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Abstract. In current 3D graphics architectures, the bus between the triangle
server and the rendering engine GPU is clogged with triangle vertices and their
many attributes (normal vectors, colors, texture coordinates).

We have developed a new 3D graphics architecture using data compression
to unclog the bus between the triangle server and the rendering engine. This new
architecture has been described in [1]. In the present paper we describe further
developments of the newly proposed architecture.

The current paper shows several interesting extensions of our architecture
such as backsurface rejection, NURBS real time tesselation and a description
of a surface based API. We also show how the implementation of our architecture
operates on top of the pixel shaders.

1 Introduction

In [1] we described a new graphics architecture that exploits faster arithmetic such that
the CPU will serve parametric patches and the rendering engine (GPU) will triangulate
those patches in real time. Thus, the bus sends control points of the surface patches,
instead of the many triangle vertices forming the surface, to the rendering engine. The
tesselation of the surface into triangles is distance-dependent, it is done in real time
inside the rendering engine. The implementation of the architecture is through repro-
gramming one or more vertex processors inside the GPU.

2 Previous Work

There have been very few implementations of real time tesselation in hardware. In the
mid-1980’s, Sun developed an architecture for this that was described in [2] and in a
series of associated patents. The implementation was not a significant technical or com-
mercial success because it did not exploit triangle based rendering; instead it attempted
to render the surfaces in a pixel-by-pixel manner [3]. The idea was to use adaptive for-
ward differencing to interpolate infinitesimally close parallel cubic curves imbedded
into the bicubic surface.

[4] describe hardware support for adaptive subdivision surface rendering.
Recently, NVIDIA has resurrected the real time tesselation unit [5]. The NVIDIA

tesselation unit is located in front of the transformation unit and outputs triangle
databases to be rendered by the existent components of the 3D graphics hardware.

More recently Bolz and Schroder have attempted to evaluate subdivision surfaces via
programmable GPUs [6].
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Fig. 1. Conventional programmable architecture (left), new architecture (right). The new archi-
tecture adds two stages to the GPU pipeline, which are shown in grey.

3 Tesselator Unit Back-Facing Surface Removal and Trivial
Clipping

Since surfaces that are entirely back-facing should be discarded before attempting tesse-
lation, we first test to determine if any portion of the patch is facing towards the viewer.
Although back-facing triangles are discarded in the triangle rendering portion of the
pipeline, the discarding of entire surfaces as early as possible in the pipeline reduces
time spent on tesselation. To determine whether or not a patch is back-facing, we use
the convex hull of the patch. Specifically, we test the polyhedral faces of the convex hull
to determine if they are forward-facing. If any face is forward-facing, then the patch is
not discarded. Note that not all faces need to be tested; as soon as a forward-facing
polyhedral face is found, then we know that the patch cannot be discarded.

If the 16 control points of a surface all lie outside the same clipping plane, the surface
can be trivially clipped out of the database.

We produced five different animations in order to prove our backface removal and
surface trivial clipping algorithm.

4 Tesselator Unit Extension to NURBS

The algorithm described above has a straightforward extension for rational surfaces
such as non-uniform rational B-spline (called ”NURBS”) surfaces.

A nonuniform rational B-spline surface of degree (p,q) is defined by

S(s,t) =
∑m

i=1 ∑n
j=1 Ni,p(s)Nj,q(t)wi, jPi, j

∑m
i=1 ∑n

j=1 Ni,p(s)Nj,q(t)wi, j
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where Ni,p() denotes the B-spline basis of degree p, w denotes the matrix of weights,
and P denotes the matrix of control points.

Each patch of such a surface lies within the convex hull formed by its control points.
To illustrate the concept, consider p = q = 4 and m = n = 4. There are 16 control
points, P11 through P44 (similar to the surfaces described in the previous paragraph).
The surface lies within the convex hull formed by P11 thru P44.

Now consider any one of the curves:

C(s) = ∑m
i=1 Ni,p(s)wiPi

∑m
i=1 Ni,p(s)wi

where the parameter p denotes the order, Ni,p(s) the B-spline basis functions, Pi dentoes
the control points, and wi is the weight of control point Pi and is represented as the last
coordinate of the homogeneous point. The curve lies within the hull formed by the
control points. Such a curve can be obtained by fixing one of the two parameters s or
t in the surface description. For example holding t = 0 while letting s vary produces
such a curve. As in the case of Bézier surfaces, there are eight such curves; that is, four
boundary curves and four internal curves. The tesselation of the surface reduces to the
subdivision of the hull of the boundary curves or of the internal curves as described
in the case of the Bézier surfaces. By subdividing the B-spline surface we reduced the
problem to a problem that we have already solved. Trimmed NURBS are treated as
the intersection of the triangle meshes resulting from the tesselation of the untrimmed
NURBS used in the intersection. This simple method outputs the trimming loops rather
than requiring them as an input in a drastic departure from the current approaches.

