
New 3D Graphics Rendering Engine Architecture for
Direct Tessellation of Spline Surfaces

Adrian Sfarti, Brian A. Barsky, Todd J. Kosloff, Egon Pasztor,
Alex Kozlowski, Eric Roman, and Alex Perelman

University of California, Berkeley

Abstract. In current 3D graphics architectures, the bus between the triangle
server and the rendering engine GPU is clogged with triangle vertices and their
many attributes (normal vectors, colors, texture coordinates). We develop a new
3D graphics architecture using data compression to unclog the bus between the
triangle server and the rendering engine. The data compression is achieved by
replacing the conventional idea of a GPU that renders triangles with a GPU that
tessellates surface patches into triangles.

1 Introduction

The main goal of this paper is to develop a new graphics architecture that exploits faster
arithmetic such that the CPU will serve parametric patches and the rendering engine
(GPU) will triangulate these patches in real time.

The proposed architecture handles freeform parametric rational and non-rational
spline surfaces such as Bézier and B-spline/NURBS. In comparison with current graph-
ics architectures, which are based on transferring triangle vertices, the amount of data
sent over the bus between the CPU and the GPU will be reduced by a factor that
is linear in the number of triangles forming each surface patch. That is, if a surface
patch is tessellated into n triangles, then the bus bandwidth required is 1/n of the
bandwidth that would have been required by the conventional method of transferring
triangle vertices. Since this approach stores control points of the surface patch in-
stead of triangle vertices, the memory footprint will also be reduced by this same fac-
tor. For example, today’s top of the line GPUs are capable of rendering about 500
million meshed triangles per second. At about 30 bytes/vertex (color, texture coor-
dinates, geometry, normals) this results into a bus bandwidth requirement of about
15Gbytes/second while the fastest buses available have a peak bandwidth about 4 times
lower.

Since today’s Transformation Units are programmable processors, we envisage our
implementation not as a silicon implementation but rather as reprogramming an already
existent Transformation Unit inside an already existent GPU. Our simulations show that
due to the reduced transformation effort (we replace the transformation of the triangle
vertices with the transformation of the surface control points) we can easily reprogram
one of the Transformation Units to act as a Tesselator Unit.

224–231V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3515, pp. , 2005.
© Springer-Verlag Berlin Heidelberg 2005

New 3D Graphics Rendering Engine Architecture 225

3D Application

3D API

Programmable
Vertex Processor

Primitive
Assembly

Rasterization &

Interpolation

Programmable
Pixel Processor

Raster

Operations

Framebuffer

CPU

GPU

AGP Triangle Vertices

3D Application

3D API

Programmable
Control Point

Processor

Tessellation

Programmable
Vertex Processor

Primitive
Assembly

Rasterization &

Interpolation

Programmable
Pixel Processor

Raster

Operations

Framebuffer

CPU

AGP Surface Control points

GPU

Triangle Vertices

Fig. 1. Conventional programmable architecture (left), new architecture (right). The new archi-
tecture adds two stages to the GPU pipeline, which are shown in grey

2 Previous Work

Therehavebeenvery fewimplementationsof real time tesselation inhardware. In themid-
1980’s, Sun developed an architecture for this that was described in [1] and in a series of
associated patents. The implementation was not a significant technical or commercial suc-
cess because it did not exploit triangle based rendering; instead it attempted to render the
surfaces in a pixel-by-pixel manner [2]. The idea was to use adaptive forward differencing
to interpolate infinitesimallycloseparallel cubiccurves imbedded into thebicubicsurface.

More recently, Henry Moreton from NVIDIA has resurrected the real time tesse-
lation unit [3]. This method does not directly tesselate patches in real time; rather, it
uses off-line pre-tesselated triangle meshes in conjunction with a proprietary stitching
method that avoids cracking and popping at the seams. Using this approach, the tessel-
lation unit exists in front of the transformation unit and outputs triangle databases to be
rendered by the existent components of the 3D graphics hardware.

The current paper is based on a recent patent [4] that is the first to introduce a real
time tesselation processor into a GPU pipeline. To date, there is no GPU built with a
real time tesselator processor but we hope that the current article will spark the design
of such a device.

3 GPU Architectures

3.1 Current State of the Art

The pseudo code describing the current state of the art GPU architectures is shown
below for the bicubic case. Notation: Let (si, t j) denote a pair of parameter values used

226 A. Sfarti et al.

in patch parameterization, Vi, j a vertex, and Ni, j a vertex normal. Also, we denote texture
coordinates by ui, j and vi, j.

