tn}. These parameter values are stored,
whereas the control points resulting from subdivision are
discarded immediately after the termination test is run.
After the subdivision and crack prevention steps, the actual
vertex locations throughout the patch are computed from the
stored parameter values, using the following formulas: Let
x(s, t), y(s, t), and z(s, t) denote the functions that compute
vertex locations from parameter values. Let S and T denote
vectors containing the paramater values raised to powers
one through three. We denote the Bernstein basis (expressed
in matrix form) by Mb. The matrices Px , Py and Pz contain x,
y, and z coordinates (respectively) of the 16 control points.

Vi j = V (x(si, t j),y(si, t j),z(si, t j))i = 1,m, j = 1,n

x(s, t) = S×Mb ×Px ×Mb ×T

S = [s3
,s2

,s,1]

T = [t3
, t2

, t,1]T

y(s, t) = S×Mb ×Py ×Mb ×T

z(s, t) = S×Mb ×Pz ×Mb ×T

For constant S, the matrix M = S × Mb × Pz ×
Mb is constant and the calculation of the vertices
V (x(s, t),y(s, t),z(s, t)) reduces to the evaluation of the vec-
tor T plus the computing of the product M ×T . Therefore,
the generation of vertices is comparable with vertex transfor-
mation. Note that the vertices are generated already trans-
formed in place because the parent bicubic surface has al-
ready been transformed.

To determine the vertex normals for each generated vertex
Vi, j , we calculate the gradient to the surface.

We calculate the texture coordinates through bilinear in-
terpolation. The parametrization of the surface produces a
natural interpolation of the texture coordinates (see Figure 3
for details).

P
11

P
12

P
13

P
14

P
41
 P
42

P
43

P
44

P
31

P
21

P
32

P
22

P
23

P
24

P
34
P
33

U

V

P
1
(t)

P
2
(t)

P
3
(t)

P
4
(t)

Texture Space

(1,1)
(0,1)

(0,0)
 (1,0)

S=1, T=1

S=0, T=1

S=1, T=0

S=0, T=0

Figure 3: Texture Coordinates

5. Termination Criteria

Our algorithm decides that an edge curve has been suffi-
ciently subdivided when the trapezoidal convex hull of that
curve has a sufficiently small height, as seen from the view-
point of the observer. Referring to Figure 4, subdivision ter-
minates when the following condition is met:

Maximum{distance(P12to line(P11,P14)),
distance(P13to line(P11,P14))} ×

2d
(|P12z|+|P13z|)

< n

AND

Maximum {distance(P24to line(P14,P44)),
distance(P34to line(P14,P44))} ×

2d
(|P24z|+|P34z|)

< n

where n is an arbitrary number expressed in pixels or in a
fraction of pixels and d is the distance from the viewer to the
projection plane.

We experimented with n starting at 1 and we observed that
there were artifacts, especially along the silhouette. Forsey
et al. [FK90] seem to settle on n = .5 and we tried that. We

4 Dr. Adrian Sfarti, Prof. Brian Barsky, Todd Kosloff, Egon Pasztor, Alex Kozlowski, Eric RomanAlex Perelman, Ali El-Annan, Tim Wong, Grace Chen, Clarence Tam and Chris Lai New 3D Graphics Rendering Engine Architecture forDirect Tessellation of Spline Surfaces

also experimented with n > 1, for reasons of rapid proto-
typing and previewing. The above criterion is sufficient for
surface patches that are not more curved inside their bound-
aries than they are along their boundaries. The criterion en-
sures that abutting patches share the same subdivision along
the common boundary. Conversely, if the patches are more
curved inside than they are along their boundaries, we add a
criterion that has a slightly modified form:

Maximum {distance(P22to line(P42,P12)),
distance(P32to line(P42,P12))} ×

2d
(|P42z|+|P12z|

< n

AND

Maximum {distance(P32to line(P31,P34)),
distance(P33to line(P31,P34))} ×

2d
(|P31z|+|P34z|)

< n

Since the curvature of free-form surfaces can switch be-
tween being boundary-limited and internally-limited, we
will need to measure the flatness of both types of curves at
the start of the tesselation associated with each instance of
the surface by subdividing the four boundary curves as well
as two orthogonal internal curves, specifically the curves that
interverne in the second termination criterion shown above.
We can further exploit the fact that adjacent patches share
two boundary curves so that we need to subdivide only two
of the four boundary curves for each patch. The only obvious
exceptions are the patches at the boundary of a surface, since
such patches have fewer than four neighbors. In the case of
the boundary patches, our algorithm always subdivides all
four boundary curves. As long as abutting patches share the
same boundary curves, this approach guarantees edge con-
tinuity between surfaces without the need to share any edge
information between patches.

