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Abstract  
Various approaches are discussed for obtaining highly symmetrical and aesthetically pleasing space models of 
regular maps embedded in surfaces of genus 2 to 5. For many cases, geometrical intuition and preliminary 
visualization models made from paper strips or plastic pipes are quite competitive with exhaustive computer 
searches. A couple of particularly challenging problems are presented as detailed case studies. The symmetrical 
patterns discovered could be further modified to create Escher-like tilings on low-genus handle bodies.  

 
 

1. Introduction 

Regular maps are networks of edges and vertices embedded in closed 2-manifolds of arbitrary genus [4]. 
The most familiar examples are the five Platonic solids, which represent such maps on surfaces of genus 
zero. These five polyhedra have high symmetry: Any p-gon face can be moved to any other face and 
placed there in 2p different ways (p possible rotations, plus optional mirroring) and the whole polyhedron 
will then coincide with itself, i.e., every vertex, edge, and face will fall again on a corresponding vertex, 
edge, and face. Thus we say that the map of all vertices, edges, and faces exhibits flag-transitive 
symmetry. On the sphere there are two more types of regular maps: the infinite series of hosohedra 
(Fig.1a), a sphere partitioned by q equally spaced longitudinals, resulting in two vertices of valence q at 
the North and South poles, – as well as their duals, the dihedra with q vertices placed regularly around the 
equator. 

             

Figure 1:  Examples of regular maps: (a) Hosohedron, (b) R2.1, (c) R3.1 (d) R3.1dual. 
 
Such regular maps also exist on surfaces of higher genus, such as tori or donuts with multiple holes, 
spheres with multiple handles, or 3-dimensional tubular constructions. Now we assume that the surfaces 
of these solids are made of a highly elastic fabric, so that portions of the surface that are on the inside of 
small handles can readily be stretched to fit also around the outside of large bulky loops. If the network 
drawn on this fabric has the same flag-transitive symmetry described above, so that every flag (vertex, 
edge, face) is topologically identical to every other such flag, then it represents a regular map. Note that it 
is not sufficient that all nodes (vertices) have the same branching valence and all meshes of the network 
(faces) have the same number of sides. Such regular graphs embedded in 2-manifolds can form equivelar 
{p,q} tilings, where q p-gons always meet at each vertex. But these tilings are only locally regular. They 
may exhibit quite attractive patterns [15], but regular maps exhibit additional, more global symmetries. 



For instance, the length of all their Petrie polygons is always the same. A Petrie polygon is the closed zig-
zag path that is obtained if one moves along the edges of the network and at every vertex one makes 
alternatingly the sharpest right-turn and sharpest left-turn possible, thereby hugging every face touched 
for exactly two consecutive edges. Finding Petrie polygons of different lengths in such a network is the 
quickest way to show that a given equivelar {p,q} tiling is not a regular map. 

All the different transformations (automorphisms) that bring such a regular map into coincidence 
with itself form a group, and this group explicitly describes all the topological symmetries inherent in the 
given regular map. Only recently, due to brute-force computer searches by Conder and Dobcsányi [2], it 
has become known how many different regular maps can exist on surfaces of various genus. Conder’s 
table of 2006 [3], lists all regular maps on surfaces from genus 2 to 101; it contains 6104 entries 
(including duals).  This list gives the vital data for each map, such as the p and q values for the faces and 
vertices, the lengths of the Petrie polygons, the number of symmetries, and the corresponding group 
presentations with their generators and relators [4]. For each genus g the number of existing maps are 
consecutively numbered “Rg.#_{p,q}_PL” by increasing p and q, – shown here in curly brackets and 
followed by the Petrie length. Thus the first regular map of genus 2 we label as R2.1_{3,8}_12. However, 
Conder’s listings give no hint of what possible embeddings of these regular maps might look like. 

