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Figure 1: A factored composite wax material model applied to the Stanford dragum.material is composed of two kinds of wax with different scattering propertiet: L
illuminated by an area light source from above. Middle: the material's diffussdalifno subsurface scattering). Right: illuminated from above by a texturecfionj light.

Abstract problem to acquire and represent general hon-homogeneous sub-
surface scattering, observed in materials such as veined marble.
Tong et al. [2005] identi ed two approaches to represent subseirfac
scattering: arpbject model representatioand amaterial model
representationThe object model approach captures the subsurface
properties coupled to a speci c geometry [Goesele et al. 2004]. The
material model approach captures the subsurface scattering proper

Many translucent materials exhibit heterogeneous subsurface scat
tering, which arises from complex internal structures. The acqui-

sition and representation of these scattering functions is a complex
problem that has been only partially addressed in previous tech-
niques. Unlike homogeneous materials, the spatial component of
heterogeneous subsurface scattering can vary arbitrarily over sur-

face locations. Storing the spatial component without compression €S independent of the underlying geometrical shape. Unlike ob-

leads to impractically large datasets. In this paper, we address theCt model representations, a material model representation can be
problem of acquiring and compactly representing the spatial com- apphed_ to any geometry at the cost Of. additional computations or
ponent of heterogeneous subsurface scattering functions. We pro-2PProximations [Tong et al. 2005]. This paper focuses on the ac-
pose a material model based on matrix factorization that can be 9uisition and compact representation of a material model for the
mapped onto arbitrary geometry, and, due to its compact form, can spatla_l component of highly heterogeneous subsurface scattering
be incorporated into most visualization systems with little over- materials.

quired using a projector and a digital camera. matrix factorization. A non-negative factored representation of-
Keywords: Subsurface scattering, Non-negative matrix factoriza- fers several advantages: the result of any light transport calcula-
tion, Image-based acquisition tion will remain positive, the non-negative terms enable importance
. sampling, and could potentially allow user-guided editing. In the
1 Introduction context of large multi-dimensional datasets, factorization has been

. . . a popular tool [Fournier 1995; Heidrich and Seidel 1999; Kautz
In recent years, subsurface scattering has received much attention, 4 seidel 2000: Kautz and McCool 1999: Latta and Kolb 2002:
in computer graphics. Initial research focused on the visualization Suykens et al. 2603. Lawrence et al. 20041_ However. these tecﬁ-
and simulation of subsurface scattering materials [Hanrahan andniques are designed for representing BRDFs and are not suited for
Kr“eﬁ?er 1993; Dorsey et al. 1999; Jensen et al. 2001; Lensdh et a (o resenting the spatial component of heterogeneous subsurface
2003; Mertens et al. 2003]. With the rapid advancement of ViSU- goaitering. A key observation is that most heterogeneous materi-
alization algorithms, however, the need for measuring subsurface 45 are a mix of a limited number of homogeneous basis materials.
scattering properties of physical materials has increased. The spatial responses of these homogeneous basis materials are de-

Homogeneous subsurface scattering, such as that observed in milkformed by spatial discontinuities in the material. We will show that
can be easily measured and tted to an analytical model like the Dy eliminating the effect of the homogeneous subsurface scattering,
dipole approximation [Jensen et al. 2001]. But it is still an open @ more suitable form for factorization can be found.

Synthetic datasets are free from calibration errors or measurement
noise and are often too clean. It is therefore essential to validate the
developed factorization method on real-world data. Since we are

interested in obtaining material modelwe restrict the acquisition

to planar samples in order to avoid geometrical spatial dependen-
cies. Rather than the commonly used camera-laser systems, we
employ a camera-projector system to acquire the spatial subsurface
scattering component of a planar material sample. Our approach
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speeds up acquisition by sampling multiple points in parallel, with Fuchs et al. [2005] developed an empirical model for represent-

minimal tradeoffs. ing heterogeneous subsurface scattering based on the DISCO sys-
tem [Goesele et al. 2004]. The response at each surface location is a
2 Related Work linear combination of exponentials, modulated by a single spatially-

