
Large Ray Packets for Real-time Whitted Ray Tracing

Ryan Overbeck1 Ravi Ramamoorthi1 William R. Mark2,3

1Columbia University
2Intel Corporation

3University of Texas at Austin

Toasters

(11,141 Triangles)
Fairy

(172,669 Triangles)
Re�ections + Point-Light Shadows Re�ections + Re�ections

6.7 FPS11.8 FPS

BART Museum

(10,384 Triangles)

BART Kitchen

(110,561 Triangles)
Deep Re�ections Refractions + Re�ections + Shadows

8.5 FPS 4 FPS

Figure 1: Real-time Whitted ray tracing on a single, affordable workstation is now possible. All images were rendered at 1024× 1024 on a dual
quad-core system (8 cores total) with 2.0 GHz Intel Xeon processors.

Abstract

In this paper, we explore large ray packet algorithms for accelera-
tion structure traversal and frustum culling in the context of Whitted
ray tracing, and examine how these methods respond to varying ray
packet size, scene complexity, and ray recursion complexity. We
offer a new algorithm for acceleration structure traversal which is
robust to degrading coherence and a new method for generating
frustum bounds around reflection and refraction ray packets. We
compare, adjust, and finally compose the most effective algorithms
into a real-time Whitted ray tracer. With the aid of multi-core CPU
technology, our system renders complex scenes with reflections, re-
fractions, and/or point-light shadows anywhere from 4–20 FPS.

1 Introduction

Real-time ray tracers use bundles of coherent rays, called ray pack-
ets, to achieve real-time performance. Recent approaches, such
as [8], [10], and [12], allow algorithmic amortization across large
packets of 16–256 rays by using new algorithms for scene traversal
and bounding frusta to cull away expensive per-ray operations.

Ray packet tracing has proven very successful for primary visi-
bility where neighboring rays are known to be regularly distributed
and perspective parallel (ie. all rays meet at a point). Some success
has also been demonstrated for point-light shadow rays, but there is
very little published work on applying large ray packets to other ray
traced effects.

We aim to employ large ray packet algorithms to achieve real-
time Whitted ray tracing, but ray coherence is much less reliable
in this domain. Beyond primary visibility, Whitted ray tracing re-
quires secondary rays for point-light shadows, reflections, and re-
fractions. According to [6], ray coherence degrades for these sec-
ondary effects, and we expect a corresponding drop in performance
for large ray packet algorithms.

In this work, we study the two fundamental approaches for accel-
erating large ray packets: ray packet acceleration structure traversal
algorithms and frustum culling. In Section 3, we will describe two
old algorithms for traversing a Bounding Volume Hierarchy (BVH)
as well as one new one. We call the two existing algorithms Masked
traversal (introduced by [14] and used in [8]) and Ranged traversal
(introduced by [10]). We introduce a new algorithm called Parti-
tion traversal which is robust to degradation in ray coherence. In
Section 4, we review methods to generate frustum bounds around
primary and shadow rays and introduce a new method to create frus-
tum bounds around reflection and refraction rays. We believe this
is the first published work to demonstrate frustum culling for reflec-
tions and refractions in a ray packet tracer.

In Section 5, we examine how the large ray packet algorithms
for acceleration structure traversal and frustum culling respond to
changing the three primary variables which affect ray casting per-
formance: ray packet size, scene complexity, and ray recursion
complexity. Larger ray packets provide more opportunity for algo-
rithmic amortization, but can also lead to greater divergence during
scene traversal. Scene complexity involves a combination of the
gross number of scene triangles, relative triangle sizes and distribu-
tion, and surface variations. Ray recursion complexity is the degra-
dation in ray coherence caused by secondary rays and increases
from primary rays to shadow rays to refraction rays to reflection
rays and also increases with the depth of reflection and refraction
recursion. We summarize our conclusions in Table 1.

Based on the results of Section 5, Section 6 combines the best
algorithms to create our fully real-time Whitted ray tracing system
which consistently provides performance benefits of 3×–6× over
2× 2 SIMD ray packets (see Table 2). With affordable multi-core
CPU technology multiplying almost another order of magnitude,
real-time Whitted ray tracing on commodity hardware using a sin-
gle workstation is now fully realized. The images in Figure 1 were
all generated with our system. From left to right, the first image
has a reflective floor and point-light shadows and runs at 11.8 FPS.
The fairy in the second image has refractive wings. Her eyes and
the gold and jeweled components on her wand as well as the forest
floor all reflect the scene. Even on this complex scene, we achieve

Masked Traversal Ranged Traversal Partition Traversal FrustumCulling

Introduced By [14] [10] New
Primary+Shadows: [10]

Reflections+Refractions: New

Ray Packet Size Only good for up to 4×4 packets. Usually best for up to 8× 8 pack-

ets and sometimes 16×16.

Good for all packet sizes. Benefits tend to increase with

packet size.

Scene

Complexity

Only good for simple scenes. Best for simple to moderate

scenes.

Best for complex scenes. Benefits decrease with scene

complexity.

Ray Recursion

Complexity

Bad for secondary effects. Best for primary and shadow rays.

Okay for low recursion. Bad for

deep recursion.

Best for deep reflections and re-

fractions.

Up to 2× performance benefit

for primary and shadow rays and

1.2×–1.3× for reflections and re-

fractions.

Summary Superseded by Ranged and Parti-

tion traversal.

Best for packet sizes ≤ 8×8, sim-

ple to moderate scenes, and mod-

erate ray recursion complexity.

Best for large packet sizes

≥ 16 × 16, complex scenes, and

high recursion complexity.

Best for primary rays and shadow

rays. Helpful for reflection and re-

fraction rays.

Table 1: Conclusions from the study of large ray packet algorithms in Section 5.