A serious effort into the visualization of such regular maps is a very recent endeavor. By 2007 when 
I wrote my paper on locally regular tilings [15], I was aware of only a few explicit models or 
visualizations. The most famous one is Klein’s map (Fig.1c) composed of 24 heptagons (R3.1_{3,7}_8 in 
Conder’s list) which dates back to 1888 [9]. It was celebrated in 1993 with Helaman Ferguson’s famous 
sculpture The Eightfold Way [6] located at the Mathematical Science Research Institute in Berkeley 
(MSRI). A book has been written about this sculpture and related mathematics [12]. Another visual model 
of a regular map is a depiction of R2.1_{3,8}_1, the Quaternion group, by Burnside [1](p396).   

In 2005, inspired by Ferguson’s The Eightfold Way, I set out to find an embedding for 
R7.1_{3,7}_18, composed of 72 heptagons, known as the Macbeath surface [10]. This is the next regular 
map after Klein’s map in which Hurwitz’s upper limit of 84*(genus-1) symmetries can be reached [7]. 
However, after struggling with this problem for several months, I finally had to suspend my search and 
focus on a simpler problem for my 2007 Bridges presentation. In my scaled-back quest, looking primarily 
for locally regular tilings, I nevertheless found a solution for the regular map R4.2_{4,5}_6 embedded in 
an octahedron with four tunnels connecting opposite faces [14]. On and off during the next three years I 
continued my efforts to find some embeddings for regular maps. I started with the simpler cases and 
looked for patterns that might become useful in my quest to solve the R7.1 problem. In the fall of 2008 I 
created models for some simple genus-2 and genus-3 problems and also studied the genus-5 cases that 
would map onto a cube frame. These cuboid models were exhibited at the Art exhibit in Banff [16]. 

In spring of 2009, Jack van Wijk sent me a draft of his 2009 Siggraph paper [17]. This work changed 
everything! Suddenly the number of known embeddings of regular maps went from just a handful to more 
than 50 by the time his final paper was sent to SIGGRAPH. And 15 more solutions were found in the 
months after that. Van Wijk used an iterative constructive method to generate 3D tubular surfaces of 
higher genus from the edge patterns of simpler regular maps. Every edge in the map was turned into a 
tube segment of a new handle-body. He then tessellated its surface into various locally regular tilings in 
such a way that a reasonably efficient computer search could determine whether some of them actually 
were regular maps. These maps were then used in turn to generate more complex tubular surfaces of yet 
higher genus; and the process could be repeated.  

Van Wijk’s first approach had some limitations. The patterns drawn on each tube segment always 
had 4-fold symmetry (front-to-back and mid-point symmetry). Thus the only regular maps this algorithm 
could produce were maps with 4E-fold symmetry. This is too limiting in many cases. On the other hand, 
his program had produced embeddings with a genus as high as 29, and other generated models of lower 
genus were still of a complexity that could not be handled by a human without the help of a computer 
search. This paper encouraged me to look for some of the regular embeddings that van Wijk’s program 



had not yet found, and also to look for more regular, symmetrical embeddings, where the computer 
solutions looked more twisted than necessary. This program also prompted me to work out a more 
methodical approach to finding such embeddings by hand, in preparation for the ultimate quest for a nice 
regular embedding of R7.1. This paper describes the different approaches I took to find such solutions and 
the generally useful patterns that I found, which in turn may help finding more complicated solutions on 
higher-genus surfaces – by hand or by computer. Thus the focus of this paper is more on the process of 
finding symmetrical embeddings than on the final results. 
 

2. Methods for Finding Embeddings 

It should be noted that there exists a general method for taking a cut-out domain of a given genus g and 
converting it with a series of cutting and reassembly operations into a special 4g-gon. Then there is a 
general method to fold up this 4g-gon into a genus-g handle body (see Section 5). In this way the 
connectivity pattern of the regular map can be transferred to the surface of a genus-g surface, where the 
regular map can thus be embedded crossing-free. Thus for “logic-oriented”, “formula-minded” 
mathematicians there is no mystery left.  