varying texture map. To further compensate for anisotropic scat-
The work presented in this paper is closely related to the fol- tering behavior, the domain around each response is radially sub-
lowing sub-domains in computer graphics: factorization of multi- divided and the approximations over the different domains are
dimensional functions, modeling and simulation/visualization of blended together. Our method differs from this work in two ways.
subsurface scattering, and image-based acquisition and represerFirst, by using a data-driven approach based on matrix factoriza-
tations of translucent objects and materials. tion, it can handle more general scattering behaviors than those rep-
resentable by exponential fall-offs. Second, by using several spatia
Factorization.  Factorization has been a successful tool in de- textures (i.e., factorization terms), it can model a greater range of
composing BRDFs into sets of lower dimensional factors and terms, spatial scattering variations, such as heterogeneities due to veins in
enabling interactive rendering [Fournier 1995; Heidrich and Seidel marble.
1999; Kautz and Seidel 2000; Kautz and McCool 1999; Latta and
Kolb 2002], and improved importance sampling [Lawrence et al. 3 Background
2004]. Suykens et al. [2003] extend the idea of homomorphic
factorization to interactively render BTFs. Recently, Lawrence et The behavior of subsurface scattering materials is described by
al. [2006] used constrained matrix factorization to represent and the generabidirectional surface scattering re ectance distribution
edit spatially varying BRDFs. These techniques rely on the assump- function(BSSRDF)S(x;; Wi; Xo; Wo) [Nicodemus et al. 1977], which
tion that the BRDF is a separable function, which we will show is relates outgoing radiandeXo; wo) at a pointx, in a directionw,
not the case for subsurface scattering effects. to the incident illuminatiorL(x;; w) at a locatiorx; and incoming
directionw:
Rendering, Modeling and Simulation. A number of ap- 2 7
proaches simulate subsurface scattering by explicity modeling o o ) )
the physical properties of each point inside a volume. In com- L(Xo; wo) = A WS(X“W"XO’WO)L(X“W')dW'd)q’
puter graphics, subsurface scattering was pioneered by Hanrahan
and Krueger [1993]. Dorsey et al. [1999] and Pharr and Han- whereA is an area around the poir§, andW denotes the upper
rahan [2000] Successfu"y Simulate heterogeneous materials Using']emisphere arounxl_ We Separate this integra| into a local com-

Monte Carlo methods by explicitly modeling the interactions inside ponentL;, which accounts for light immediately re ected from a
the volume. Jensen et al. [2001] presented a practical model for ho-syrface, and a global componéngt

mogeneous materials based on a dipole approximation. With the

advent of powerful graphics hardware, interactive rendering-tech

niques for translucent materials have been developed [Mertens et al. L(%o; Wo) = Li(Xo; Wo) + Lg(Xo; Wo):
2003; Lensch et al. 2003]. More recently Chen et al. [2004] pre-

sented a technique to render synthetic heterogeneous materials bythe |ocal and global componeh andLg are de ned as:
partially pre-computing light transport near the surface and using a

dipole approximation for the material's inner core. None of these z
approaches are suited to model or visualize real-world heteroge- L (Xos Wo) = fs(Xo; Wos Wi)L(Xo; W) (No Wi)dw/;
neous translucent materials. 7z

Lg(%o; Wo) = R WSu(xi;w;xo;wo)L(Xa;vm)dmdx;

Acquisition and Representation. A number of image-based
techniques are able to capture and render translucent objects. Light- . . .
elds [Levoy and Hanrahan 1996] or lumigraphs [Gortler et al. Wherefscan be interpreted as a spatially varying BRBFs called
1996] capture the view-dependent appearance of objects undert€ diffuse BSSRDF, arlt, is the surface normal a. The diffuse
xed lighting conditions. Surface light- elds [Miller et al. 1998; ~ BSSRDF is often decomposed into a product of lower-dimensional
Wood et al. 2000] further improve on this approach. Re ectance functions. A commonly used decomposition & [Donner and
elds [Debevec et al. 2000; Masselus et al. 2003] are capable of Jensen 2005] is:

representing an object from a xed viewpoint but under variable 1
lighting conditions. However, none of these systems are geared to- ey ) = (e - C) -

wards acquiring and compactly representing subsurface scattering. Sa(%; W03 Wo) = p fi0 w6 Ra (x5 Xo) fo o3 Wo);