6.7 FPS. The frame from the BART museum in the third image is
an example of deep reflections using 3 bounces of reflection at 8.5
FPS. Lastly, the frame from the kitchen scene at the far right puts
it all together, using 1-bounce reflections, 4-deep refractions, and
point-light shadows at an interactive rate of 4 FPS.

2 Background

We introduce the algorithms we will be studying in Sections 3 and 4.
First, we review previous work and provide some background for
understanding large ray packet algorithms.

2.1 SIMD Ray Packets

SIMD ray packets were first used by [14] and allow 4 rays to tra-
verse the scene as if they were one by taking advantage of the Single
Instruction Multiple Data units available on modern CPUs. 4-wide
SIMD ray packets consistently provide a 2×–3× performance im-
provement over single rays.

In our system, we use 2× 2 SIMD ray packets as our smallest
ray primitive and will refer to a 2× 2 ray packet as an individual
SIMD ray to emphasize this fact.

2.2 Large Ray Packets

The work of [14] also demonstrates that tracing multiple rays to-
gether offers benefits beyond the extra floating point computation
performance afforded by SIMD. Indeed larger ray packets of n×n
with n = 8 or n = 16 provide up to an order of magnitude improve-
ment over SIMD rays when used for primary visibility. However,
the acceleration structure traversal algorithms must change in order
to allow for such large packets.

Large ray packets have been demonstrated on kd-trees [8],
grids [12], and BVHs [10]. See the recent STAR report [13] for
an overview of the build and traversal algorithms for these struc-
tures and others. Our work focuses on BVHs because they currently
exhibit the best combination of build and ray casting performance.
However, traversal and frustum culling algorithms are similar be-
tween structures, and we believe our results can benefit these other
structures as well.

All of these works and their performance numbers target primary
visibility, treating point-light shadows as an added bonus. None
of them provide in-depth performance comparisons for ray traced
reflections or refractions.

2.3 Frustum Bounds for Ray Packets

Tight bounding frusta around coherent ray packets can cull away
many ray–Axis-Aligned Bounding Box (AABB) and ray–triangle
intersection queries. Frustum culling has been demonstrated for
primary rays in [8] and for both primary rays and point-light shad-
ows in [10] and [12]. To our knowledge, ours is the first ray tracer
to use frustum culling for reflection and refraction rays.

2.4 Whitted Ray Tracing using Ray Packets

We know of two other works which apply large ray packets to Whit-
ted ray traced effects: [1] and [6]. [1] only study the singular
combination of traversal and culling algorithms used in [10]. [6]
restrict their study to 4×4 ray packets using only the traversal algo-
rithm from [8]. We explore a broader range of traversal and culling
algorithms and up to 32×32 packets.

Both works demonstrate a 2×–3× hardware performance bene-
fit by using SIMD rays. [1] only achieve about a 1.5× performance
benefit by using large ray packets of 8×8–16×16 over SIMD rays
in a Whitted ray tracer. Our analysis in Section 5 demonstrates that
their traversal algorithm can be significantly slower for some scenes
when using multiple bounce reflections and refractions. Moreover,
we often see 3×–6× performance benefits when using our combina-
tion of large ray packet traversal and culling algorithms over SIMD
rays.

[6] explores the possibility of regrouping rays based on various
measures of coherence. Their results demonstrate that it is difficult
to impossible to efficiently collect more ray coherence beyond what
is provided by the image raster. As such, we always group ray pack-
ets into n×n groups as determined by the screen space coordinates
of their ancestral camera rays.

3 Traversal Algorithms for Large Ray Packets

In this section, we introduce the large ray packet BVH traversal
algorithms that we will compare in Section 5. We review two ex-
isting algorithms, Masked traversal in Subsection 3.1 and Ranged
traversal in Subsection 3.2, and introduce our new algorithm, Par-
tition traversal, in Subsection 3.3. The Appendix is provided as a
supplement to this section and provides expanded pseudocode for
the Ranged and Partition traversal algorithms.

In the descriptions that follow, we use R = (r0,r1,r2, ...,rn) to
denote the set of all SIMD rays in the large ray packet. Using an
index i, we can retrieve the ith ray: R[i] == ri. We also differentiate
between the concepts of a ray being active and alive. At any step
in the BVH traversal, a ray is active if the ray traversal algorithm
assumes that the ray overlaps the cell’s AABB. A ray is alive if it
actually does overlap the AABB. All active rays are tested against
the triangles at the BVH leaves whether or not they are alive.

3.1 Masked Traversal

We call the first large ray packet algorithm Masked traversal be-
cause it uses an array of boolean values to mask out dead rays at the
BVH leaves. It is the first and simplest large ray packet algorithm
used by [14] and [8] for traversing kd-trees.

The pseudo-code for Masked traversal in Figure 2 provides a
basis for introducing all of the large ray packet algorithms in this
Section. At each step, all rays are tested against the current cell.
If any ray hits at line 10, then all rays continue through the tree
together. At a leaf cell, lines 21– 27, we check if the bounding

1: // Traverse a Ray packet, R, through theBVH
2: void traverseBVH(Rays R, Frustum F , BVH theBVH)
3: BVHCell curCell = theBVH.root;
4: Stack<StackNode> traversalStack;
5: bool rayMasks[size(R)];
6: while (true)
7: bool anyHit = false ;
8: if (frustumIntersectsAABB(F , curCell.AABB()))
9: for (Index i=0; i < size(R); ++i)
10: rayMasks[i] = rayIntersectsAABB(R[i], curCell.AABB()))
11: if (rayMasks[i])
12: anyHit = true ;
13: if (isInner(curCell)) break ;
14: if (anyHit)
15: if (isInner(curCell))
16: StackNode node;
17: node.cell = curCell.farChild(R);
18: traversalStack.pushBack(node);
19: curCell = curCell.nearChild(R);
20: continue ;
21: else // isLeaf(curCell) == true

22: Triangles T = curCell.triangles();
23: for (Index j = 0; j < size(T); ++ j)
24: if (frustumIntersectsTriangle(F , T [j]))
25: for (Index i = 0; i < size(R); ++i)
26: if (rayMasks[i])
27: rayIntersectTriangle(R[i], T [j]);
28: // END if (anyHit)
29: if (traversalStack.empty())
30: break ;
31: StackNode node = traversalStack.pop();
32: curCell = node.cell;
33: // END while (true)...
34: // END void traverseBVH(...