Once we have found one solution, we can readily generate other solutions by cutting around any 
handle or tunnel in the embedding surface and applying a 360° Dehn twist [5], which reconnects all the 
same edges and faces after the application of a 360° helical twist. Topologically the map embedding has 
not changed, but the appearance may now be quite different! This process can be repeated arbitrarily 
many times for closed curves around any handle or tunnel or combinations thereof. The fact that there is 
in principle such a general way to create arbitrarily many embeddings may be another reason why “pure” 
mathematicians do not care to “see” any actual embeddings of these maps and are happy with the 
knowledge that solutions exist. But for more vision-oriented, geometry-minded folks (like the attendees 
of the Bridges conferences) this is not good enough. We would like to see actual models of such 
embeddings, and would strongly prefer them to be nice and symmetrical!  

My own approach is based on symmetry, intuition, and “numerology.” The technique is very similar 
to what I used to find the most symmetrical embeddings [13] for the Dyck graph K444 on a genus-3 
surface ( which yields R3.2_{3,8}_6 ) and for the complete graph K12 with twelve vertices on a genus-6 
surface ( which does not yield a regular map ). Since then I have learned to pay more attention to the 
ordering of the individual edges around each of the vertices. I typically first print a Poincaré disk with the 
proper {p,q} to represent the basic pattern of the tessellation. This is easy; there are many applets on the 
web to do this, e.g. [8]. From the infinite hyperbolic {p,q} tessellation on the Poincaré disk I cut out a 
finite domain with the right number of faces to represent the desired map. Identifying sets of identical 
faces on the Poincaré disk for a given map could be quite a tricky task. But fortunately, Conder’s 
tabulation lists the Petrie lengths for all the maps as well as some select group relators that define other 
wrap-around closures. Using any of these closed paths, one can readily identify points, edges, and faces 
that represent one and the same instance in the embedding of the regular map. Assigning the same color 
to repeated instances of a tile then yields a very informative visualization of the complete network and of 
all its expected wrap-around connections around tubular arms or tunnels.  

Next I choose a suitable handle body. This is where the “numerology” comes in. I look at the total 
number of vertices and tiles and try to find a highly symmetrical surface of the right genus that also has a 
number of “elements” (tube junctions, connector arms, tunnels…) that have a large GCD with the number 
of vertices and polygons that need to be placed. To make finding such a match more likely, I have built a 
comprehensive catalog of usable handle-bodies. Five of these are based on inflated wire frames of the 
Platonic solids. Others are based on the regular hosohedra, or on other small regular graphs. The 
availability of suitable handle bodies up to genus 5 is not a problem! 

For every vertex of the map I then create a small paper disk that describes the star of the vertex, i.e., 
the circularly ordered sequence of its nearest neighbors. A convenient way to do this is to give unique 
labels to all the different edges in the cut-out of the regular map. Then each vertex disk is a star of stubs 



labeled with these edge labels. If possible, I try to orient these stars in such a way that as many of the 
stubs point in the directions of their endpoints on other vertices. Now the remaining challenge is to 
connect all the pairs of stubs carrying the same edge labels, while making sure that all the generated faces 
of the map are of genus zero and do not contain any tunnel entrances or handle terminations within them. 

When the mesh is completed, I trace out several Petrie polygons to check that all of them are of 
proper length. If not, a different vertex placement needs to be tried. Finally, if everything still looks 
promising, the set of colors or labels established in the cut-out domain on the Poincaré disk can be 
transferred to the embedded graph, and it should now nicely wrap around and close on itself as expected. 

