Computer Graphics

University of California - Berkeley

Symmetrical Hamiltonian Manifolds on Regular 3D and 4d Polytopes


Abstract

Hamiltonian cycles on the edge graphs of the regular polytopes in three and four dimensions are investigated with the primary goal of finding complete multi-colored coverages of all the edges in the graph. The concept of a Hamiltonian path is then extended to the notion of Hamiltonian twomanifolds that visit all the given edges exactly once. For instance, the 4D simplex can be covered by a strip of 5 triangular facets that form a Moebius band! The use of Hamiltonian cycles to create physical dissection puzzles as well as geometrical sculptures is also investigated. The concepts are illustrated with computer graphics imagery and with small maquettes made with rapid prototyping techniques.

Citation

Carlo H. Séquin. "Symmetrical Hamiltonian Manifolds on Regular 3D and 4d Polytopes". Coxeter Day, Bridges Conference, Banff, Canada, pages 463–472, August 2005.