

Interactive Procedural Computer-Aided Design

Carlo H. Séquin

CS Division, University of California, Berkeley
sequin@cs.berkeley.edu

Abstract
The typical engineering design process can be

decomposed into several phases: creative exploration
of ideas, testing soundness of proposed concepts,
refining concepts to realizable solutions, optimizing
viable solutions with respect to performance/cost.
Powerful computer algorithms have been developed
for many of these tasks. Often these modules are rigid,
allowing for little intervention by the designer, and the
management of the interactions of these tasks mostly
relies on human intelligence. Better user interfaces are
required to integrate more fully human ingenuity and
the assistance of the computer into the overall design
process. The most powerful CAD systems should
combine the power of programming, graphical
visualization, and interactive adjustment of crucial
design parameters.

1. Introduction
Computer-aided tools play an important role in

many areas of design, including integrated circuits,
architecture, engine design, avionics, etc. Many of
today’s designs, such as bridges, airplanes, or
integrated circuits could not be done without
computers. In general, the engineering design process
can be structured into three key stages: exploration,
development, refinement (Fig.1). In stage 1, ideas are
collected, relevant related designs are searched for,
and first tentative designs are checked for their
viability. In stage 2, promising concepts from stage 1
are adjusted to meet the current constraints and
optimized to approach the desired goal functions as
closely as possible. In stage 3, the best designs are
refined to fit the intended implementation process and
are further embellished to become as attractive as
possible will still serving the desired functions.

Powerful CAD modules exist for the tasks relating
to all three phases. The later stages first received
support from CAD tools, mostly in the form of
sophisticated drafting tools. Later CAD tools started to
perform detailed analysis, functional simulation or

parametric optimization. More recently CAD tools
have attempted to also support the first stage of idea
generation and conceptual design, but their
effectiveness in this area is still rather limited.

I. EXPLORATION

Concept Generation, Viability Checks
 Schematic Design

II. DEVELOPMENT

Observing Constraints, Optimization
 Detailed Design

III. REFINEMENT

Design for Realization, Embellishment
 Construction Drawings

Figure 1. Three stages in the design process.

Moreover, in most CAD environments the
integration between these phases is seriously lacking.
The various CAD modules often run on different
computers, and it may require significant data
conversion and re-coding to take a design from one
algorithm to the next one. Human interaction is often
limited to selecting which CAD tool to use next and to
setting a few explicit parameters. In this paper we
make the point that more interaction, giving the user
more direct control, is desirable in all modules.
Through an improved symbiosis of optimization,
visualization, human intelligence, and engineering
expertise, CAD environments will advance to the next
more powerful level. Giving the human more direct
control will pay off for almost all CAD modules. In
this tutorial review we will discuss illustrative
examples from all three stages of the design process.

2. Exploration Phase

The first stage is the most unstructured one. So far,
CAD support has been the weakest in the early
conceptual, more creative phases of design. There are
few programs that can propose radically new
approaches. Computer searches have been less

successful in the early conceptual stages of design,
where creativity, “gut feelings,” and insightful sparks
are needed to come up with truly new approaches.

The most creative programs are based on
evolutionary techniques, such as genetic algorithms
(GA) [5]. These algorithms have been demonstrated
in many playful settings and have often produced truly
surprising results [14]. However, they very rarely
produce practical, usable engineering solutions for
real-world problems. The reason is that the possible
solution space for such problems is always
humongous, and the sampling produced by GA in any
finite amount of time is thus only very sparse.
Therefore any “solution” found by GA, although good
enough to beat out other competing machine-generated
solutions, is rarely good enough to meet the stringent
engineering requirements of a successful system or
consumer product.

Because of this, it is advantageous to subject the
most promising “solutions” found by GA to a more
narrowly focused search or to a greedy optimization
that allows to match exactly some non-negotiable
design requirements and to approach more closely
other design objectives. This fine-tuning will not
typically change the given structure, but will only
adjust a few aspects of the current design, and
optimize a few pre-defined parameters. Such a
combination of stochastic search and greedy
optimization can be quite powerful if the search
domain is kept focused narrowly enough.