Step 1 (off-line). For each bicubic surface, subdivide the S and T intervals until each
resultant four-sided surface is below a certain predetermined curvature value.

Step 2. For all bicubic surfaces sharing a common boundary, take the union of the
subdivisions to prevent cracks along the common boundary.

Step 3. For each bicubic surface, For each pair (si, t j), Calculate (ui, j,vi, j,qi, j,Vi, j),
Generate triangles by connecting neighboring vertices.

Step 4. For each vertex Vi, j Calculate the normal Ni, j to that vertex (used for lighting).
For each triangle Calculate the normal to the triangle (used for culling).

Step 5 (real time). Transform the vertices Vi, j and the normals Ni, j and the normals to
the triangles. For each vertex Vi, j, Calculate lighting.

3.2 The Tesselator Unit – Principles of Operation

Though we have not implemented our proposed GPU in silicon yet we are publishing
below the behavioral Verilog code describing the principles of operation. From this
behavioral code a silicon implementation of the proposed GPU architecture should be
straightforward:

Step 0 (all steps in real time). For each bicubic surface Transform the 16 control points
that determine the surface.

Step 1. For each bicubic surface, Subdivide the boundary curve representing the s inter-
val until the projection of the length of the height of the curve bounding box is below a
certain predetermined number of pixels as measured in screen coordinates. Repeat the
process for the boundary curve representing the t interval. For each new view, a new
subdivision can be generated, producing automatic level of detail.

Step 2. For all bicubic surfaces sharing a same parameter (either s or t) boundary,
Choose as the common subdivision the reunion of the subdivisions in order to prevent
cracks showing along the common boundary OR choose as the common subdivision the
finest subdivision (the one with the most points inside the set) OR insert a zippering strip
to smoothly progress from one patch to its neighbor. (Prevent cracks at the boundary
between surfaces).

Step 3. (Generate the vertices, normals, the texture coordinates and the displacements
used for bump and displacement mapping for the present subdivision) For each bicubic
surface, For each pair (si, t j) Calculate ((ui, j,vi, j,qi, j),(pi, j,ri, j),Vi, j) through interpo-
lation (texture , displacement map and vertex coordinates as a function of (si, t j)) Look
up vertex displacement (dxi, j,dyi, j,dzi, j). Generate triangles by connecting neighboring
vertices.

Step 4. For each vertex Vi, j Calculate the normal Ni, j to that vertex.

.

.

New 3D Graphics Rendering Engine Architecture 227

4 The Subdivision Step

We use the Lane-Carpenter subdivision algorithm described in [5] but we apply our own
termination criterion. The four boundary curves of a Bézier patch are themselves Bézier
curves, which we subdivide using the de Casteljau formulas. The edge subdivision re-
sults in a subdivision of the parametric intervals These parameter values are stored,
whereas the control points resulting from subdivision are discarded immediately after
the termination test is run. After the subdivision and crack prevention steps, the actual
vertex locations throughout the patch are computed from the stored parameter values.
The generation of vertices is comparable with vertex transformation. Note that the ver-
tices are generated already transformed in place because the parent bicubic surface has
already been transformed.

5 Termination Criteria

Our algorithm decides that an edge curve has been sufficiently subdivided when the
trapezoidal convex hull of that curve has a sufficiently small height, as seen from the
viewpoint of the observer. Referring to Figure 2, subdivision terminates when the fol-
lowing conditions are met:

Max{dist(P12to line(P11,P14)),dist(P13to line(P11,P14))}× 2d
(|P12z|+|P13z|) < n AND

Max{dist(P24to line(P14,P44)),dist(P34to line(P14,P44))}× 2d
(|P24z|+|P34z|) < n

where n is an arbitrary number expressed in pixels or in a fraction of pixels and d is
the distance from the viewer to the projection plane.

P11

P12

P13

P14

P41 P42

P43

P44

P31

P21

P32

P22

P23

P24

P34P33

X

Y

Z

d

P1(t)
P2(t)

P3(t)

P4(t)

Fig. 2. Termination Criteria

We experimented with n starting at 1 and we observed that there were artifacts,
especially along the silhouette. Forsey et al. [6] seem to settle on n = .5 and we tried
that. We also experimented with n > 1, for reasons of rapid prototyping and previewing.

228 A. Sfarti et al.

The above criterion is sufficient for surface patches that are not more curved inside
their boundaries than they are along their boundaries. Conversely, if the patches are
more curved inside than they are along their boundaries, we terminate subdivision based
on the internal curves of the patch.

