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Abstract 
The typical engineering design process can be 

decomposed into several phases: creative exploration 
of ideas, testing soundness of proposed concepts, 
refining concepts to realizable solutions, optimizing 
viable solutions with respect to performance/cost. 
Powerful computer algorithms have been developed 
for many of these tasks. Often these modules are rigid, 
allowing for little intervention by the designer, and the 
management of the interactions of these tasks mostly 
relies on human intelligence. Better user interfaces are 
required to integrate more fully human ingenuity and  
the assistance of the computer into the overall design 
process. The most powerful CAD systems should 
combine the power of programming, graphical 
visualization, and interactive adjustment of crucial 
design parameters. 

 
 

1. Introduction 
Computer-aided tools play an important role in 

many areas of design, including integrated circuits, 
architecture, engine design, avionics, etc. Many of 
today’s designs, such as bridges, airplanes, or 
integrated circuits could not be done without 
computers.  In general, the engineering design process 
can be structured into three key stages: exploration, 
development, refinement (Fig.1).  In stage 1, ideas are 
collected, relevant related designs are searched for, 
and first tentative designs are checked for their 
viability. In stage 2, promising concepts from stage 1 
are adjusted to meet the current constraints and 
optimized to approach the desired goal functions as 
closely as possible. In stage 3, the best designs are 
refined to fit the intended implementation process and 
are further embellished to become as attractive as 
possible will still serving the desired functions. 

Powerful CAD modules exist for the tasks relating 
to all three phases. The later stages first received 
support from CAD tools, mostly in the form of 
sophisticated drafting tools. Later CAD tools started to 
perform detailed analysis, functional simulation or 

parametric optimization. More recently CAD tools 
have attempted to also support the first stage of idea 
generation and conceptual design, but their 
effectiveness in this area is still rather limited. 

 
I.  EXPLORATION 

Concept Generation, Viability Checks 
 Schematic Design 

 
II.  DEVELOPMENT 

Observing Constraints, Optimization 
 Detailed Design 

 
III.  REFINEMENT 

Design for Realization, Embellishment 
 Construction Drawings 

 
Figure 1. Three stages in the design process. 

Moreover, in most CAD environments the 
integration between these phases is seriously lacking. 
The various CAD modules often run on different 
computers, and it may require significant data 
conversion and re-coding to take a design from one 
algorithm to the next one. Human interaction is often 
limited to selecting which CAD tool to use next and to 
setting a few explicit parameters. In this paper we 
make the point that more interaction, giving the user 
more direct control, is desirable in all modules. 
Through an improved symbiosis of optimization, 
visualization, human intelligence, and engineering 
expertise, CAD environments will advance to the next 
more powerful level. Giving the human more direct 
control will pay off for almost all CAD modules. In 
this tutorial review we will discuss illustrative 
examples from all three stages of the design process.  

 
2. Exploration Phase 

The first stage is the most unstructured one. So far, 
CAD support has been the weakest in the early 
conceptual, more creative phases of design. There are 
few programs that can propose radically new 
approaches. Computer searches have been less 



 

successful in the early conceptual stages of design, 
where creativity, “gut feelings,” and insightful sparks 
are needed to come up with truly new approaches. 

The most creative programs are based on 
evolutionary techniques, such as genetic algorithms 
(GA) [5].  These algorithms have been demonstrated 
in many playful settings and have often produced truly 
surprising results [14].  However, they very rarely 
produce practical, usable engineering solutions for 
real-world problems.  The reason is that the possible 
solution space for such problems is always 
humongous, and the sampling produced by GA in any 
finite amount of time is thus only very sparse.  
Therefore any “solution” found by GA, although good 
enough to beat out other competing machine-generated 
solutions, is rarely good enough to meet the stringent 
engineering requirements of a successful system or 
consumer product. 

Because of this, it is advantageous to subject the 
most promising “solutions” found by GA to a more 
narrowly focused search or to a greedy optimization 
that allows to match exactly some non-negotiable 
design requirements and to approach more closely 
other design objectives.  This fine-tuning will not 
typically change the given structure, but will only 
adjust a few aspects of the current design, and 
optimize a few pre-defined parameters.  Such a 
combination of stochastic search and greedy 
optimization can be quite powerful if the search 
domain is kept focused narrowly enough. 