2.1. MEMS Resonator Suspension

To illustrate the above comments, let's look at a
possible design scenario involving the design of a
MEMS (Micro-Electro-Mechanical System) resonator,
designed to serve as a narrow band-pass filter in a
signal processing application. The task is to find the
best possible suspension design for some central mass
to which are attached two capacitive comb drives, –
one acting as an input driver, and the other one acting
as an output sensor (Fig. 2a). The central mass must be
suspended by some kind of spring to form a spring-
mass system with the proper resonant frequency. The
mass with the attached drive and sensing combs must
oscillate preferentially in the direction of the comb
fingers and be rather stiff in the direction orthogonal to
it. The stiffness in the two directions should differ by
at least a factor of 10. Design experience with MEMS
readily informs us that a practical solution should
employ at least four suspension springs to keep this
oscillating mass in its initial plane. Thus, at this point,
the design task may be formulated as finding four
string-like poly-line beams connected with one end to
the central mass and with their other ends anchored to
the silicon substrate (Fig. 2b).

Figure 2. MEMS resonantor: (a) schematic diagram,
(b) suspension with 4 unconstrained polyline springs.

This task was subjected to a genetic algorithm (GA)
to discover potentially new, innovative geometries for
the suspension springs [17]. The genotype employed
was flexible enough to allow poly-lines with arbitrary
many piecewise linear links of various width and
length, connected at arbitrary angles. Beam geometries
that led to intersections were ruled out. The remaining
“legal” geometries were analyzed as to their resonant
behavior with the MEMS simulation program SUGAR
[16]. This formulation of the problem leads to a very
large, high-dimensional solution space. It thus takes a
very long time for the GA algorithm to find a layout
geometry that gives the desired resonance frequency
and also has a stiffness ratio of at least 10 between the
desirable direction of oscillation (in the direction of
the comb fingers) and the direction perpendicular to it.
The GA search did indeed find solutions that met the
above criteria. However, the crooked legs and
asymmetrical layouts produced are not geometries that
one would seriously consider for actual fabrication.

Even minimal experience with integrated circuit
fabrication readily tells us that we want to use
symmetry to cancel out to first order the effects of
processing variations and of residual stresses in the
surfaces of the suspension beams. Adding bilateral, or,
better yet, 4-fold symmetry constraints to the GA
search, reduces by a factor of four the number of
parameters that need to be adjusted and thus the
dimension of the search space. The run-times are
dramatically reduced, solutions closer to the desired
design goals are found, and the generated layout
geometries are much more suitable for manufacturing.

On the other hand, an open-ended search using GA
may find intriguing patterns that trigger some useful
associations in a designer’s brain. Emerging pheno-
types may suggest spirals, serpentines, or frame
structures that the designer may not have considered
initially. While the patterns produced by the GA may

only be tenuous, the designer can readily distill out the
new concept, and create simpler and more regular
spirals, serpentines, or frames that are characterized
with just a few geometrical parameters. Such new
higher-level primitives can then be added to the library
of components, from which the GA search or other
optimization programs can draw, in order to further
improve the best designs found so far (Fig.3).

Figure 3. MEMS resonator suspension: (a) using 4-
fold symmetry and parameterized serpentine springs,

(b) using braces between serpentines to increase
spring stiffness in the horizontal direction.

 By introducing a specially coded serpentine
element with two or more regular rectilinear hairpin
turns, the resulting designs start to resemble more
closely what an experienced designer might have
started with in the first place (Fig.3a). Now the role of
the search algorithm is to determine the parameters of
these serpentine springs as well as their placement and
orientation with respect to the central mass. This leads
to some viable designs that are not too far off the
desired resonance frequency and stiffness ratio.

Because of its sparse discrete sampling, a GA is
unlikely to find a solution that meets the frequency
requirement precisely. At this point it is preferable to
introduce an inner loop with a continuous optimization
procedure, such as gradient descent, to fine-tune the
spring parameters so as to obtain the desired resonant
behavior. These locally optimized designs, reached
from different sampling points found by the GA, can
now be evaluated with respect to other design
objectives, such as minimizing layout area, or gaining
robustness against manufacturing variations.

In applying this process, it became apparent that
going from two to three serpentine loops could further
reduce layout area, but it led to an unsatisfactory
stiffness ratio. Adding cross braces between
symmetrical pairs of serpentines (Fig.3b) dramatically
improves the situation. It prevents the flare-out of the
serpentines that occurs when the central mass moves
along the undesirable axis. Design experience or
engineering insight may invoke this modification of
the basic suspension system. But there is no way that
the GA can stumble across this solution, unless the
genotype is capable of forming connected graphs with
more complex connectivity between the spring
elements than just four individual poly-lines. Such a

genotype would make the search space even larger and
further increase the time to find any viable solution.
Also, such a change in the capabilities of the genotype
may require a serious re-programming effort, which
will disrupt the designer’s creative thought process.