Figure 2: Pseudo-code for Masked BVH traversal.

frustum culls the triangle at line 24, and if not, all alive (unmasked)
rays are tested against the triangle. This algorithm can have many
extra ray–AABB tests especially deep in the tree.

3.2 Ranged Traversal

Ranged traversal, introduced for use with BVHs in [10], attempts to
avoid many of the ray–AABB tests in Masked traversal by tracking
the first alive SIMD ray in R. Let ia be the index to that SIMD ray.
At a BVH cell, we find ia using the getFirstHit() function:

Index getFirstHit(Rays R, Frustum F , AABB B, Index ia)
if (rayIntersectsAABB(R[ia], B)) return ia;
if (!frustumIntersectsAABB(F , B)) return size(R);
for (Index i = ia +1; i < size(R); ++i)

if (rayIntersectsAABB(R[i], B))
return i;

return size(R);

A call to getFirstHit() replaces the AABB tests on lines 8– 13 in
Figure 2.

We track ia by adding it to the traversal stack’s nodes:

struct StackNode
BVHCell cell;
Index ia; // Index to the first alive ray

At the BVH leaves, we perform the reverse operation and find ie,
the index to the last alive ray in R:

Index getLastHit(Rays R, AABB B, Index ia)
for (Index ie = size(R)-1; ie > ia; ---ie)

if (rayIntersectsAABB(R[I[ie]], B))
return ie +1;

return ia +1;

We place a call to getLastHit() right after line 21 in Figure 2. All rays
in the interval [ia,ie) are active and are tested against the triangles
in the leaf cell.

By tracking ia and finding ie at the leaves, we avoid many ray–
AABB intersection tests at the inner cells, but add more ray–triangle
intersections at the leaves. For coherent rays, this is acceptable and
is a large improvement over Masked, but Ranged traversal can still
end up with many extra active rays deep in the BVH leading to
potential overhead.

3.3 Partition Traversal

Our new traversal algorithm, which we call Partition traversal, par-
titions the rays into strictly alive and dead subsets. Our approach
is similar to the algorithm in [11], who aim to increase SIMD uti-
lization for wide (> 4) SIMD units. Distinct from their method, our
algorithm is real-time, using an efficient approach to filter out dead
rays, and treats the SIMD ray as the smallest ray primitive.

We maintain a separate set of SIMD ray indices, I =
(i0, i1, i2, ..., in) with n = size(R). This list is initialized to I =
(0,1,2, ...,n) at the start of traversal, and instead of tracking the first
active SIMD ray as we did in Ranged traversal, we use ia to track
one past the last active SIMD ray. We filter out SIMD rays which
miss the current BVH cell’s AABB with a call to partRays():

1: Index partRays(Rays R, Frustum F, AABB B, Indices I, Index ia)
2: if (!frustumIntersectsAABB(F , B)) return size(R);
3: Index ie = 0 ;
4: for (Index i = 0; i < ia; ++i)
5: if (rayIntersectsAABB(R[I[i]], B))
6: swap(I[ie++], I[i]);
7: return ie;

A call to partRays() replaces the AABB tests on lines 8– 13 in
Figure 2.

partRays() performs the frustum–AABB test first, then loops
through the indices in I, testing each indexed SIMD ray against
the cell’s AABB. By swapping the elements in I and incrementing
ie at line 6, I is split in-place into two subsets with the indices to the
alive SIMD rays in front of ie. By the end of partRays(), ie is one
past the index to the last alive SIMD ray, and the rest of the SIMD
rays indexed by I[ie: size(I)-1] are inactive.

We store the result of partRays() in ia, and, just as for Ranged
traversal, we need to add only this one integer to the traversal
stack’s nodes. As the ray packet traverses down the tree, the list
of alive rays gets smaller. As it pops back up the tree, the SIMD
ray ids in I will be re-ordered, but ia will still point to the end of the
alive SIMD ray indices.

In order to test only the alive rays against the triangles at the
BVH leaves, we replace the more expensive mask branches in the
the loop at lines 25– 27 in Figure 2 with a simple indirection:

22: for (Index i = 0; i < ia; ++i)
23: rayIntersectTriangle(R[I[i]], T [j]);

Partition traversal is designed to gracefully handle degradation
in ray coherence, and there is nothing limiting the ray packet’s size
beyond memory bandwidth. However, if the rays in R are truly
coherent, then Ranged traversal may avoid more ray–AABB inter-
section tests.

4 Frustum Bounds for Large Ray Packets

In this section, we first review frustum culling basics, and then de-
scribe the construction of tight bounding frusta for primary rays in
Subsection 4.1 and shadow rays in Subsection 4.2. We end with our
new approach for bounding reflection and refraction rays in Subsec-
tion 4.3.

A bounding frustum culls AABBs and triangles using either its
4 bounding corner rays, its 4 side planes, or both. The corner rays

Reflection Rays’

Bounding Corner Rays

Shadow Rays’

Bounding Corner Rays

Figure 3: Finding bounding frustum corner rays for point-light shadow
rays (left) and reflection rays (right).

cull a triangle when all 4 rays lie outside of the same triangle edge,
and they cull an AABB if all 4 rays are separated by the same slab
(see [8] and [7]).

The side planes cull any convex polyhedron (either a triangle or
AABB) when all of the polyhedron’s vertices lie outside of the same
side plane. Let ~ni and bi with 0 ≤ i < 4 be the plane normals and
offsets for the 4 bounding frustum plane equations, and let pk be
the polyhedron’s vertices, then:

Hi =~ni ·~pk −bi. (1)

If Hi > 0 then pk is outside the plane defined by (~ni,bi), and if all
pk are outside the same plane, then this plane culls the polyhedron.
[8] shows a version of this test optimized for AABBs using SSE
instructions.