 
2.1. MEMS Resonator Suspension 

To illustrate the above comments, let's look at a 
possible design scenario involving the design of a 
MEMS (Micro-Electro-Mechanical System) resonator, 
designed to serve as a narrow band-pass filter in a 
signal processing application. The task is to find the 
best possible suspension design for some central mass 
to which are attached two capacitive comb drives, – 
one acting as an input driver, and the other one acting 
as an output sensor (Fig. 2a). The central mass must be 
suspended by some kind of spring to form a spring-
mass system with the proper resonant frequency. The 
mass with the attached drive and sensing combs must 
oscillate preferentially in the direction of the comb 
fingers and be rather stiff in the direction orthogonal to 
it. The stiffness in the two directions should differ by 
at least a factor of 10. Design experience with MEMS 
readily informs us that a practical solution should 
employ at least four suspension springs to keep this 
oscillating mass in its initial plane. Thus, at this point, 
the design task may be formulated as finding four 
string-like poly-line beams connected with one end to 
the central mass and with their other ends anchored to 
the silicon substrate (Fig. 2b). 

 

 
Figure 2. MEMS resonantor: (a) schematic diagram, 
(b) suspension with 4 unconstrained polyline springs. 

This task was subjected to a genetic algorithm (GA) 
to discover potentially new, innovative geometries for 
the suspension springs [17]. The genotype employed 
was flexible enough to allow poly-lines with arbitrary 
many piecewise linear links of various width and 
length, connected at arbitrary angles. Beam geometries 
that led to intersections were ruled out. The remaining 
“legal” geometries were analyzed as to their resonant 
behavior with the MEMS simulation program SUGAR 
[16]. This formulation of the problem leads to a very 
large, high-dimensional solution space. It thus takes a 
very long time for the GA algorithm to find a layout 
geometry that gives the desired resonance frequency 
and also has a stiffness ratio of at least 10 between the 
desirable direction of oscillation (in the direction of 
the comb fingers) and the direction perpendicular to it. 
The GA search did indeed find solutions that met the 
above criteria. However, the crooked legs and 
asymmetrical layouts produced are not geometries that 
one would seriously consider for actual fabrication. 

Even minimal experience with integrated circuit 
fabrication readily tells us that we want to use 
symmetry to cancel out to first order the effects of 
processing variations and of residual stresses in the 
surfaces of the suspension beams. Adding bilateral, or, 
better yet, 4-fold symmetry constraints to the GA 
search, reduces by a factor of four the number of 
parameters that need to be adjusted and thus the 
dimension of the search space. The run-times are 
dramatically reduced, solutions closer to the desired 
design goals are found, and the generated layout 
geometries are much more suitable for manufacturing. 

On the other hand, an open-ended search using GA 
may find intriguing patterns that trigger some useful 
associations in a designer’s brain. Emerging pheno-
types may suggest spirals, serpentines, or frame 
structures that the designer may not have considered 
initially. While the patterns produced by the GA may 



 

only be tenuous, the designer can readily distill out the 
new concept, and create simpler and more regular 
spirals, serpentines, or frames that are characterized 
with just a few geometrical parameters. Such new 
higher-level primitives can then be added to the library 
of components, from which the GA search or other 
optimization programs can draw, in order to further 
improve the best designs found so far (Fig.3). 

 

 
Figure 3. MEMS resonator suspension: (a) using 4-
fold symmetry and parameterized serpentine springs, 

(b) using braces between serpentines to increase 
spring stiffness in the horizontal direction. 

 By introducing a specially coded serpentine 
element with two or more regular rectilinear hairpin 
turns, the resulting designs start to resemble more 
closely what an experienced designer might have 
started with in the first place (Fig.3a). Now the role of 
the search algorithm is to determine the parameters of 
these serpentine springs as well as their placement and 
orientation with respect to the central mass. This leads 
to some viable designs that are not too far off the 
desired resonance frequency and stiffness ratio. 

Because of its sparse discrete sampling, a GA is 
unlikely to find a solution that meets the frequency 
requirement precisely. At this point it is preferable to 
introduce an inner loop with a continuous optimization 
procedure, such as gradient descent, to fine-tune the 
spring parameters so as to obtain the desired resonant 
behavior. These locally optimized designs, reached 
from different sampling points found by the GA, can 
now be evaluated with respect to other design 
objectives, such as minimizing layout area, or gaining 
robustness against manufacturing variations. 