The recently proposed DISCO acquisition system_[GoeseIe et al. \where fo and f; are directionally dependent components, and
2004], an example of an object model representation, measures &Ry(xi;%o) is the spatial subsurface scattering component. As
4D subsurface scattering function over an object with respect o in- i [Goesele et al. 2004] we will focus exclusively on the acquisition
coming and outgoing surface points. The system assumes a smoothys ine 4p spatial componeiRy of heterogeneous subsurface scat-
global _subsurface scattering component, which is interpolat_ed OVeTtering materials, ignoring any directional dependenyand f;).

the object's mesh. Tong et al. [2005] presented a technique 10 The acquisition of these angular components can be accomplished

capture quasi-homogeneous materials, i.e., translucent material§, 5 manner similar to that described by Tong et al. [2005].
with evenly-distributed heterogeneous elements. The authors base

their system on the key observation that quasi-homogeneous mate-4
rials exhibit a difference in subsurface scattering properties at local
and global scales: locally, the non-uniformity in physical material

Acquisition

. - - In this section we discuss the acquisition of the spatial subsurface
properties leads to heterogeneous subsurface scattering, while at @4yering component of a real-world sample. First, we describe

global scale, the even distribution of heterogeneous elements leads;,o setup (a projector-camera pair) and compare this system to a
to homogeneous scattering. Neither approach, however, is suited to

ol : | het ‘ | * material camera-laser setup. Then we discuss the calibration required and
accurately represent general heterogeneous translucent materials a1y the acquisition process itself.
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4.1 Acquisition Setup Intrinsic and extrinsic camera and projector parameters.

_ . - . Both the intrinsic and extrinsic camera and projector parameters
The acquisition setup consists of a digital video camera and a pro- gt pe calibrated. Rather than calibrating each device indepen-
jector. We position the sample approximately half a meter away gengy (e.g., [zhang 2000]), a simultaneous calibration process is
from the projector, taking special care to ensure that the sample ,qeq” First, the sample is covered by a white diffuse layer. Next,
surface is perpendicular to the projector. The camera is positioned, gerjes of calibration patterns are projected on the diffuse sample.
above the projector, such that no specular highlights from the sam-gach calibration pattern consists of a set of regularly spaced dots;
ple are visible to the camera. During acquisition, we assume that hese dots are slightly shifted in consecutive calibration patterns.

there is no local componenj. We acknowledge that this is in-  £qr aach dot, the center position in the camera image is computed.
accurate; but it does not affect the developed factorization method Using the known positions of the dots in both camera and projector

signi cantly. space, a homography can be recovered between both devices.
In our setup we use an Allied Vision Technologies (AVT) Dolphin ) ) )
F-145C CCD FireWire camera equipped with all2 36:0mm C- Camera and projector lens vignetting.  In order to compen-

mount lens. We capture all photographs at the maximum resolution sate for camera and projector lens vignetting, each recorded image
of 1392 1040 using 10 bits per pixel. For the projector we use an is divided by an HDR photograph of a projected white image on the
Optoma EP739H DLP projector with a 1 : 2000 contrast ratio and a diffuse sample surface.

digital DVI connection to avoid AD/DA conversion artifacts.

. Color calibration is limited to white balancing that relates the ob-
Previous approaches [Goesele et al. 2004; Tong et al. 2005; Fuchs;gyed white of the projector to a reference white.

et al. 2005] use a laser to sample the spatial subsurface scattering
component. Replacing the laser with a projector offers the follow-

. ! Refresh rate of the projector. DLP projectors use a color
ing advantages:

wheel to induce color sensations. To avoid interference, the camera
Multi-chromatic: A laser system samples the color spectrum exposure times must be a multiple of the rotational frequency of the
very sparsely (e.g., 3 wavelengths). Depending on the spectralcolor wheel. The rotational frequency was empirically determined
response of the sample, a signi cant portion of the re ectance to be 30 Hertz.

properties could be lost. Furthermore, laser speckle can oc-

curs due to the coherent nature of laser light. These concernsBlack level of the projector.  To measure the black level, a
are absent when using a projector. large number ( 100) of HDR Bayer images of the sample are
recorded while emitting only a black pattern from the projector. For
each pixel, the average and variance of the pixel intensity are com-
puted. Each pixel in a newly recorded HDR photograph that falls
below a con dence limit of 99% is set to zero. The average is sub-
Cost: A projector costs considerably less than a laser system. tracted from the remaining pixels to eliminate as much as possible
In addition, a projector can be bought off the shelf, and does the effect of background illumination.

not require special controller hardware.