Given 4 corner rays, we easily find the frustum’s side planes. Let

~oi and ~di with 0 ≤ i < 4 be the corner rays’ origins and directions
respectively, then:

~ni = ~di ×
~d(i+1)%4 (2)

bi =~oi ·~ni (3)

4.1 Frustum Bounds for Primary Rays

The task of generating a bounding frustum starts with finding the
frustum’s 4 corner rays. For primary rays through a pinhole cam-
era, the corner rays are simply the rays at the corners of the n× n
ray packet, and the frustum planes are retrieved directly from Equa-
tions 2 and 3.

4.2 Frustum Bounds for Point-Light Shadow Rays

For shadow rays, the 4 corner rays defined by the raster are no
longer guaranteed to bound the ray volume. Instead, we use an
alternate approach as described by [2] and illustrate this method on
the left of Figure 3.

We first choose a dominant axis for the ray directions which we

call k̂. We use the sum ~ds = ∑
n×n
i

~di and take the axis of the max

component: k̂ = AxisO f (max(ds
x,d

s
y,d

s
z)). Let the other two axes be

û and v̂. We place an imaginary plane orthogonal to k̂ at a distance
of 1 in front of the rays’ origin. This plane is the vertical dashed
line in Figure 3. We find the (u,v)–coordinates of the intersection

between the ray and the plane which are simply (u = dud−1
k

,v =

dvd−1
k

) (we multiply by d−1
k

instead of dividing by dk to emphasize

the fact that d−1
k

is usually precomputed for each ray for efficient
BVH traversal).

Let umin and umax be the minimum and maximum u–coordinates,
and accordingly vmin and vmax the minimum and maximum v–
coordinates. The (u,v)–coordinates of directions of the bounding
corner rays will then be (umin,vmin), (umax,vmin), (umax,vmax), and
(umin,vmax), with a 1 or −1 for the k–coordinate, and the origin
for all 4 corner rays is simply the location of the point-light. Both

2-Bounce

Reflections

2-Bounce

Reflections

Point-Light

Shadows

Primary

ERW6
(804 Triangles)

Toasters
(11,141 Triangles)

Rings
(217,812 Triangles)

Fairy
(172,669 Triangles)

45 FPS

BVH Build Time

(Seconds)
10 FPS 3.5 FPS

17 FPS

.0004 s 0.095 s

33 FPS

0.005 s

10 FPS

13 FPS

3.7 FPS

0.12 s

2-Deep

Refractions

Primary
+

Secondary

Figure 4: The scenes used for evaluating the traversal algorithms
from Section 3 and the frustum culling algorithms from Section 4. All
images were rendered at 1024×1024.

the computation of the frustum planes in Equations 2 and 3 as well
as the frustum–AABB and frustum–triangle culling tests based on
Equation 1 simplify given that the k–coordinate will be 1 or −1,
and the common (u,v) values between the neighboring corner ray
directions. See [2] for details.

4.3 Frustum Bounds for Reflections and Refractions

The approach in Subsection 4.2 only works for rays that meet at
a point and so doesn’t apply to reflection or refraction rays. Here
we introduce a new method which extends to general ray packets,
and illustrate our algorithm on the right of Figure 3 which shows
reflection rays bouncing off of a curved surface.

We start by choosing a dominant axis, k̂, exactly as we did in
Subsection 4.2, but this time, instead of a single imaginary plane,
we pick two planes. In order to provide conservative bounds, these
planes must bound the paths of all rays in the packet. Therefore, we

choose a far plane at k f ar from the scene’s AABB in the +k̂ direc-

tion and a near plane at knear in the −k̂ direction from the AABB
bounding the ray origins. We then find the (u,v)–coordinates of
the rays’ intersections with both planes, resulting in the intervals

[unear
min ,unear

max], [vnear
min ,vnear

max] at knear and [u
f ar
min,u

f ar
max], [v

f ar
min,v

f ar
max] at

k f ar.

The corner ray origins are the extremal intersection points
with the near plane: (unear

min ,vnear
min ,knear), (unear

max ,vnear
min ,knear),

(unear
max ,vnear

max ,knear), and (unear
min ,vnear

max ,knear). The corner ray direc-
tions are the difference between the extremal intersection points
with the far plane and these origins. As in Subsection 4.2, the frus-
tum planes come from the corner rays using simplified versions of
Equations 2 and 3, and the culling tests are based on simplified ex-
tensions of Equation 1. Our algorithm generates frusta with equiva-
lent characteristics to the frusta used in [7] to cull triangles at accel-
eration structure leaf cells. See [7] for details on optimizing con-
struction and intersection tests using this form of frustum bounds.

5 Results–Comparison

In this Section, we analyze the performance characteristics of the
ray packet traversal algorithms from Section 3 and frustum culling
algorithms using frusta generated by the methods from Section 4.
We first give an overview of the comparison setup in Subsection 5.1,
we then study traversal algorithms in Subsection 5.2 and frustum
culling in Subsection 5.3. We examine how these algorithms re-
spond to changes in scene complexity, ray recursion complexity,
and ray packet size and summarize the results in Subsection 5.4.
We use the best combination of algorithms to create our real-time
Whitted ray tracer in Section 6.