5 Tesselator Unit and Programmable Shaders

While we can readily build GPUs according to the proposed architecture from ex-
isting designs, there are some issues surrounding the transition that we will identify
and resolve. One concern for vertex shader programming under this new architec-
ture, is how to pass custom per-vertex information to the vertex shader. Since the 3D

 

Fig. 2. Per pixel lighting using programmable shaders
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Fig. 3. Bump mapped ridged torus using programmable shaders

application is sending a stream of control points to the GPU, all of the vertices gener-
ated by the tesselator and subsequently fed to the programmable vertex processor, have
properties calculated by the Tesselation Processor as described in [1], not by the ap-
plication. This complication can be resolved quite naturally using a technique already
familiar to shader programmers. Property maps for custom attributes can be encoded as
2D-textures, and vertex shaders could sample the texture to extract interpolated values.
This allows each vertex generated within the surface to assume a meaningful custom
attribute value (could use s/t values, position, texture coordinates etc. for sampling loca-
tion). Many existing vertex shaders rely on heavily (and uniformly) tessellated models.
The greater number of vertices can increase the quality of per-vertex lighting calcula-
tions, and facilitate displacement mapping of vertices. We support this class of shader
despite our distance-dependent subdivision, to the degree required by the vertex shader
program.

– Firstly, we might increase the overall fineness of the resulting tessellation by con-
trolling the termination criterion.

– Secondly, we could invoke an adaptive mesh refinement as part of our tesselation al-
gorithm This could be sufficient for displacement mapping, where the vertex shader
merely needs more points to play with. More sophisticated mesh refinements would
benefit lighting and texturing without having to evaluate more points using the sur-
face description.

Given the introduction of the control point shader, for maximum effectiveness the
vertex shader should only permute geometry in subtle ways. Following this conven-
tion will ensure that vertex shaders do not invalidate the perceptual accuracy of our
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distance-dependent tessellation. Lastly, one should remember that the Tesselation Pro-
cessor already incorporates a minimum level of tessellation . The use of vertex/pixel
shaders was a natural extension in our software demonstration, and required no spe-
cial enhancements. Figures 2 and 3 show the combination of real-time tessellation and
programmable shaders to bump map bicubic surfaces.

6 A Prototype for a Graphics Library Utility

To facilitate the design of drivers for the proposed architecture, we must develop a
Graphics Library Utility (GLU). The primitives of the GLU are strips, fans, meshes
and indexed meshes. Current rendering methods are based on triangle databases (strips,
fans, meshes) resulting from offline tesselation via specialized tools. These tools tes-
sellate the patch databases and ensure that there are no cracks between the resulting
triangle databases. The tools use some form of zippering. The triangle databases are
then streamed over the AGP bus into the GPU. There is no need for any coherency be-
tween the strips, fans, etc., since they are, by definition, coherent (there are no T-joints
between them). The net result is that the GPU does not need any information about
the entire database of triangles, which can be quite huge. Thus, the GPUs can process
virtually infinite triangle databases. Referring to Figure 4., in a strip, the first patch will
contribute sixteen vertices, and each successive patch will contribute only twelve ver-
tices because four vertices are shared with the previous patch. Of the sixteen vertices of
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the first patch, S1, there will only be four vertices (namely, the corners P11, P14, P41, P44)
that will have color and texture attributes; the remaining twelve vertices will have only
geometry attributes. Of the twelve vertices of each successive patch, Si, in the strip,
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there will only be two vertices (namely, P14 and P44) that will have color and texture
attributes. It is this reduction in the number of vertices that will have color and texture
attributes that accounts for the reduction of the memory footprint and for the reduc-
tion of the bus bandwidth necessary for transmitting the primitive from the CPU to the
rendering engine (GPU) over the AGP bus. Further compression is achieved because
a patch is expanded into potentially many triangles by the Tessellator Unit inside the
GPU. Referring to Figure 5, in a mesh, the anchor patch, S11 has sixteen vertices, all
the patches in the horizontal and vertical strips attached to S11 have twelve vertices and
all the other patches have nine vertices. Each patch has an outward pointing normal.
Referring to Figure 6, each patch has only three boundary curves, the fourth boundary
having collapsed to the center of the fan. The first patch in the fan enumeration has
eleven vertices; each successive patch has eight vertices. The vertex P11, which is listed
first in the fan definition, is the center of the fan and has color and texture attributes
in addition to geometric attributes. The first patch, S1, has two vertices with color and
texture attributes, namely P41 and P14; the remaining nine vertices have only geometric
attributes. Each successive patch, Si, has only one vertex with all the attributes.

The meshed curved patch data structures introduced above are designed to replace
the triangle data structures used in the conventional architectures. Within one patch
strip, the edge database must be retained for zippering reasons but no information needs
to be stored between two abutting patches. If two patches bounding two separate sur-
faces share an edge curve, they share the same control points and they will share the
same tesselation. By doing so we ensure the absence of cracks between patches that
belong to data structures that have been dispatched independently and thus our method
scales the exactly the same way the traditional triangle based method does.

7 Conclusion

We developed a new 3D graphics architecture that replaces the conventional idea of a
3D engine (GPU) that renders triangles with a GPU that will tesselate surface patches
into triangles. Thus, the bus sends control points of the surface patches, instead of the
many triangle vertices forming the surface, to the rendering engine. The tesselation
of the surface into triangles is distance-dependent, it is done in real time inside the
rendering engine.
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