Since the curvature of free-form surfaces can switch between being boundary-limited
and internally-limited, we will need to measure the flatness of both types of curves at the
start of the tesselation associated with each instance of the surface by subdividing the
four boundary curves as well as two orthogonal internal curves, specifically the curves
that interverne in the second termination criterion shown above. We can further exploit
the fact that adjacent patches share two boundary curves so that we need to subdivide
only two of the four boundary curves for each patch. The only obvious exceptions are
the patches at the boundary of a surface, since such patches have fewer than four neigh-
bors. In the case of the boundary patches, our algorithm always subdivides all four
boundary curves.

Our termination test ensures that patches are subdivided sufficiently to avoid silhou-
ette artifacts. However, the test was shown to be insufficient in the case of a large flat
patch facing the viewer. Such a patch would not be subdivided because a single pair of
triangles can completely capture the geometry of this curve. However, per-vertex light-
ing would lead to highlight artifacts. Additionally, nearly-flat portions of a patch exhibit
undesirable texture flickering as they visibly transition from one level of detail to the
next. This is because the bilinear texture coordinate interpolation that we use when as-
signing texture coordinates to triangle vertices is not the same as the method used to
interpolate within a triangle. To combat this problem, we decree that patches must be
subdivided a minimum number of times, regardless of curvature.

6 Crack Prevention

If there are no special prevention methods, cracks may appear at the boundary between
abutting patches. This is mainly due to the fact that the patches are subdivided inde-
pendently of each other. Abutting patches can exhibit different curvatures resulting in
different subdivisions. When rendering the parallel strips of triangles to the left and to
the right of the common boundary, a crack may become visible.

Fig. 3. Left: Without Crack Prevention. Right: With Crack Prevention.

New 3D Graphics Rendering Engine Architecture 229

Fig. 4. Zippering In Action

We use zippering to prevent cracks from forming. Zippering leaves the interior of
patches untouched, allowing these regions to be tessellated without concern for neigh-
boring patches. To eliminate cracks between adjacent patches (as in Figure 3), the por-
tion of a patch that is immediately in contact with an adjacent patch is carefully tessel-
lated using a zipper-like configuration, so as to seamlessly move from a lower to higher
level of tesselation. An example of zippering is shown in Figure 4. We tested the crack
prevention algorithm on a large selection of objects, making sure that the method works
on corner cases such as the fans of patches shown in figure 4.

7 Performance Measurements

In order to measure the performance of the algorithm, we tested our prototype on five
dynamic scenes. Each scene comprised seven teapots that were spun along different
elliptical paths. At any given moment, some teapots are close to the viewer, while others
are far away.

All tests were performed on a Pentium 4 2.4Ghz machine with a GeForce4 MX440
video card. We realize that the performance testing is done on a software simulation
of the Tesselator Unit architecture since none of the existent GPU’s has one today.
Therefore, the performance numbers are only indicative of the performance of the actual
architecture. Nevertheless, it was immediately observed that the dynamic tessellation
compares favorably with the fixed tesselation since it shows higher frame rates in most
cases, as described below.

The quality of the rendering is improved as well , especially for the cases when
the objects are very close to the viewer. We observed no disadvantages to our method
as compared to the conventional method. We experimented with a scene that had a
fixed tesselation of 64k triangles. By using the real time tesselation the number of trian-
gles varied from a maximum of 16k (closest from the viewer) down to a few hundreds

230 A. Sfarti et al.

RTT
Transform + Tessellate Transform + Tessellate +

Render

N
Triangles
Generated

milliseconds fps milliseconds fps
0.5 29~34K 21.7 43.1 23.6 40.1
0.7 24~28K 19.9 47.0 21.5 43.8
1.0 24~26K 19.3 48.3 20.9 45.0
2.0 24~26K 19.2 48.7 20.8 45.3

 Offline Tessellation

Transform Transform + Render Triangles
Per Patch

Triangles
Generated

Overall
milliseconds fps milliseconds fps

128 28K 6.3 60+ 15.2 60+
512 115K 18.3 51.3 30.1 32.0

2048 459K 66.7 14.5 81.9 11.9

Fig. 5. Performance Measurements: Averages

(farthest from the viewer) clearly demonstrating the compression capabilities of our
method. Since the main performance savings in our architecture will come from the
AGP/PCIX bus bandwidth reduction we wanted to verify that our approach does not
create a bottleneck inside the GPU. We obtained ample proof that this is not the case
by trying many scenarios that allow for complex animations of flocks of objects in the
context of a variable viewpoint . We have made several movies of our animations as
well as a menu driven interactive demo.