In applying this process, it became apparent that 
going from two to three serpentine loops could further 
reduce layout area, but it led to an unsatisfactory 
stiffness ratio. Adding cross braces between 
symmetrical pairs of serpentines (Fig.3b) dramatically 
improves the situation. It prevents the flare-out of the 
serpentines that occurs when the central mass moves 
along the undesirable axis. Design experience or 
engineering insight may invoke this modification of 
the basic suspension system. But there is no way that 
the GA can stumble across this solution, unless the 
genotype is capable of forming connected graphs with 
more complex connectivity between the spring 
elements than just four individual poly-lines. Such a 

genotype would make the search space even larger and 
further increase the time to find any viable solution. 
Also, such a change in the capabilities of the genotype 
may require a serious re-programming effort, which 
will disrupt the designer’s creative thought process.  

Ideally, I would like an interactive system that 
allows me to control the GA search while it is running. 
Through a graphical interface, I would like to select 
phenotypes that I like and enhance their “survival” 
value, and readily eliminate designs that I feel have no 
chance of leading to a useful solution. Some GA 
environments already provide such user interfaces [3]. 
In addition, I also would like to be able to sketch a 
promising looking modification to a specific pheno-
type and insert that individual into the gene pool, 
while the algorithm is running. This presents a much 
more challenging programming problem! 

Perhaps an even more productive strategy for the 
first conceptual stage of design is to look for already 
existing solutions. Very often the problem at hand has 
been solved before, or an inspiring solution can be 
found in a related field. This suggests that we need 
much better support for such wide-spread searches 
over many engineering branches and databases. In the 
example above, the students who programmed the 
initial approach using GA could have found the much 
better approach depicted in Figure 3b by studying the 
many existing resonator designs described in the 
literature. We need better tools to make such a directed 
search practical for non-expert users.  

In summary, I consider GA an interesting 
exploration tool to look for new conceptual ideas. But, 
so far, I am not aware of any practical solutions to any 
real-world engineering problem found by a GA that 
had not been known previously, or which could not be 
readily improved once an engineer takes a hard look at 
it. Evolution only produces adequate designs for a 
particular niche, not optimized solutions obeying hard 
constraints. However, combining GA with other 
search techniques and putting it all under human 
control may well be a winning approach for the future.  

 
3. Development Phase 

Once a conceptual solution has been found that 
promises to solve the problem at hand, the emerging 
design needs to be tailored to the exact specifications 
and constraints. Today, powerful optimization routines 
of many types can assist a designer in almost all 
domains of engineering.  

 
3.1. Automated Layout of Operational Amplifiers 

As an illustration I will discuss OPASYN [8], a 
program that produces custom-made IC (integrated 
circuit) layouts of an operational amplifier (op-amp) 



 

tailored to a particular application. A typical op-amp 
may have anywhere from a 20 to more than a hundred 
discrete circuit elements (transistors, resistors, 
capacitors). An open-ended search over all possible 
collections of such elements and their interconnection 
topologies is thus out of the question. Fortunately, 
several decades of design experience with such 
circuits [6] have distilled out a logical approach that 
breaks such circuits into a few generic stages with well 
defined functions (voltage dividers, current mirrors, 
differential stages, source-follower buffers). 

 Furthermore the relationships between these 
clusters have been carefully choreographed so as to 
make viable amplifier stages. Thus the vast majority of 
all op-amp designs fall into a few well-established 
design classes, characterized by the total number of 
stages, and the generic types of input and output stages 
they employ (differential, single sided, push-pull). For 
each of these generic amplifier designs, there are only 
5 to 8 key decisions to be made (the base current 
through a particular stage, the voltage swing desired at 
the output, etc), and these decision then define most 
directly the other parameters in the op-amp circuit. 
Thus when fine-tuning a new amplifier to a particular 
application, one has to find the right values for those 5 
to 8 parameters and then follow well-established 
design practices to define the whole circuit in all its 
detail. This approach reduces this potentially very 
large design task to a search space of only 5 to 8 
dimensions. 

 

 
Figure 4. Basic two-stage op-amp. 

 
Figure 5. Synthesized amplifier layout. 