Ideally, I would like an interactive system that
allows me to control the GA search while it is running.
Through a graphical interface, I would like to select
phenotypes that I like and enhance their “survival”
value, and readily eliminate designs that I feel have no
chance of leading to a useful solution. Some GA
environments already provide such user interfaces [3].
In addition, I also would like to be able to sketch a
promising looking modification to a specific pheno-
type and insert that individual into the gene pool,
while the algorithm is running. This presents a much
more challenging programming problem!

Perhaps an even more productive strategy for the
first conceptual stage of design is to look for already
existing solutions. Very often the problem at hand has
been solved before, or an inspiring solution can be
found in a related field. This suggests that we need
much better support for such wide-spread searches
over many engineering branches and databases. In the
example above, the students who programmed the
initial approach using GA could have found the much
better approach depicted in Figure 3b by studying the
many existing resonator designs described in the
literature. We need better tools to make such a directed
search practical for non-expert users.

In summary, I consider GA an interesting
exploration tool to look for new conceptual ideas. But,
so far, I am not aware of any practical solutions to any
real-world engineering problem found by a GA that
had not been known previously, or which could not be
readily improved once an engineer takes a hard look at
it. Evolution only produces adequate designs for a
particular niche, not optimized solutions obeying hard
constraints. However, combining GA with other
search techniques and putting it all under human
control may well be a winning approach for the future.

3. Development Phase

Once a conceptual solution has been found that
promises to solve the problem at hand, the emerging
design needs to be tailored to the exact specifications
and constraints. Today, powerful optimization routines
of many types can assist a designer in almost all
domains of engineering.

3.1. Automated Layout of Operational Amplifiers

As an illustration I will discuss OPASYN [8], a
program that produces custom-made IC (integrated
circuit) layouts of an operational amplifier (op-amp)

tailored to a particular application. A typical op-amp
may have anywhere from a 20 to more than a hundred
discrete circuit elements (transistors, resistors,
capacitors). An open-ended search over all possible
collections of such elements and their interconnection
topologies is thus out of the question. Fortunately,
several decades of design experience with such
circuits [6] have distilled out a logical approach that
breaks such circuits into a few generic stages with well
defined functions (voltage dividers, current mirrors,
differential stages, source-follower buffers).

 Furthermore the relationships between these
clusters have been carefully choreographed so as to
make viable amplifier stages. Thus the vast majority of
all op-amp designs fall into a few well-established
design classes, characterized by the total number of
stages, and the generic types of input and output stages
they employ (differential, single sided, push-pull). For
each of these generic amplifier designs, there are only
5 to 8 key decisions to be made (the base current
through a particular stage, the voltage swing desired at
the output, etc), and these decision then define most
directly the other parameters in the op-amp circuit.
Thus when fine-tuning a new amplifier to a particular
application, one has to find the right values for those 5
to 8 parameters and then follow well-established
design practices to define the whole circuit in all its
detail. This approach reduces this potentially very
large design task to a search space of only 5 to 8
dimensions.

Figure 4. Basic two-stage op-amp.

Figure 5. Synthesized amplifier layout.

For any such set of parameters, the other circuit
elements can then be calculated, and the individual
stages can be laid out as integrated circuit blocks.
Again, some design experience is explicitly built into
the program. The sensitive elements of the input stage
are kept close together and are laid out in a
symmetrical manner, so as to keep that stage balanced
even in the presence of manufacturing uncertainties.
The automated layout process allows for tailoring the
floor plan to some fixed width or height, or for
specifying a preferred aspect ratio.

Some exploration revealed that the cost function
profile in this solution space is rather well-behaved,
showing large smooth “hills” with only a few discrete
basins with local optima. Thus for a given set of
constraints dictated by the application, it was possible
to sparsely sample that solution space and then refine
these solutions with a gradient descent optimization to
find all the local minima that might be compatible
with the specifications. If there is more than one such
“optimal” solution, they all get presented to the
designer, who can then select one based on criteria
which may not have been stated explicitly.

In this program, strong use was made of the vast
engineering knowledge that had been built up over
several decades in the design of analog integrated
circuits [6]. But it took considerable engineering
ingenuity to find out how to capture this knowledge in
the computer, so that an automated design tool could
be built around it. The open challenge is how to make
this process easier, so it can be used in many other
engineering applications. Clearly a similar approach
should be applicable to the design of lens systems, car
engines, bridges, or large exhibition halls.

3.2. Placement and Routing in Digital Circuits

There are other, less structured and less narrowly
defined design problems, where the solution space is
not as simple and smooth as in the case of OPASYN,
and where thousands of local optima may exist. Such
problems need a stronger stochastic component in
their optimization phase. Noteworthy examples are
placement and routing programs for digital ICs.
Simulated annealing [7] has been used to produce
impressive results [13]. With carefully selected move
sets and suitable automatic cooling schedules, they can
escape a particular local minimum in solution space
and find better solutions based on layouts that might
be quite different from the starting configuration.