I have found that working with a physical model is crucial. Just playing with computer displays, 
even in an interactive graphics environment, is not good enough. It is too hard to trace reliably a highly 
twisted path to determine its Petrie length, and I do not have any graphics tools at hand that allow easy 
sketching and annotation on the surface of a higher-genus manifold. The physical models I use may be 
plastic pipe structures of the right genus and desired symmetry, Styrofoam structures built from heat 
isolation sleeves for water pipes, paper models constructed from simple paper strips, or more refined net-
models that I can assemble into polyhedral space models with a detailed pattern of labeled edges and 
faces representing the desired map (Fig.2).  

 
3. A Case Study of Medium Complexity 

As mentioned above, my main approach is to compare the vertex and face count and the numbers of 
symmetries of the group of automorphisms of a given regular map with the number of handles, junctions, 
and types of symmetries of the target handle-body. Then I try to place the vertices in equal numbers near 
all junctions or at the middle of each handle. For my tutorial exposition I chose an example that did not 
immediately yield the right solution, but which first misled me to some pretty models that exhibited only 
local regularity and did not correspond to the map I was trying to embed. 

The case I want to discuss is the self-dual map R5.10_{6,6}_4. I started to look at some genus-5 
models well before I had found solutions for all maps of genus 2 and 3, because they promised to make 
particularly attractive models, and because I had already created locally regular tilings on “inflated” cube 
frames in 2007 [15]. The map R5.10 seemed to be a particularly obvious case, since it had 8 vertices, 
which could naturally be associated with the 8 corners of the “cuborus.” Figure 2a shows my first attempt, 
which to my surprise however yielded some Petrie polygons of lengths 6 rather than always 4. In a second 
attempt, I placed half the vertices on the inside of the cuborus junctions (Fig.2b), inspired by the “vertex-
flower” solutions I had found on maps of genus 2 and 3 (see Section 4); but this one now had some Petrie 
lengths of 2. It took quite a bit more experimentation with the three pointy ends of the star hexagons to 
get them wrapped around the cube-frame handles to obtain the proper Petrie lengths (Fig.2c,d). In this 
exploration, it helped to consider the self-duality of this map: Ideally, the center of the faces should lie in 
equivalent locations to the positions of the vertices. 

           

Figure 2:  Cube-frame models with different locally regular tilings of type {6,6}; only the two models on 
the right side represent actual embeddings of the regular map R5.10 _{6,6}_4. 



4. Useful Recurring Patterns 

After I had obtained Jack van Wijk’s paper, I also took an interest in the more exotic maps that had only 
one or two “countries” and some vertices that were visited more than once by the same “polygon”. Some 
of his solutions for these cases seemed more twisty than necessary. Focusing on the maps R2.5_{6,6}_2 
and R3.11_{8,8}_2, which both are self-dual with exactly 2 polygons and 2 vertices, I came up with very 
simple and symmetrical solutions on the Hosorus structures with 3 and 4 arms, respectively. One vertex is 
placed on the outside of the handle body at the North pole, the other at the inside of the South pole. The 
shared boundary of the two intertwined 2*(g+1)-gons then zig-zags back and forth along the arms of the 
Hosorus between the two vertices. The shape of the two polygons reminds me of two interleafed sets of 
flower petals – hence I call the resulting embeddings Vertex-flowers. Figure 3 shows these patterns for 
genus 1 through genus 5; specifically including Conder’s maps R2.5, R3.11, R4.11, and R5.15. Of course, 
the Vertex-flower pattern in this series can readily be applied to embeddings of higher genus. 

        

Figure 3:  Vertex-flower solutions on the Hosorus from genus 1 through genus 5, corresponding to 
regular maps  R1.x_{4,4}_2,  R2.5_{6,6}_2,  R3.11_{8,8}_2,  R4.11_{10,10}_2,  R5.15_{12,12}_2. 