0

20

40

60

80

100

4x48x8 16x16 32x32 0

50

100

150

200

250

0

50

100

150

200
4x48x8 16x16 32x32

4x48x8 16x16 32x32

0

50

100

150

200

0

100

200

300

400
4x48x8 16x16 32x32

0

100

200

300

400

4x48x8 16x16 32x32

4x48x8 16x16 32x32

0

100

200

300

400

500

0

200

400

600

4x48x8 16x16 32x32 4x48x8 16x16 32x32

0

100

200

300

400

500

0

50

100

150

200

250

4x48x8 16x16 32x32

0

500

1000

1500

4x48x8 16x16 32x32

4x48x8 16x16 32x320

200

400

600

0

500

1000

1500

2000

0

100

200

300

400

500

4x48x8 16x16 32x32

0

500

1000

1500

2000
4x48x8 16x16 32x32

4x48x8 16x16 32x32

0

1000

2000

3000

4000
4x48x8 16x16 32x32

4x48x8 16x16 32x32

Primary

Ray Packet Size

ERW6

(804 Triangles)
Toasters

(11,141 Triangles)
Rings

(217,812 Triangles)

Fairy

(172,669 Triangles)

Scene

Complexity
Recursion

Complexity

Ranged

Partition

Masked

T
im

e
(M

ill
io

n
 C

P
U

 C
y
c
le

s
)

Ray Packet Size Ray Packet Size Ray Packet Size

T
im

e
(M

ill
io

n
 C

P
U

 C
y
c
le

s
)

T
im

e
(M

ill
io

n
 C

P
U

 C
y
c
le

s
)

T
im

e
(M

ill
io

n
 C

P
U

 C
y
c
le

s
)

Primary
+

Shadows

Primary
+

2-Deep

Refractions

Primary
+

2-Bounce

Reflections

Figure 5: Plots of Masked, Ranged, and Partition traversal times for rendering one 1024× 1024 image with varying ray packet size, scene
complexity, and ray recursion complexity. Masked and Ranged traversal degrade relative to Partition traversal as any of scene complexity, ray
recursion complexity, and/or ray packet size increase.

5.1 Comparison Setup

Hardware Configuration: All tests in this Section (except
where otherwise noted) generate images at 1024×1024 resolution
on a dual quad-core system (for a total of eight cores) with 2.0GHz
Intel Xeon processors. While faster processors and more cores are
available, our system is an example of an affordable hardware pack-
age. As of the time of writing this paper, such a system was com-
monly available for around $2000. The timings include all costs
related to ray casting and shading. We leave out time to send the
image to the graphics card as this adds anywhere from 10% more
CPU cycles for the slower renders to 50% for the faster renders. For
multi-threaded ray casting, we use the standard approach of tiling
the image canvas and dealing out tiles to each thread.

Scenes: We use the scenes shown in Figure 4, each of which
was chosen for specific qualities. The ERW6 scene is extremely
simple, having only 804 triangles and all flat surfaces and presents
an ideal environment for a coherent ray packet tracer. The Toasters
scene, with 11,141 triangles, targets the lower end of the level of vis-
ible complexity in a typical video game scene. The Fairy scene has
172,669 triangles. It is a realistic, high complexity scene, perhaps a
future video game scene with both large and tiny objects. The grass
at the fairy’s knees and the base of the tree is particularly difficult
for a packet tracer. The Rings scene from the SPD [3] is specifically
intended as a worst case scenario for reflection and refraction rays.
The small and tangled rings serve to disperse secondary rays in all
directions.

Acceleration Structure: As previously noted, we use a BVH
as our acceleration structure. We use a single-threaded binned SAH
build which has previously been shown in [9] to be interactive to
real-time even for complex scenes, but is about an order of mag-
nitude slower than state-of-the-art BVH builds using either a grid
pre-build as in [9] or a pre-existing scene hierarchy as in [4] or [15].
While we focus on ray casting performance, we also include the
time to build our BVH from scratch in Figure 4 to demonstrate that
our acceleration structures are of interactive quality.

Whitted Effects: In order to best evaluate performance for re-
flection and refraction rays, we set all scene materials to be reflec-
tive or refractive. This makes for some very difficult situations for
our ray packet tracer. The detailed geometry in the Fairy and Rings

scenes create some highly incoherent ray packets. We investigate
some more reasonable rendering configurations in Section 6.

5.2 Masked vs. Ranged vs. Partition Traversal

We compare Masked, Ranged, and Partition traversal in the collec-
tion of plots in Figure 5. Each plot shows time to render one image
in millions of CPU cycles (lower values on the y-axis mean faster
render times) versus ray packet size. Along the x-axis, we use 4×4,
8× 8, 16× 16, and 32× 32 ray packets. The plots themselves are
organized in a table with scene complexity increasing along the x-
axis, and ray recursion complexity along the y-axis. From top to
bottom, we display ray recursion complexity using primary visibil-
ity, primary visibility with point-light shadows, 2-deep refractions,
and 2-bounce reflections. We use frustum culling for all results in
this Subsection.

Masked traversal, in yellow (or light gray for gray-scale prints),
is consistently slower than Ranged traversal, and is slower than Par-
tition in most cases. It was found to work consistently only up to
4× 4 ray packets in [14] and [8], and our results agree with these
earlier findings. Render times explode with increased packet size
for higher scene complexities to the right and deeper levels of ray
recursion to the bottom.

As noted in Section 3.1, Masked traversal keeps all rays active
at the inner cells which can lead to large overheads. If even one
packet ray decides to visit a BVH leaf, then all packet rays will
be tested against the leaf’s AABB. Less coherent packets will have
many extra ray–AABB intersection tests leading to poorer perfor-
mance with increased scene complexity, ray recursion complexity,
and packet size.

Ranged traversal, in dark blue (dark gray), behaves signifi-
cantly better than Masked traversal, and provides the best results on
up to 16× 16 ray packets for most cases. The most notable excep-
tion to this are the three high-lighted plots in the lower right corner
with higher scene complexity and higher ray recursion complexity.
While Ranged traversal performs much better for the other config-
urations, a downward trend is clearly visible as we increase scene
complexity, ray recursion complexity, and ray packet size.