Like genetic algorithms, this process may run
through states that show some desirable partial
solutions. However, these may get lost again, because
they happen to be combined mostly with other non-
viable features. That is the point where an experienced
designer acting as an observer should be able to

intervene and mark such features as “highly desirable”
that should not get lost. In the context of placement
and routing, this situation is often encountered when a
small change needs to be made at the periphery of the
layout area, which acts as one of the constraints for the
optimization for the layout task. Such small changes
often change everything, and good partial designs in
other regions of the layout are lost forever. I envision a
graphical user interface that allows to mark some areas
of the current solution as intangible, which means that
their current perimeter must be added as further a
constraint for the remaining layout task.

4. Refinement Phase

In stage 3 we assume that a design has progressed
to a state where it is already lying in the proper valley
of the solution space and where it can be moved to the
closest local optimum with greedy optimization
techniques. Once an engineering solution has been
found that meets all the functional requirements,
additional design effort may be spent to make the final
product as attractive as possible, or to give it a
distinctive style to represent a particular brand.

4.1. Smooth 3D Shape Optimization

To discuss issues of stage 3 of the design process,
we look to the domain of 3D shape design. CAD tool
development in this area has been dominated by the
needs of content creation for the insatiable video game
and film industries. The most challenging tasks are to
make realistic looking animated human faces, and
complex models of fluid simulation that (seem to)
obey physical laws, yet are controllable enough to
allow the film makers to stage the particular (disaster)
scene that they have in mind. Clever combinations of
search and optimization techniques have achieved
amazing results in the domain of a flood washing
through New York City [4] or to create a sequence of
motions that moves a football player from one
specified pose and motion state to another one [1].

Here I want to focus on the design of 3D shapes
based on aesthetics, whether this concerns a vase, the
hood of a car, or abstract geometric sculpture [12].
The key difficulty, of course, is that there is no
absolute way to measure beauty. Tastes vary, and even
experienced designers cannot express their preferences
as explicit cost functions. The human designer must
thus be integrated tightly into the design loop. This
requires direct, real-time, interactive, continuous
control of the displayed result.

4.2. Sculpture Generator I

A decade ago I implemented such a program with
the very specific purpose of capturing a paradigm of

coupled holes and saddles to design abstract
geometrical sculptures, inspired by the work of Brent
Collins [2]. Even though ‘Sculpture Generator I’,
could produce “only” Scherk-Collins Toroids [11], it
was well worth its development effort. Over the last 10
years I have made close to a hundred different shapes
and sculpture models such as: ‘Molecule’, ‘Totem_3’,
or ‘Whirled White Web’ (Fig.6a), which has been
realized as a 12-foot tall snow sculpture. In these
shapes the appearance of what looks like minimal
saddle surfaces is hard-coded as approximations based
on hyperboloid surfaces. The key parameters were
attached to sliders that allowed real-time interactive
fine-tuning [15] of the sculptural shape. This allowed a
designer to quickly explore many of different shapes
in just minutes, – which rendered the computer an
effective amplifier of the creative process [10].

Figure 6. ‘Whirled White Web’ and ‘Volution_5’

In later sculptures I used closer approximations to
minimal surfaces by relying on Brakke’s surface
evolver. This is an iterative optimization program that
moves the vertices of a triangulated mesh in such a
way as to minimize surface area or bending energy.
The result was a series of Volution surfaces (Fig.6b).
In this process, the interactive setting and modification
of parameters and constraints has been lost. Clearly, I
would like to see an environment that combines all
these capabilities.

4.3. “Beauty Functionals”

In the Volution sculptures, the functional used to
optimize the surface was inspired by nature. Minimal
surfaces as assumed by soap films look very pleasing
to most humans. However, to an artists it is too
restrictive to stick with functionals found in nature.
We can readily capture our own concepts of the
crucial elements of beauty in different functionals. As
an example consider the Minimum Variation Surfaces
(MVS) (Fig.7) developed with Henry Moreton [9].
This functional is based on the premise that curvature
should not be penalized a priori. The most perfect
closed shape is a sphere, which thus should have an

overall penalty of zero. Only deviations from this
highly regular shape should be penalized with extra
cost. This led most naturally to the MVS cost
functional, which integrates the square of the change
in curvature over the surface of the shape.

Figure 7. MVS-optimized surfaces.