Our termination test ensures that patches are subdivided
sufficiently to avoid silhouette artifacts. However, the test
was shown to be insufficient in the case of a large flat patch
facing the viewer. Such a patch would not be subdivided be-
cause a single pair of triangles can completely capture the
geometry of this curve. However, per-vertex lighting would
lead to highlight artifacts. Additionally, nearly-flat portions
of a patch exhibit undesirable texture flickering as they vis-
ibly transition from one level of detail to the next. This is
because the bilinear texture coordinate interpolation that we
use when assigning texture coordinates to triangle vertices is
not the same as the method used to interpolate within a trian-
gle. To combat this problem, we decree that patches must be
subdivided a minimum number of times, regardless of cur-
vature.

6. Crack Prevention

If there are no special prevention methods, cracks may
appear at the boundary between abutting patches. This is
mainly due to the fact that the patches are subdivided in-
dependently of each other. Abutting patches can exhibit dif-
ferent curvatures resulting in different subdivisions. For ex-
ample, in Figure 7, we see that the right-hand patch has a
finer subdivision than the left-hand one. At the boundary, we
see how a “T-joint” has been formed. When rendering the
parallel strips of triangles to the left and to the right of the

P
11

P
12

P
13

P
14

P
41
 P
42

P
43

P
44

P
31

P
21

P
32

P
22

P
23

P
24

P
34
P
33

X

Y

Z

d

P
1
(t)

P
2
(t)

P
3
(t)

P
4
(t)

Figure 4: Termination Criteria

Figure 5: Without Crack Prevention (note cracks appearing
around the handle in the middle of the lid of the teapot, and
at the tip of the spout).

common boundary, a crack may become visible in the area
of the T-joint.

If two patches bounding two separate surfaces share an
edge curve, they share the same control points and they will
share the same tesselation. By doing so we ensure the ab-
sence of cracks between patches that belong to data struc-
tures that have been dispatched independently and thus our
method scales the exact same way the traditional triangle
based method does.

Zippering leaves the interior of patches untouched, al-
lowing these regions to be tessellated without concern for
neighboring patches. To eliminate cracks between adjacent
patches (as in Figure 5), the portion of a patch that is imme-
diately in contact with an adjacent patch is carefully tessel-
lated using a zipper-like configuration, so as to seamlessly
move from a lower to higher level of tesselation. An exam-
ple of zippering is shown in Figure 8.

We tested the crack prevention algorithm on a large selec-
tion of objects, making sure that the method works on corner
cases such as the fans of patches shown in figure 8.

7. Performance Measurements

In order to measure the performance of the algorithm, we
tested our prototype on five dynamic scenes. Each scene

Dr. Adrian Sfarti, Prof. Brian Barsky, Todd Kosloff, Egon Pasztor, Alex Kozlowski, Eric RomanAlex Perelman, Ali El-Annan, Tim Wong, Grace Chen, Clarence Tam and Chris Lai New 3D Graphics Rendering Engine Architecture forDirect Tessellation of Spline Surfaces5

Figure 6: With Crack Prevention

T-Join

Figure 7: Cracking

comprised seven teapots that were spun along different el-
liptical paths. At any given moment, some teapots are close
to the viewer, while others are far away. We recorded the av-
erage time it took to tessellate each scene (in milliseconds)
as well as the average frames rate. Our back-patch culling
feature was turned on.

All tests were performed on a Pentium 4 2.4Ghz machine
with a GeForce4 MX440 video card. We realize that the per-
formance testing is done on a software simulation of the Tes-
selator Unit architecture since none of the existent GPU’s
has one today. Therefore, the performance numbers are only
indicative of the performance of the actual architecture. Nev-
ertheless, it was immediately observed that the dynamic tes-
sellation compares favorably with the fixed tesselation since
it shows higher frame rates in most cases, as described be-
low.