 
The last map in each genus group, i.e., R2.6_{8,8}_2, R3.12_{12,12}_2, R4.12_{16,16}_2, and 
R5.16_{20,20}_2, etc, was more challenging. The classical technique described in textbooks [11] 
explaining how to fold up a single 4g-gon into a genus-g surface (see Section 5) does not yield regular 
maps, since the individual edges then do not arrive at the single vertex in the right sequence. Each 
individual edge must approach the vertex from opposite directions. I started by drawing a suitably colored 
vertex star onto a handle body with a single junction and then traced non-crossing paths for the differently 
colored edges around the available handles. I could not find any symmetrical solution for the genus-2 
case, but almost immediately found a nice symmetrical pattern with 3-fold symmetry for the genus-3 case 
(Fig.4a,b). From that I could eventually develop a general approach to handle a map of this type for any 
genus (Fig.4c). The basic idea is to provide g loops that do not intersect and which approach the junction 
where the single vertex is placed from opposite directions. On each of these handles, two edges use the 
handle to twist around each other and exchange their positions. Thus 4g edges join together at the vertex.  

                        

Figure 4:  Single-vertex single-polygon models corresponding to the regular maps  Rg.last_{4g,4g}_2:  
(a,b) the case of  R3.12_{12,12}_2;  (c) general solution for any genus;  (d) map R5.16_20,20}_2. 

 
A different, more symmetrical way to embed this type of map is shown in Figure 4d. It uses the stalk 
structure. Attached to a central stem are g semicircular handles that carry two edges each and allow them 
to switch positions. The return path of each such pair of edges to the single vertex at the top of the stalk 



occurs in a helical pattern around the stem, which transports each pair to the side opposite its handle. For 
odd genus, a nice pattern of g-fold rotational symmetry results; the case for genus 5 is shown in Figure 
4d. For maps of even genus, this symmetry has to be broken with some extra twist in the helical stem. 
This is the underlying reason that I could not find a nice symmetrical model for the genus-2 case. 

For each genus, there is also a map that has a single vertex, but has two polygons sharing it. The 
simplest case is R2.4_{5,10}_2, and it is one of the embeddings that van Wijk’s program could not find; 
thus it presented an interesting challenge. Studying the basic {5,10} tiling pattern in the hyperbolic 
Poincaré disk revealed that once again the individual edges had to approach the single vertex from 
opposite directions. But now there are two additional edge-endings using this vertex. It turns out that this 
additional edge is actually the one that splits the surface into two separate domains. 

     

Figure 5:  One-vertex two-polygon models corresponding to: (a,b) regular maps  R2.4_{5,10}_2  and to: 
(c) R3.9_{7,14}_2; (d) shows a way to embed the general case, with R5.14_{11,22}_2 as an example . 

 
For the map R2.4 every one of the five differently colored edges approaches the vertex twice from 
opposite directions. I painted this 5-color crossing with marker pens onto plastic pipes and then I tried to 
connect these colored edges without any crossings. I quickly found 3 different solutions, but I could not 
find any nice symmetrical pattern (Fig.5a). Later, after fully understanding the solutions to the 1-vertex 1-
face maps discussed above, I saw how this new problem could be derived from the previous one. The 
same general structure shown in Figure 4c can be used; but now I bunch the handles in a way that makes 
room for an additional (purple) edge that runs around the top junction and which splits the single 4g-gon 
into two (2g+1)-gons (Fig.5d). Again, a space model based on the stalk geometry can be used. But now 
the symmetry is broken for maps of even as well as odd genus. Examples for the maps of genus 2 and 3 of 
this type are shown in Figures 5b and 5c. This section demonstrates how previously established patterns 
can help in the search for solutions to other problems. 

 
5. Some Difficult Maps of Genus 3  

Some regular maps just don’t want to yield to such methods. Examples are the maps R3.3_{3,12}_8 and 
R3.5_{4,8}_8, and I will use them to show the difficulties one may encounter in trying to find 
embeddings of regular maps. These are examples, where van Wijk’s program did not find solutions. 