For any such set of parameters, the other circuit 
elements can then be calculated, and the individual 
stages can be laid out as integrated circuit blocks. 
Again, some design experience is explicitly built into 
the program. The sensitive elements of the input stage 
are kept close together and are laid out in a 
symmetrical manner, so as to keep that stage balanced 
even in the presence of manufacturing uncertainties. 
The automated layout process allows for tailoring the 
floor plan to some fixed width or height, or for 
specifying a preferred aspect ratio. 

Some exploration revealed that the cost function 
profile in this solution space is rather well-behaved, 
showing large smooth “hills” with only a few discrete 
basins with local optima. Thus for a given set of 
constraints dictated by the application, it was possible 
to sparsely sample that solution space and then refine 
these solutions with a gradient descent optimization to 
find all the local minima that might be compatible 
with the specifications. If there is more than one such 
“optimal” solution, they all get presented to the 
designer, who can then select one based on criteria 
which may not have been stated explicitly.  

In this program, strong use was made of the vast 
engineering knowledge that had been built up over 
several decades in the design of analog integrated 
circuits [6]. But it took considerable engineering 
ingenuity to find out how to capture this knowledge in 
the computer, so that an automated design tool could 
be built around it. The open challenge is how to make 
this process easier, so it can be used in many other 
engineering applications. Clearly a similar approach 
should be applicable to the design of lens systems, car 
engines, bridges, or large exhibition halls. 

 
3.2. Placement and Routing in Digital Circuits  

There are other, less structured and less narrowly 
defined design problems, where the solution space is 
not as simple and smooth as in the case of OPASYN, 
and where thousands of local optima may exist. Such 
problems need a stronger stochastic component in 
their optimization phase. Noteworthy examples are 
placement and routing programs for digital ICs. 
Simulated annealing [7] has been used to produce 
impressive results [13]. With carefully selected move 
sets and suitable automatic cooling schedules, they can 
escape a particular local minimum in solution space 
and find better solutions based on layouts that might 
be quite different from the starting configuration.  

Like genetic algorithms, this process may run 
through states that show some desirable partial 
solutions. However, these may get lost again, because 
they happen to be combined mostly with other non-
viable features. That is the point where an experienced 
designer acting as an observer should be able to 



 

intervene and mark such features as “highly desirable” 
that should not get lost. In the context of placement 
and routing, this situation is often encountered when a 
small change needs to be made at the periphery of the 
layout area, which acts as one of the constraints for the 
optimization for the layout task. Such small changes 
often change everything, and good partial designs in 
other regions of the layout are lost forever. I envision a 
graphical user interface that allows to mark some areas 
of the current solution as intangible, which means that 
their current perimeter must be added as further a 
constraint for the remaining layout task. 

 
4. Refinement Phase 

In stage 3 we assume that a design has progressed 
to a state where it is already lying in the proper valley 
of the solution space and where it can be moved to the 
closest local optimum with greedy optimization 
techniques. Once an engineering solution has been 
found that meets all the functional requirements, 
additional design effort may be spent to make the final 
product as attractive as possible, or to give it a 
distinctive style to represent a particular brand. 

 
4.1. Smooth 3D Shape Optimization 

To discuss issues of stage 3 of the design process, 
we look to the domain of 3D shape design. CAD tool 
development in this area has been dominated by the 
needs of content creation for the insatiable video game 
and film industries. The most challenging tasks are to 
make realistic looking animated human faces, and 
complex models of fluid simulation that (seem to) 
obey physical laws, yet are controllable enough to 
allow the film makers to stage the particular (disaster) 
scene that they have in mind. Clever combinations of 
search and optimization techniques have achieved 
amazing results in the domain of a flood washing 
through New York City [4] or to create a sequence of 
motions that moves a football player from one 
specified pose and motion state to another one [1]. 

Here I want to focus on the design of 3D shapes 
based on aesthetics, whether this concerns a vase, the 
hood of a car, or abstract geometric sculpture [12]. 
The key difficulty, of course, is that there is no 
absolute way to measure beauty. Tastes vary, and even 
experienced designers cannot express their preferences 
as explicit cost functions. The human designer must 
thus be integrated tightly into the design loop. This 
requires direct, real-time, interactive, continuous 
control of the displayed result.  