The quality of the rendering is improved as well , es-
pecially for the cases when the objects are very close to
the viewer. We observed no disadvantages to our method
as compared to the conventional method. We experimented
with a scene that had a fixed tesselation of 64k triangles. By
using the real time tesselation the number of triangles var-
ied from a maximum of 16k (closest from the viewer) down
to a few hundreds (farthest from the viewer) clearly demon-
strating the compression capabilities of our method. Since

Figure 8: Zippering In Action

the main performance savings in our architecture will come
from the AGP/PCIX bus bandwidth reduction we wanted to
verify that our approach does not create a bottleneck inside
the GPU. We obtained ample proof that this is not the case
by trying many scenarios that allow for complex animations
of flocks of objects in the context of a variable viewpoint .
We have made several movies of our animations as well as a
menu driven interactive demo.

Figure 9 shows an average of the values obtained dur-
ing the testing of all five scenes, all results in expressed in
“frames per second” (fps).

The “RTT” entry represents our real time tessela-
tion method. We separated the measurements into trans-
form+tesselate only vs. transform+tesselate+render. The
reason is that we wanted to measure the exact effects of the
tesselation by comparison with conventional offline tessela-
tion. In a real GPU there would be a tesselator unit stage,
so that the effects of tesselation on execution time would be
hidden by the fact that the GPU is pipelined. We rendered
the same animation four different times, each time at a dif-
ferent criterion of subdivision termination (n = 0.5, n = 0.7,
n = 1, n = 2). As n (the fractional deviation of the planar
approximation from the real surface, expressed in pixels) in-
creases, the number of triangles generated from subdivision
decreases and the speed increases.

We also implemented a feature to simulate the current
standard rendering methods whereby models are tessellated
offline and then sent to the GPU as sets of triangles. This
is the “Offline Tesselation” entry at the bottom of the table.
Each patch is tessellated uniformly to a user-defined num-
ber of triangles (128, 512, or 2048). On every frame, each
pre-calculated vertex is transformed from model space into
world coordinates. The normal of each vertex is also appro-
priately transformed into world coordinates. Then the trian-
gle is rendered directly.

In all scenes, because the number of triangles remains
constant between frames and no dynamic tessellation oc-
curs, there was negligible deviation between values obtained
while rendering different scenes. Figure 9 shows the timings
obtained on all scenes tested.

6 Dr. Adrian Sfarti, Prof. Brian Barsky, Todd Kosloff, Egon Pasztor, Alex Kozlowski, Eric RomanAlex Perelman, Ali El-Annan, Tim Wong, Grace Chen, Clarence Tam and Chris Lai New 3D Graphics Rendering Engine Architecture forDirect Tessellation of Spline Surfaces

RTT

Transform + Tessellate

 Transform + Tessellate
+

Render

N

Triangles

Generated

milliseconds

 fps

 milliseconds

 fps

0
.5

 29~34K

 21.7

 43.1

 23.6

 40.1

0
.7

 24~28K

 19.9

 47.0

 21.5

 43.8

1.0

 24~26K

 19.3

 48.3

 20.9

 45.0

2.0

 24~26K

 19.2

 48.7

 20.8

 45.3

 Offline Tessellation

Transform

 Transform +
 Render

Triangles

Per Patch

Triangles

Generated

Overall

milliseconds

 fps

 milliseconds

 fps

128

 28K

 6.3

 60+

 15.2

 60+

512

 115K

 18.3

 51.3

 30.1

 32.0

2048

 459K

 66.7

 14.5

 81.9

 11.9

Figure 9: Performance Measurements: Averages

8. A Prototype for a Graphics Utility Library

To facilitate the design of drivers for the proposed architec-
ture, we must develop a Graphics Utility Library (GLU).
The primitives of the GLU are strips, fans, meshes and in-
dexed meshes. Current rendering methods are based on tri-
angle databases (strips, fans, meshes) that result from offline
tesselation via specialized tools. These tools tesssellate the
patch databases and ensure that there are no cracks between
the resulting triangle databases. The tools use some form of
zippering. The triangle databases are then streamed over the
AGP bus into the GPU. There is no need for any coherency
between the strips, fans, etc., since they are, by definition,
coherent (there are no T-joints between them). The net result
is that the GPU does not need any information about the en-
tire database of triangles, which can be quite huge. Thus, the
GPUs can process virtually infinite triangle databases.