Failed Intuitive Attempts  
The Poincaré patterns of these two maps show obvious 3- and 4-fold symmetries. There is also a strong 
local 4-fold symmetry around every vertex: Every third edge connects to the same vertex, and there are 3 
such sets interleaved. This local symmetry most strongly suggests the use of a 4-arm Hosorus surface 
(Fig.3c). The four vertices can then be placed on the insides and outsides of the two junctions of this 
structure. It then seems natural to connect the inner and outer vertices at each pole to one another by 4 
edges that run in the valleys between adjacent pairs of Hosorus arms. But after placing these 8 edges, I 
was never able to accommodate all the other edges of the R3.3 or R3.5 maps crossing-free. 

I then tried placing each of the four vertices into the middle of one of the four handles. Particularly 
for the case of the R3.5 this seems promising, because every vertex is connected to only two other 



vertices, and those could thus be placed on the two adjacent handles. One edge to each neighbor vertex 
could then travel above the tunnel in between, and the other one below it. To keep the arrival at the 
neighboring vertex in the proper cyclic order, two of these edges may run entirely on the outside of the 
Hosorus structure, while the other two edges travel around the inside of one of the Hosorus arms to 
implement the required topological crossing of two edges. Yet, again, I failed to complete the edge 
pattern for the R3.5 map. 

Procedural Approaches 
Perhaps I was just not diligent enough to pursue any of the above approaches to its final successful 
conclusion. After all, we know that a solution must exist. Also, because of the purely topological nature 
of this problem, it should not matter where exactly the vertices are placed – in principle they can be 
moved smoothly around the whole surface while dragging the whole network along without creating any 
new edge crossings; of course, this may break the desired symmetry 

As stated in Section 2, there is a guaranteed procedure to find an embedding of any of these maps: 
We start by identifying a connected region in the Poincaré disk that contains every facet of the desired 
map exactly once (Fig.6a). On the boundary of this cut-out domain we identify corresponding edges 
through which the map closes back onto itself (around one of the many arms or holes of the chosen 
embedding surface). We link together sequences of edges that connect to other identical sequences 
somewhere else on the boundary into “Boundary Edge Trains” (BET) of maximal lengths. For a map that 
embeds into a genus g surface, there will be n such BETs, where n is at least equal to 4g, but is likely to 
be bigger. Topologically the map cut-out is thus an n-sided disk with the n BETs as its boundary. This 2-
manifold patch needs now to be folded up into a genus-g surface. 

                    
Figure 6:  General map embedding procedure: (a) cut-out of map, (b) 4g-gon, (c) foldable net for g=2, 

(d) folded-up handle-body of genus 2, (e) resulting edge pattern for the map R2.1_{3,8}_12. 
 
To achieve this in a generally applicable manner, the n-gon needs to be transformed into a 4g-gon with a 
very special sequence of edges. The edges must occur in g groups of four oriented edges, each with the 
pattern {a, b, a’, b’} (Fig.6b). Here identical characters mean that these “edges” will be identical BETs 
that need to be fused, and the “prime” attached to a character means that this BET has the opposite 
directionality along the boundary from the un-primed character. Each such set of four BETs in the proper 
order will then allow us to form a toroidal handle. The two BETs labeled with “a” join to form the 
longitudinal seam along the whole handle; the “b-BET” forms the end of the toroidal hose, and “b’-BET” 
forms an opening onto which the end of the hose can be fused, forming a closed, edge-free toroidal 
handle. Topology books describe how the original n-gon can be transformed into the properly sequenced 
4g-gon [11]. The two major steps are: Re-form the fundamental domain to have all its boundary vertices 
identified to a single vertex V of the given map, thus making all BETs into closed loops starting from and 
ending at that one vertex. This can be achieved by repeatedly cutting off a polygonal region starting at an 
instance of V and ending at an adjacent vertex W that we would like to remove from the boundary of the 
current polygon, and then gluing the cut-off piece back onto the remaining polygon so that the number of 
distinct instances of W is reduced by one. Once all original vertices except V have been removed from 



the boundary, a similar kind of re-assembly step can bring 4 BETs that have the relationship (a, b, a’, b’) 
into adjacent positions. This step is repeated until the whole boundary consists of g sequences of BETs 
with the desired ordering [11](Ch.7). Figures 6c,d show an explicit fold-up net for a genus-2 handle-body. 