Partition traversal, in magenta (medium gray), is the most ro-
bust to the degrading coherence for higher scene complexity, re-
flection and refraction rays, and larger ray packets. Both Masked

Primary 2-Bounce

Reflections

R
a

y-
-A

A
B

B
 T

e
st

s

(T
h

o
u

sa
n

d
s)

0

50

100

150

200

250

300

0 10 20 30 40
0

50

100

150

200

250

300

350

0 10 20 30 40

1.43

0.67

2.33

0.40

0

0.5

1

1.5

2

2.5

3.03

3.623.56

1.57

0

1

2

3

4

R
a

y
Te

st
s

(M
ill

io
n

s)

BVH Tree Depth BVH Tree Depth

Ray-AABB

Tests

Ray-Triangle

Tests

Ray-AABB

Tests

Ray-Triangle

Tests

Ranged

Filtered

Ranged

Filtered

Figure 6: Histograms (top) and bar charts (bottom) counting the num-
ber of ray–AABB tests and ray–triangle tests required for rendering
the Fairy scene at 512×512 using 16×16 ray packets. Ranged traver-
sal is better for primary rays, but Partition traversal is better for reflec-
tion rays.

and Ranged traversal reach a breaking point as ray packet size
increases. Partition traversal, on the other hand, consistently im-
proves with increased packet size regardless of scene and ray
recursion complexity, and is limited only by memory bandwidth
and cache coherence which degrades slightly for 32×32 packets.

5.2.1 Partition vs. Ranged traversal: A Closer Look

Ranged traversal and Partition traversal each have their own
strengths and weaknesses, and Figure 6 shows why. These graphs
compare the number of ray–AABB tests and ray–triangle tests be-
cause these dominate the ray casting time in our system.

Partition traversal, in yellow (light gray), generates a peak in
both histograms higher in the tree, closer to the root, while Ranged
traversal, in blue (dark gray), is more peaked at the deeper cells. As
described in Subsection 3.3, Partition traversal always tests every
alive ray against every BVH cell which leads to more ray–AABB
tests higher in the tree. Deeper in the tree, most of the rays have
been filtered out, so there are fewer ray–AABB tests.

Ranged Traversal, as described in Subsection 3.2, can avoid
many ray–AABB tests by only testing rays until it finds ia, the in-
dex to the first alive packet ray. The key to success is the probabil-
ity that most active rays after ia are also alive deeper in the BVH,
particularly at the BVH leaves. This tends to happen for primary
visibility resulting in fewer total ray–AABB in the bottom left of
Figure 6 and faster render times in the top row of Figure 5.

However, if the active rays after ia aren’t truly alive, Ranged
traversal may suffer big overheads. An incoherent ray packet may
avoid some ray–AABB tests higher in the tree only to have to per-
form them deep in the tree where there are exponentially more BVH
cells, causing the higher peak at deeper BVH cells in the histograms
in Figure 6. Even worse, if dead rays reach the leaves, there will
be many more expensive ray–triangle tests as shown at the bottom
of Figure 6. For the more coherent primary ray packets on the left,
these extra ray–triangle tests are acceptable since ray–AABB tests
dominate ray casting time, but the less coherent secondary ray pack-
ets on the right lead to many extra ray–triangle tests and slower
render times in the highlighted plots in Figure 5.

5.3 Frustum Culling for Whitted Ray Tracing

In this Subsection, we evaluate frustum culling for all ray types in
a Whitted ray tracer using the algorithms in Section 4 to construct
tight bounding frusta. All results in this Subsection were generated
using Partition traversal since this presents the most stable baseline.

Figure 7 demonstrates the benefits of frustum culling. As in Sub-
section 5.2, each plot shows time to render one image versus ray
packet size, and the plots are organized left to right in order of in-
creasing scene complexity and top to bottom in order of increasing

ray recursion complexity.
In general, frustum culling works best for primary visibility and

point-light shadows (the top two rows in Figure 7). There is some
benefit for frustum culling on reflection and refraction rays for the
relatively simple ERW6 and Toasters scene, but barely any notice-
able benefit for the more complex Fairy and Rings scene. We will
see in Section 6 that the results for the Toasters scene is more rep-
resentative of most rendering configurations where not all surfaces
are reflecting and/or refracting.

We expect good results for primary rays from a pinhole camera,
but it is less clear why culling for point-light shadow rays is more
effective than for reflection and refraction rays. Point-light shadow
rays converge at the light source which leads to tighter ray packets
and hence tighter ray bounds. Reflections and refractions, on the
other hand, tend to diverge making it significantly more difficult to
generate tight bounding frusta.

5.4 Packet Traversal and Frustum Culling: Summary

We summarize our conclusions for ray packet traversal and frus-
tum culling in Table 1. Masked traversal is superseded by Ranged
and Partition traversal. Ranged traversal is the best for primary vis-
ibility on packets of up to 16× 16. For secondary rays, Ranged
traversal tends to be the best on packets of up to 8×8, but runs the
risk of falling to the pressure of increased scene and ray recursion
complexity. Partition traversal should be used for secondary rays
in systems that require large ray packets, complex scenes, or where
ray–geometry intersection tests dominate ray casting time. Alter-
natively, Partition traversal can be used for all secondary rays as a
conservative measure to avoid the pitfalls of Ranged traversal.

Frustum culling works well for primary visibility and point-light
shadows providing up to 2× benefit. The results for reflection and
refraction rays are less impressive, speeding up ray casting times
mostly for relatively flat and smooth surfaces. Frustum culling does
help, generally by about 1.2×–1.3×, but it should not be relied
upon to achieve real-time performance.

6 Results–Performance

In this Section, we construct our real-time Whitted ray tracer and
evaluate its performance. We find that the analysis in Section 5
leads to robust real-time performance, and large ray packets offer
significant benefits over SIMD rays for Whitted ray tracing.