Finding such surfaces requires some heavy-duty
computation, but then allows a designer to specify a
shape with just a few high-level constraints without
the need to do any subsequent “fairing” of the surface.
In a mature CAD system, I would like to see a whole
arsenal of such beauty functionals, allowing the
designer to select the appropriate one for a particular
application, or even to pick different ones for different
parts of a single design. What I envision here is a
catalog of possible shape styles, similar to the style
sheets found in desktop publishing. The designer could
then apply the desired style to a region with a click of
the mouse. The design process in stage 3 would then
become an interactive play, adjusting some external
constraints and trying out various beauty functionals.

5. Conclusions

Over the last three decades CAD tools have
evolved from glorified drafting tools to sophisticated
analysis and optimization programs. CAD tools will
become even more sophisticated and will incorporate
ever more powerful search, analysis, and optimization
modules. However, the original dream of fully
Computer-Automated Design, which as popular in the
1970’s, has been realized in only a few niches of
narrowly defined design tasks. The main reason is that
every novel design challenge raises new issues, and
requires one to draw on new ideas that have not
previously been programmed into the available CAD
tools. The level of general knowledge and learning
abilities in CAD tools today is still extremely limited
and is not sufficient to deal with these new situations
in an autonomous way.

Thus, human intelligence will not disappear from
the design process. Engineering experience and plain
common sense will continue to play key roles. If these
can be suitably integrated into the design process and
into the individual CAD modules, it will have a huge

pay-off in terms of better designs and shorter turn-
around times. Almost every CAD module can benefit
from an enhanced user interface that gives the designer
additional control over the task that this module is
performing. We believe that such a symbiosis between
computer algorithms and human intelligence will yield
a very powerful design environment that can give
practical solutions superior to those that any single
monolithic synthesis or optimization program can find.

Acknowledgements

This work is supported through NSF Grant CRR –
DES/CC-0306557 and MICRO Research Grant 05-066.

References
[1] Arikan, O., and, D. A. Forsyth, Interactive Motion

Generation from Examples. Proc. of ACM
SIGGRAPH’02, Vol: 21, No: 3, pp 483--490, 2002.

[2] Collins, B., Evolving an Aesthetic of Surface Economy
in Sculpture. Leonardo Vol 30, No 2, pp 85-88, 1997.

[3] Dawkins, R., The Blind Watchmaker. W. W. Norton &
Co. New York, 1987.

[4] Emmerich R., The Day After Tomorrow. Movie by Fox
Home Entertainement, 2004.

[5] Goldberg, D., Genetic Algorithms in Search, Optimiza-
tion and Machine Learning. Addison-Wesley, 1989.

[6] Gray, P. G., and R. G. Meier, Analysis and Design of
Analog Integrated Circuits. Wiley, New York, 1984.

[7] Kirkpatrick, S., C. D. Gelatt Jr., and M. P. Vecchi,
Optimization by Simulated Annealing. Science Vol 220,
May 1983.

[8] Koh, H.Y., C. H. Séquin, and P. R. Gray: "OPASYN: A
Compiler for CMOS Operational Amplifiers,'' IEEE
Trans. on CAD, Vol 9, No 2, pp 113-125, 1990.

[9] Moreton, H., and C. H. Séquin., Functional
optimization for fair surface design. Proc. of ACM
SIGGRAPH’92, pp. 167-176. (1992).

[10] Séquin, C. H., Computer-Augmented Inspiration.
Proc. ISAMA’99, San Sebastian, pp. 419-428, (1999).

[11] Séquin, C. H., Virtual Prototyping of Scherk-Collins
Saddle Rings. Leonardo Vol 30, No 2, pp 85-88, 1997.

[12] Séquin, C. H., CAD Tools for Aesthetic Engineering.
JCAD Vol 37, No 7, pp 737-750, June 2005.

[13] Shin, H., and A. Sangiovanni-Vincentelli, MIGHTY: A
‘Rip-up and reroute’ detailed router. Proc IEEE ICCD,
pp. 10-13, 1986.

[14] Sims, K., Artificial Evolution for Computer Graphics.
Computer Graphics, 25(4), July 1991, pp. 319-328.

[15] SLIDE design environment:
http://www.cs.berkeley.edu/~ug/slide/docs/slide/spec

[16] SUGAR (MEMS simulator):
http://www.bsac.eecs.berkeley.edu/cadtools/sugar/sugar

[17] Zhang, Y., R. Kamalian, A. M. Agogino, and C. H.
Séquin, Hierarchical MEMS Synthesis and
Optimization. SPIE Conference on Smart Structures
and Materials, Conf. 5763, Mar. 2005, San Diego CA.