 
4.2. Sculpture Generator I 

A decade ago I implemented such a program with 
the very specific purpose of capturing a paradigm of 

coupled holes and saddles to design abstract 
geometrical sculptures, inspired by the work of Brent 
Collins [2]. Even though ‘Sculpture Generator I’, 
could produce “only” Scherk-Collins Toroids [11], it 
was well worth its development effort. Over the last 10 
years I have made close to a hundred different shapes 
and sculpture models such as: ‘Molecule’, ‘Totem_3’, 
or ‘Whirled White Web’ (Fig.6a), which has been 
realized as a 12-foot tall snow sculpture. In these 
shapes the appearance of what looks like minimal 
saddle surfaces is hard-coded as approximations based 
on hyperboloid surfaces. The key parameters were 
attached to sliders that allowed real-time interactive 
fine-tuning [15] of the sculptural shape. This allowed a 
designer to quickly explore many of different shapes 
in just minutes, – which rendered the computer an 
effective amplifier of the creative process [10]. 

 

  
Figure 6. ‘Whirled White Web’ and ‘Volution_5’ 

In later sculptures I used closer approximations to 
minimal surfaces by relying on Brakke’s surface 
evolver. This is an iterative optimization program that 
moves the vertices of a triangulated mesh in such a 
way as to minimize surface area or bending energy. 
The result was a series of Volution surfaces (Fig.6b). 
In this process, the interactive setting and modification 
of parameters and constraints has been lost. Clearly, I 
would like to see an environment that combines all 
these capabilities. 

 
4.3. “Beauty Functionals” 

In the Volution sculptures, the functional used to 
optimize the surface was inspired by nature. Minimal 
surfaces as assumed by soap films look very pleasing 
to most humans. However, to an artists it is too 
restrictive to stick with functionals found in nature. 
We can readily capture our own concepts of the 
crucial elements of beauty in different functionals. As 
an example consider the Minimum Variation Surfaces 
(MVS) (Fig.7) developed with Henry Moreton [9]. 
This functional is based on the premise that curvature 
should not be penalized a priori. The most perfect 
closed shape is a sphere, which thus should have an 



 

overall penalty of zero. Only deviations from this 
highly regular shape should be penalized with extra 
cost. This led most naturally to the MVS cost 
functional, which integrates the square of the change 
in curvature over the surface of the shape. 

 
Figure 7. MVS-optimized surfaces. 

Finding such surfaces requires some heavy-duty 
computation, but then allows a designer to specify a 
shape with just a few high-level constraints without 
the need to do any subsequent “fairing” of the surface. 
In a mature CAD system, I would like to see a whole 
arsenal of such beauty functionals, allowing the 
designer to select the appropriate one for a particular 
application, or even to pick different ones for different 
parts of a single design. What I envision here is a 
catalog of possible shape styles, similar to the style 
sheets found in desktop publishing. The designer could 
then apply the desired style to a region with a click of 
the mouse. The design process in stage 3 would then 
become an interactive play, adjusting some external 
constraints and trying out various beauty functionals. 

 
5. Conclusions 

Over the last three decades CAD tools have 
evolved from glorified drafting tools to sophisticated 
analysis and optimization programs. CAD tools will 
become even more sophisticated and will incorporate 
ever more powerful search, analysis, and optimization 
modules. However, the original dream of fully 
Computer-Automated Design, which as popular in the 
1970’s, has been realized in only a few niches of 
narrowly defined design tasks. The main reason is that 
every novel design challenge raises new issues, and 
requires one to draw on new ideas that have not 
previously been programmed into the available CAD 
tools. The level of general knowledge and learning 
abilities in CAD tools today is still extremely limited 
and is not sufficient to deal with these new situations 
in an autonomous way.  

Thus, human intelligence will not disappear from 
the design process. Engineering experience and plain 
common sense will continue to play key roles. If these 
can be suitably integrated into the design process and 
into the individual CAD modules, it will have a huge 

pay-off in terms of better designs and shorter turn-
around times. Almost every CAD module can benefit 
from an enhanced user interface that gives the designer 
additional control over the task that this module is 
performing. We believe that such a symbiosis between 
computer algorithms and human intelligence will yield 
a very powerful design environment that can give 
practical solutions superior to those that any single 
monolithic synthesis or optimization program can find.  
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