While doing all this, we carry along the whole network of edges and faces inside the transforming 
boundary of the cut-out. After all the above operations, the inside of our 4g-gon still has exactly one copy 
of the whole map that we want to embed in a genus-g surface, and the connectivity of the edges has not 
changed. I have manually performed this procedure for the case of the map R2.1_{3,8}_12, but the results 
(Fig.6e) is not helpful at all to find a nice regular space model; the surface is crowded with edges in some 
regions and very sparsely populated in others.  

Breakthrough 
I finally realized that the two problems R3.3 and R3.5 are just different variants of the same problem, and 
that my assumption that R3.5 was perhaps easier to solve, because it had only 8 edges emanating from 
each vertex, was misleading. The (invisible) diagonals in each quadrilateral facet represent just as strict 
topological constraints as the additional edges in R3.3. The two problems can readily be transformed into 
one another by just turning on and off a set of 1/3 of all edges that act as diagonals in the quadrilateral 
faces of R3.5. From this moment, I just concentrated on R3.3 alone, knowing that R3.5 would fall out for 
free once I had solved the first problem. 

         

Figure 7: Folding up map R3.3:  (a) cut-out;  (b) deformed cut-out;  (c) torus-fold;  (d) adding missing 
connections via two paper strips;  (e) redrawing all connections on a 4-arm hosorus. 

 
The key breakthrough came when I found a way to see how the cut-out domain could be folded up into a 
genus-3 surface in a more direct way, that did not require all the cuts, reassemblies, and deformations 
described above for the general fold-up procedure. I took the cut-out consisting of 16 triangles that most 
naturally describes the desired map in the Poincaré disk (Fig.7a) and deformed its shape in such a way 
that edges that need to be joined all appear parallel to one another. This first led to an 8-pointed star, 
which I then deformed into a rectangular domain (Fig.7b) that could readily be folded into a toroidal 
configuration with two openings bounded each by 4 BETs (Fig.7c). Forcing two more pairs of identical 
vertices (large, green) to fall upon one another contracted these openings into two holes each, bounded by 
only two BETs. At this point my model corresponded to a toroid with four openings with 2-edge borders. 
These holes had to be connected pair-wise with two additional tubes glued upon the base torus to make it 
genus 3. In Figure 7d these two new handles are represented simply by narrow paper strips carrying the 
relevant edges to complete all connectivity required in the given R.3.3 map. In particular, the remaining 
two green vertices had to be moved along these handles to the other end and joined with the other already 
merged pair of green vertices; this stretched several more edges connected to these vertices along the two 
paper strips. While the resulting paper model is rather ugly and confusing, it contained the most important 
information: What edges run along what handle, and in what sequence are they placed around each arm? 
This then determines the embedding of the whole map. 

With this information I could form a new paper model that consisted primarily of four tubular arms 
with the right edges embedded in them and two hubs that carried two vertices each and showed the 
circular sequence of edges emerging from each of them (Fig.7e). I lined up the tubular ends with the 



proper edges near the vertices to which they had to connect and then massaged the whole structure to see 
what natural configurations might emerge. The two most promising candidates were a tetrahedral frame 
with two (opposite) short thick arms carrying two of the vertices each, or the 4-arm Hosorus structure 
with the 4 vertices placed on the inside and outside of the two 4-way junctions. I pursued the latter 
approach to see how it differed from the solutions that I had failed to find for this starting configuration. 