Based on the recommendations from Section 5 and Table 1, our
ray tracer uses 16× 16 ray packets with Ranged traversal for pri-
mary rays, and we choose between Partition and Ranged traversal
for reflection, refraction, and shadow rays based on the scene and
ray recursion complexity. We use frustum culling for all ray packets.
All hardware configurations used to generate results in this Section
are the same as in Section 5.

Figure 1 shows several scenes and ray recursion configurations
rendered with our real-time Whitted ray tracer. These images tend
to render significantly faster than those from Section 5 because only
select surfaces are set to be reflective or refractive. The Toasters
scene is the same scene from Section 5, but we have set 1-bounce
reflections for the floor and turned on point-light shadows. The
Fairy scene is also used in Section 5, but we have set 1-deep re-
fractions on the wings, and 1-bounce reflections on the forest floor
making it appear as if the fairy is sitting on water. While it isn’t
particularly noticeable from this view, reflections are turned on for
the fairy’s eyes as well as the gold and jewels on her wand.

Figure 1 also includes two scenes from the BART [5] collection.
We render only the first keyframe from these sequences. The mu-
seum image demonstrates deep reflections with 3-bounces. The
kitchen scene uses 1-bounce reflections, 4-deep refractions, and
point-light shadows from one point-light. Notice the refractions
through the bowls and glasses on the table as well as the dragon
model under the table. Light even refracts through the dragon’s
reflection.

Primary

Ray Packet Size

ERW6

(804 Triangles)

Toasters

(11,141 Triangles)

Rings

(217,812 Triangles)

Fairy

(172,669 Triangles)

Scene

Complexity

Recursion

Complexity

T
im

e
(M

ill
io

n
 C

P
U

 C
y
c
le

s
)

Ray Packet Size Ray Packet Size Ray Packet Size

T
im

e
(M

ill
io

n
 C

P
U

 C
y
c
le

s
)

T
im

e
(M

ill
io

n
 C

P
U

 C
y
c
le

s
)

T
im

e
(M

ill
io

n
 C

P
U

 C
y
c
le

s
)

0

50

100

150

4x48x8 16x16 32x32

0

50

100

150

200

4x48x8 16x16 32x32

0

50

100

150

200

4x48x8 16x16 32x32

0

100

200

300

400

4x48x8 16x16 32x32

0

50

100

150

200

4x48x8 16x16 32x32

0

100

200

300

400

4x48x8 16x16 32x32

0

200

400

600

4x48x8 16x16 32x32

0

200

400

600

4x48x8 16x16 32x32

0

50

100

150

200

250

0

100

200

300

400

500

4x48x8 16x16 32x32

4x48x8 16x16 32x32

0

200

400

600

4x48x8 16x16 32x32

0

200

400

600

800

4x48x8 16x16 32x32

0

100

200

300

400

500

4x48x8 16x16 32x32

0

500

1000

1500

4x48x8 16x16 32x32

0

500

1000

1500

4x48x8 16x16 32x32

0

500

1000

1500

2000

2500

4x48x8 16x16 32x32

No Culling

Culling

Primary
+

Shadows

Primary
+

2-Deep

Refractions

Primary
+

2-Bounce

Reflections

Figure 7: Times for rendering one 1024× 1024 image with and without frustum culling with varying packet size, scene complexity, and ray
recursion complexity. Frustum culling works best for primary rays and point-light shadow rays, and mostly helps reflections and refractions off of
flat and smooth surfaces.

Toasters Fairy BART Museum BART Kitchen

2×2 SIMD

Ray Packets
1.9 FPS 2.1 FPS 2.4 FPS 1.2 FPS

16×16

Ray Packets
11.8 FPS 6.7 FPS 8.5 FPS 4 FPS

Performance

Benefit
6.1 × 3.2× 3.5× 3.3×

Reflect+Refract

Traversal
Ranged Partition Partition Partition

Culling Benefit 1.35× 1.19× 1.18× 1.19×

Table 2: Comparison of our large ray packet tracer using 16×16 pack-
ets against 2× 2 SIMD ray packets for rendering the images in Fig-
ure 1.

We compare to 2× 2 SIMD ray packets in Table 2. This table
presents times for rendering the images in Figure 1 for SIMD rays
and our large ray packet tracer and whether secondary rays use Parti-
tion or Ranged traversal. In all examples, large ray packets provide
at least 3× faster render times over SIMD Rays and up to 6× for
the simpler Toaster scene.

In the last row of Table 2, we include the performance benefit due
solely to frustum culling. For these configurations, frustum culling
improves performance by about 18%–35% which is significantly
more than reported in Section 5 for the Fairy and Rings scene with
reflection and refraction rays. As is usually the case in Whitted
ray traced scenes, the reflective and refractive surfaces used in this
Section tend to be significantly flatter and smoother leading to better
culling performance.

7 Conclusion

This paper introduces a fully real-time CPU-based Whitted large
ray packet tracer. Entering this new domain required serious anal-
ysis of large ray packet algorithms for scene traversal and frustum
culling. It also required the new Partition traversal algorithm and a
new approach for generating frustum bounds around reflection and
refraction rays. The result is a real-time Whitted large ray packet
tracing system which is robust to degrading coherence.

We thoroughly evaluated ray packet algorithms for frustum
culling and three BVH traversal algorithms in the context of real-
time Whitted ray tracing. There are a large number of possible
combinations of these algorithms, and in the process of this work,

we evaluated many of them which are not presented. We found that
the simple solutions work best and believe the algorithms presented
here most concisely encompass the results of our research.

Distributed ray traced effects are also likely to benefit from our
work. Here we focus on Whitted ray traced effects to push them into
real-time, but real-time results remain out of reach for distributed
ray tracing. Based on the results in this paper, we believe this class
of effects requires new algorithms beyond ray coherence based tech-
niques to join the interactive domain.