Consider again the bicubic case. Below, we illustrate the
first three primitives. Referring to Figure 11, in a strip, the
first patch will contribute sixteen vertices, and each suc-
cessive patch will contribute only twelve vertices because
four vertices are shared with the previous patch. Of the 16
vertices of the first patch, S1, there will be only four ver-
tices (namely, the corners P11, P14, P41, P44) that will have
color and texture attributes; the remaining twelve vertices
will have only geometry attributes. Of the twelve vertices
of each successive patch, Si, in the strip, there will only be
one vertex, (namely P44) that will have color and texture at-
tributes. It is this reduction in the number of vertices that will
have color and texture attributes that accounts for the reduc-
tion of the memory footprint and reduction of the reduction
of the bus bandwidth necessary for transmitting the primi-
tive from the CPU to the rendering engine (GPU) over the
AGP bus. Further compression is achieved because a patch
will be expanded into potentially many triangles by the Tes-
selator Unit inside the GPU.

Each patch has an outward pointing normal. Referring to

Figure 12, each patch has only three boundary curves, the
fourth boundary having collapsed to the center of the fan.
The first patch in the fan enumeration has eleven vertices;
each subsequent patch has eight vertices. The vertex P11,
which is listed first in the fan definition, is the center of the
fan and has color and texture attributes in addition to geo-
metric attributes. The first patch, S1, has two vertices with
color and texture attributes, namely P41 and P14; the remain-
ing nine vertices have only geometric attributes. Each suc-
cessive patch, Si, has only one vertex with all the attributes.
Referring to Figure 10, in a mesh, the anchor patch, S11 has
sixteen vertices, all the patches in the horizontal and vertical
strips attached to S11 have twelve vertices and all the other
patches have nine vertices.

4

S
M1

12 Control

Points

S
21

12 Control

Points

S
11

16 Control

Points

S
12

12 Control

Points

S
22

9 Control

Points

S
M2

9

S
Mi

9

S
2i

9

S
1i

12

S
MN

9

S
2N

9

S
1N

12

Mesh (S
11
, S
12
, ... S
1N
, ... S
21
, ... S
2N
, ... S
M1
, ... S
MN
)

Figure 10: Mesh

The meshed curved patch data structures introduced
above are designed to replace the triangle data structures
used in the conventional architectures.

Dr. Adrian Sfarti, Prof. Brian Barsky, Todd Kosloff, Egon Pasztor, Alex Kozlowski, Eric RomanAlex Perelman, Ali El-Annan, Tim Wong, Grace Chen, Clarence Tam and Chris Lai New 3D Graphics Rendering Engine Architecture forDirect Tessellation of Spline Surfaces7

P
11
 P
14

P
41
 P
44
P
43
P
42

P
31

P
21

P
24

P
34

P
12
 P
13

P
23

P
22

P
33

P
32

12 Control points
12 Control points
16 Control points

S
1

S
2
 S
i

Strip (S
1
, S
2
, ... S
i
, ... S
n
)

P
11
, P
14
, P
41
, P
44
 (Color, texture, geometry)

P
12
 ... P
43
 (Geometry)

N = outwards pointing normal

S
1

P
11
, P
14
,
P
41
, P
44

{P
12

... P
43
 }
-
 {P
21
, P
31
}

N

S
i

Figure 11: Strip

P
11

P
12

P
21

P
22

P
43
=P
24

P
31

P
32

P
23
=P
33

P
13
=P
34

P
41

P
42

P
14
=P
44

S
i

8 Control Points

S
1

11 Control Points

P
11
,
P
14
,
 P
41
,
P
44

 (Color, texture, geometry)

{ P
12
 ... P
43
 }
 -
 {P
24
,P
34
, P
33
} (Geometry)

N

P
11
,
P
14
,
P
41
, P
44

{P
12

... P
43
 }
-

 {P
24
,P
34
, P
33
}
-
 {P
12
, P
13
}

N

S
1

S
i

Figure 12: Fan

8 Dr. Adrian Sfarti, Prof. Brian Barsky, Todd Kosloff, Egon Pasztor, Alex Kozlowski, Eric RomanAlex Perelman, Ali El-Annan, Tim Wong, Grace Chen, Clarence Tam and Chris Lai New 3D Graphics Rendering Engine Architecture forDirect Tessellation of Spline SurfacesN

No information needs to be stored between two abutting
patches. If two patches bounding two separate surfaces
share an edge curve, they share the same control points and
they will share the same tesselation. By doing so we ensure
the absence of cracks between patches that belong to data
structures that have been dispatched independently and thus
our method scales the exactly the same way the traditional
triangle based method does.