Model Refinement 
My next model consisted of a genus-3 surface made of 1” propylene PPR pipes, on which I drew and 
labeled all edges the way I was reading them off my crumpled paper model, carefully maintaining the 
topological twists and turns of every edge. And, wondrously, I was now able to accommodate all 24 edges 
of R3.3_{3,12}_8 in a crossing-free embedding and thus had found the desired solution! 

To obtain a nice, colored, reproducible model, I designed a cut-out net for making paper models that 
I could hand to other people (Fig.8a). For ease of design and assembly, I divided the model into its 
horizontal surfaces and a prismatic mantle of its vertical surfaces. On these surfaces I drew the various 
edges and labeled them, and optionally colored the facets between them according to the color code 
shown on the Poincaré disk. I displaced the edges laterally to keep them nicely separated (pinning them to 
some near-by corner, if necessary), yet I did not let them deviate too much from geodesic lines.  

            
Figure 8:  Steps towards a refined model: (a) paper-frame model of R3.3;  (b) edge pattern resulting 
from different vertex positions;  (c) paper-frame model of R3.5;  (d) new paper-strip model of R3.3. 

 
It is interesting to study how this model deviates from the initial partial solutions that I had obtained on 
the Hosorus with exactly the same vertex placement. Most importantly, there is no 4-fold symmetry, just 
D2 symmetry! In particular, the inner and outer vertices at each pole are not directly connected by four 
short edges running in the valleys between them – two of the edges take long detours around two other 
arms of the Hosorus. I also wanted to see what the solution might look like if I placed the vertices in the 
middle of each Hosorus arm. For that purpose, I used my “canvas” constructed from plastic pipes and 
moved the four vertices to their new locations, dragging along all attached edges. This destroyed all 
remaining symmetry (Fig.8b)! Starting from the solution shown in Figure 8a, by just omitting one third of 
all the edges and joining the two triangular faces on either side of it into quadrilaterals, I readily obtained 
an embedding of R3.5 (Fig.8c). The resulting pattern differs somewhat, depending on which set of edges 
is omitted. Finally, Figure 8d shows a paper-strip model of an embedding of R3.3 on a handle body that 
does not suggest more symmetry than can actually be achieved. 

 
6. Discussion and Conclusions 

I am still surprised and puzzled by the varying degrees of difficulty associated with finding nice 
embeddings for different regular maps. While some symmetry groups yield a nice solution almost 
instantly, others stubbornly refuse to yield a good solution, and often allow only solutions with lesser 
symmetry than one would expect initially. In addition to my adhoc, intuition-based approach, I have also 
started to look into some methods based on computer searches. In the fall of 2009, I teamed up with 3 
undergraduate students, and we have started to explore some geometry and graphics algorithms involving 



extensive search trees that could help to solve such embedding problems. But the programs have not yet 
matured enough to yield interesting new results. For readers with a lesser familiarity with the fields of 
mathematics and/or computer science this paper may be a surprising eye-opener concerning the way that 
some mathematical problems get solved. This often happens not by writing long equations on a 
blackboard or by developing complicated computer programs! Instead it may involve folding paper, 
bending wire, cutting styrofoam, or drawing patterns on tennis balls or on plastic tori from a toddler’s toy 
set… The combination of these many activities may then lead to new insights and the right mental state in 
which one can suddenly “see” a new solution for the problem at hand. 

My main goal was to find simple and symmetrical embeddings of regular maps. With some judicious 
coloring of the various tiles, the resulting models should already have some aesthetic merits. Their artistic 
properties may be further enhanced by deforming the tile boundaries into Escher-like patterns. A new 
difficulty that arises in the context of a “3D-canvas” is the fact that the tessellation can never be seen as a 
whole; some parts are always hidden for any viewing direction. Possible ways to deal with this issue are 
the use of transparency or structures that only show the edges of the maps, e.g. as ribbons or tubes. Other 
approaches use the symmetry of these objects to form repetitive grids, in which different instances of the 
basic cut-out net can be seen from different perspectives. Results will be shown at the conference in Pécs.  
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