Acknowledgements

This work was supported in part by the NSF (grants CCF 03-05322, CCF 04-46916,

CCF 07-01775), a Sloan Research Fellowship, and an ONR Young Investigator Award

N00014-17-1-0900. We also acknowledge an Intel fellowship to Ryan Overbeck and

related equipment donations from Intel and NVIDIA. Fairy scene provided by DAZ

Productions via the Utah 3D Anim. Repo.. Thanks to the anonymous reviewers as

well as Kevin Egan, Craig Donner, Sean Keely, and Warren Hunt for their helpful

comments.

References

[1] S. Boulos, D. Edwards, J. D. Lacewell, J. Kniss, J. Kautz, P. Shirley,

and I. Wald. Packet-based Whitted and Distribution Ray Tracing. In

Proc. Graphics Interface, May 2007.

[2] S. Boulos, I. Wald, and P. Shirley. Geometric and Arithmetic Culling

Methods for Entire Ray Packets. Technical Report UUCS-06-010,

2006.

[3] E. Haines. A proposal for standard graphics environments. IEEE

Computer Graphics & Applications, 7(11), 1987.

[4] W. Hunt, W. R. Mark, and D. Fussell. Fast and lazy build of acceler-

ation structures from scene hierarchies. In IEEE Symp. on Interactive

Ray Tracing, 2007.

[5] J. Lext, U. Assarsson, and T. Moeller. Bart: A benchmark for animated

ray tracing, 2000.

[6] E. Mansson, J. Munkberg, and T. Akenine-Moller. Deep coherent ray

tracing. IEEE Symp. on Interactive Ray Tracing, 2007.

[7] A. Reshetov. Faster ray packets - triangle intersection through vertex

culling. In IEEE Symp. on Interactive Ray Tracing, 2007.

[8] A. Reshetov, A. Soupikov, and J. Hurley. Multi-level ray tracing algo-

rithm. ACM TOG SIGGRAPH 05, 24(3), 2005.

[9] I. Wald. On fast Construction of SAH based Bounding Volume Hier-

archies. In IEEE Symp. on Interactive Ray Tracing, 2007.

[10] I. Wald, S. Boulos, and P. Shirley. Ray Tracing Deformable Scenes us-

ing Dynamic Bounding Volume Hierarchies. ACM TOG, 26(1), 2007.

[11] I. Wald, C. P. Gribble, S. Boulos, and A. Kensler. SIMD Ray Stream

Tracing - SIMD Ray Traversal with Generalized Ray Packets and On-

the-fly Re-Ordering. Technical Report UUSCI-2007-012, 2007.

[12] I. Wald, T. Ize, A. Kensler, A. Knoll, and S. G. Parker. Ray tracing

animated scenes using coherent grid traversal. ACM TOG SIGGRAPH

06, 2006.

[13] I. Wald, W. R. Mark, J. Günther, S. Boulos, T. Ize, W. Hunt, S. G.

Parker, and P. Shirley. State of the Art in Ray Tracing Animated

Scenes. In Eurographics 2007 State of the Art Reports, 2007.

[14] I. Wald, P. Slusallek, C. Benthin, and M. Wagner. Interactive rendering

with coherent ray tracing. Computer Graphics Forum, 20(3), 2001.

[15] S.-E. Yoon, S. Curtis, and D. Manocha. Ray tracing dynamic scenes

using selective restructuring. In EGSR, 2007.

A Appendix

A.1 Ranged Traversal

1: // Traverse a Ray packet, R, through theBVH using Ranged Traversal

2: void rangedTraverseBVH(Rays R, Frustum F, BVH theBVH)

3: BVHCell curCell = theBVH.root;

4: Stack<StackNode> traversalStack;

5: Index ia = 0;

6: while (true)

7: ia = getFirstHit(R, F, curCell.AABB(), ia);

8: if (ia < size(R))

9: if (isInner(curCell))

10: StackNode node;

11: node.cell = curCell.farChild(R);

12: node.ia = ia ;

13: traversalStack.pushBack(node);

14: curCell = curCell.nearChild(R);

15: continue ;

16: else // isLeaf(curCell) == true

17: Index ie = getLastHit(R, curCell.AABB(), ia);

18: Triangles T = curCell.triangles();

19: for (Index j = 0; j < size(T); ++ j)

20: if (frustumIntersectsTriangle(F, T [j]))

21: for (Index i = ia ; i < ie ; ++i)

22: rayIntersectTriangle(R[i], T [j]);

23: // END if (ia < size(R))

24: if (traversalStack.empty())

25: break ;

26: StackNode node = traversalStack.pop();

27: curCell = node.cell;

28: ia = node.ia ;

29: // END while (true)...

30: // END void traverseBVH(...

A.2 Partition Traversal

1: // Traverse a Ray packet, R, through theBVH using Partition Traversal

2: void partitionTraverseBVH(Rays R, Frustum F , BVH theBVH)

3: BVHCell curCell = theBVH.root;

4: Stack<StackNode> traversalStack;

5: Index I[size(R)];

6: for (Index i = 0; i < size(R); ++i) I[i] = i;

7: Index ia = 0;

8: while (true)

9: ia = partRays(R, F , curCell.AABB(), I, ia);

10: if (ia > 0)

11: if (isInner(curCell))

12: StackNode node;

13: node.cell = curCell.farChild(R);

14: node.ia = ia ;

15: traversalStack.pushBack(node);

16: curCell = curCell.nearChild(R);

17: continue ;

18: else // isLeaf(curCell) == true

19: Index ie = getLastHit(R, curCell.AABB(), ia);

20: Triangles T = curCell.triangles();

21: for (Index j = 0; j < size(T); ++ j)

22: if (frustumIntersectsTriangle(F, T [j]))

23: for (Index i = 0; i < ia ; ++i)

24: rayIntersectTriangle(R[I[i]], T [j]);

25: // END if (ia > 0)

26: if (traversalStack.empty())

27: break ;

28: StackNode node = traversalStack.pop();

29: curCell = node.cell;

30: ia = node.ia ;

31: // END while (true)...

32: // END void traverseBVH(...