The “RTT” entry represents our real time tesselation method. We separated the mea-
surements into transform+tesselate only vs. transform+tesselate+render. The reason is
that we wanted to measure the exact effects of the tesselation by comparison with con-
ventional offline tesselation. In a real GPU there would be a tesselator unit stage, so
that the effects of tesselation on execution time would be hidden by the fact that the
GPU is pipelined. We rendered the same animation four different times, each time at
a different criterion of subdivision termination (n = 0.5, n = 0.7, n = 1, n = 2). As n
(the fractional deviation of the planar approximation from the real surface, expressed in
pixels) increases, the number of triangles generated from subdivision decreases and the
speed increases.

We also implemented a feature to simulate the current standard rendering methods
whereby models are tessellated offline and then sent to the GPU as sets of triangles. This
is the “Offline Tesselation” entry at the bottom of the table. Each patch is tessellated
uniformly to a user-defined number of triangles (128, 512, or 2048). On every frame,
each pre-calculated vertex is transformed from model space into world coordinates. The
normal of each vertex is also appropriately transformed into world coordinates. Then
the triangle is rendered directly.

8 Conclusion

We developed a new 3D graphics architecture using data compression to unclog the bus
between the triangle server and the rendering engine. The data compression is achieved

New 3D Graphics Rendering Engine Architecture 231

by replacing the conventional idea of a rendering engine that renders triangles with a
rendering engine that will tessellate surface patches into triangles. Thus, the bus sends
control points of the surface patches, instead of the many triangle vertices forming the
surface, to the rendering engine.

References

1. Lien, S.L., Shantz, M., Pratt, V.R.: Adaptive forward differencing for rendering curves and
surfaces. In: SIGGRAPH ’87 Proceedings, ACM (1987) 111–118

2. Lien, S.L., Shantz, M.: Shading bicubic patches. In: SIGGRAPH ’87 Proceedings, ACM
(1987) 189–196

3. Moreton, H.P.: Integrated tesselator in a graphics processing unit. U.S. patent (2003)
#6,597,356.

4. Sfarti, A.: Bicubic surface rendering. U.S. patent (2003) #6,563,501.
5. Lane, J.F., Carpenter, L.C., Whitted, J.T., Blinn, J.F.: Scan line methods for displaying para-

metrically defined surfaces. In: Communications of the ACM. Volume 23(1)., ACM (1980)
23–24

6. Forsey, D.R., Klassen, R.V.: An adaptive subdivision algorithm for crack prevention in the
display of parametric surfaces. In: Proceedings of Graphics Interface. (1990) 1–8

7. Clark, J.H.: A fast algorithm for rendering parametric surfaces. In: Computer Graphics
(SIGGRAPH ’79 Proceedings). Volume 13(2) Special Issue., ACM (1979) 7–12

8. Moreton, H.P.: Watertight tesellation using forward differencing. In: Proceedings of the
ACM SIGGRAPH/Eurographcs workshop on graphics hardware. (2001)

9. Chung, A.J., Field, A.: A simple recursive tesselator for adaptive surface triangulation. JGT
5(3) (2000)

10. Moule, K., McCool, M.: Efficient bounded adaptive tesselation of displacement maps. In:
Graphics Interface 2002. (2002)

11. Boo, M., Amor, M., Dogget, M., Hirche, J., Strasser, W.: Hardware support for adaptive sub-
division surface rendering. In: Proceedings of the ACM SIGGRAPH/Eurographics workshop
on Graphics Hardware. (2001) 33–40

12. Hoppe, H.: View-dependent refinement of progressive meshes. In: Proceedings of the 24th
annual conference on computer graphics and interactive techniques. (1997)

13. Sfarti, A.: System and method for adjusting pixel parameters by subpixel positioning. U.S.
patent (2001) #6,219,070.

14. Barsky, B.A., DeRose, T.D., Dippe, M.D.: An adaptive subdivision method with crack pre-
vention for rendering beta-spline objects. Technical Report, UCB/CSD 87/384, Computer
Science Division, Electrical Engineering and Computer Sciences Department, University of
California, Berkeley, California, USA (1987)

15. Velho, L., de Figueiredo, L.H., Gomes, J.: A unified approach for hierarchical adaptive
tesselation of surfaces. In: ACM Transactions on Graphics. Volume 18(4)., ACM (1999)
329–360

16. Kahlesz, F., Balazs, A., Klein, R.: Nurbs rendering in opensg plus. In: OpenSG 2002 Papers.
(2002)

	Introduction
	PreviousWork
	GPU Architectures
	Current State of the Art
	The Tesselator Unit – Principles of Operation

	The Subdivision Step
	Termination Criteria
	Crack Prevention
	Performance Measurements
	Conclusion
	References