9. Conclusion

We developed a new 3D graphics architecture using data
compression to unclog the bus between the triangle server
and the rendering engine. The data compression is achieved
by replacing the conventional idea of a rendering engine that
renders triangles with a rendering engine that will tessellate
surface patches into triangles. Thus, the bus sends control
points of the surface patches, instead of the many triangle
vertices forming the surface, to the rendering engine. The
tessellation of the surface patches into triangles is distance-
dependent, it needs to be done in real time inside the render-
ing engine.

References

[BAD∗01] BOO M., AMOR M., DOGGET M., HIRCHE J.,
STRASSER W.: Hardware support for adaptive
subdivision surface rendering. In Proceedings
of the ACM SIGGRAPH/Eurographics work-
shop on Graphics Hardware (2001), pp. 33–40.

[BDD87] BARSKY B. A., DEROSE T. D., DIPPE M. D.:
An adaptive subdivision method with crack
prevention for rendering beta-spline objects.
Technical Report, UCB/CSD 87/384, Computer
Science Division, Electrical Engineering and
Computer Sciences Department, University of
California, Berkeley, California, USA (1987).

[CF00] CHUNG A. J., FIELD A.: A simple recur-
sive tesselator for adaptive surface triangula-
tion. JGT 5(3) (2000).

[Cla79] CLARK J. H.: A fast algorithm for render-
ing parametric surfaces. In Computer Graphics
(SIGGRAPH ’79 Proceedings) (August 1979),
vol. 13(2) Special Issue, ACM, pp. 7–12.

[FK90] FORSEY D. R., KLASSEN R. V.: An adap-
tive subdivision algorithm for crack prevention
in the display of parametric surfaces. In Pro-
ceedings of Graphics Interface (1990), pp. 1–8.

[Hop97] HOPPE H.: View-dependent refinement of pro-
gressive meshes. In Proceedings of the 24th an-
nual conference on computer graphics and in-
teractive techniques (1997).

[KBK02] KAHLESZ F., BALAZS A., KLEIN R.: Nurbs
rendering in opensg plus. In OpenSG 2002 Pa-
pers (2002).

[LCWB80] LANE J. F., CARPENTER L. C., WHITTED

J. T., BLINN J. F.: Scan line methods for

displaying parametrically defined surfaces. In
Communications of the ACM (January 1980),
vol. 23(1), ACM, pp. 23–24.

[LS87] LIEN S.-L., SHANTZ M.: Shading bicu-
bic patches. In SIGGRAPH ’87 Proceedings
(1987), ACM, pp. 189–196.

[LSP87] LIEN S.-L., SHANTZ M., PRATT V. R.: Adap-
tive forward differencing for rendering curves
and surfaces. In SIGGRAPH ’87 Proceedings
(1987), ACM, pp. 111–118.

[MM02] MOULE K., MCCOOL M.: Efficient bounded
adaptive tesselation of displacement maps. In
Graphics Interface 2002 (2002).

[Mor01] MORETON H. P.: Watertight tesellation us-
ing forward differencing. In Proceedings of
the ACM SIGGRAPH/Eurographcs workshop
on graphics hardware (2001).

[Mor03] MORETON H. P.: Integrated tesselator in a
graphics processing unit. U.S. patent (July 22
2003). #6,597,356.

[Sfa01] SFARTI A.: System and method for adjusting
pixel parameters by subpixel positioning. U.S.
patent (2001). #6,219,070.

[Sfa03] SFARTI A.: Bicubic surface rendering. U.S.
patent (2003). #6,563,501.

[VdFG99] VELHO L., DE FIGUEIREDO L. H., GOMES

J.: A unified approach for hierarchical adaptive
tesselation of surfaces. In ACM Transactions
on Graphics (1999), vol. 18(4), ACM, pp. 329–
360.