Complex patterns: A projector setup can emit any illumina-
tion pattern without resorting to time multiplexing or using a
complex additional lens system.

) _ _ 4.3 Data Acquisition
A projector, however, also has disadvantages with respect to a laser

system: As with a laser setup, individual surface points can be illuminated

by a projector. By recording HDR photographs, 2D slices of the

BSSRDF are obtained. This approach, however, results in imprac-
tically long acquisition times when a dense spatial resolution is re-
quired.

Refresh rate: By construction, a projector refreshes the im-
age at regular intervals. To avoid artifacts, only the exposure
times that are a multiple of this refresh rate should be used.
This places a lower bound on the exposure times when cap-
turing high dynamic range (HDR) images. In principle, alaser Theoretically, illuminating a single surface point yields an in nitely
system is not constrained by a minimum exposure time. How- large response. In practice, the extent of this observed footprint is
ever, unless a high speed camera (e.g., [Wenger et al. 2005])limited by the dynamic range of the recorded HDR photographs.
is used, the projector's refresh rate is faster than the maximum This observation can be exploited to accelerate the acquisition pro-
frame rate of most high-resolution digital cameras. cess by emitting multiple beams in parallel and extracting the indi-
vidual responses afterwards. Rather than illuminating a single sur-
face point, a regular grid is projected onto the sample. The spacing
in the grid is manually set to avoid in uence between neighboring
footprints.

Limited contrast ratio: A noticeable amount of illumination

is visible when emitting a black image from a projector. This
background illumination places an upper limit on the expo-
sure times before a photograph is over-saturated. In our setup,
this was found to be in excess of 4 seconds, a point at which The acquisition pipeline is as follows: For each emitted pattern, a
thermal noise in the camera already introduces signi cant ar- HDR Bayer image is recorded. Next, the in uence of the projec-

tifacts. tor background illumination, lens vignetting, and thermal camera
. . noise is removed and the resulting Bayer image is demosaiced. Us-
4.2 Calibration ing the camera-projector homography, we compensate for the off-

The camera and projector require careful calibration before the sub-CENter camera position so that there is a one-to-one mapping be-
surface scattering of a sample can be accurately acquired. tween camera and projector pixels. Finally, individual responses
are extracted and white balanced.

Radiometric response. We directly read out the raw Bayer data Instead of shifting the consecutive grid patterns sequentially, we
from the camera, which has a linear radiometric response. A linear use a random order to minimize the effect of temporal uctuations

regression is applied to determine the slope for each pixel sepa-in projected intensity. For all the examples in this paper, exposures
rately. After combining the raw Bayer photographs into a high dy- ranging from £30 to 2 seconds were used to capture HDR images.
namic range image, high-quality demosaicing [Malvar et al. 2004] In conjunction with the 10 bit raw camera data, this yields a theoret-
is performed. ical dynamic range of 10000 : 1. However, after removing camera
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Figure 2: The subsurface scattering mafix (a) An illustration of a homogeneous
material containing a light blocking vein. (b) The corresponding subsurfzatéesing
matrix Ry. The effect of the light blocking vein is expressed by horizontal and vertical Ra(Xi; o) RS(Xi ;d)
discontinuities. (c) A sheared reparameterizatioRgf Figure 3: A marble material sample illustrating the structure of the sursicatter-

ing matrixRy. The responses are measured on a single line, indicated in green. The
noise and subtracting the black level of the projector, an average dy-discontinuities are not as pronounced in the subsurface nfifix; xo), but are clearly
namic range of 1M00 : 1 is maintained. Acquisition timings range visible in the reparameterized mati€(x;;d) (marked in red in the reparameterized
from 3 to 6 hours depending on the spatial resolution and the grid matrix). Regardless of the geometrical from of the heterogeneity (e.g., the bluednark
R ! X . R . in), the effi I hori | ical di inuities.
spacing. For comparison, illuminating each surface point sequen- vein), the effects oRy are always expressed as horizontal and vertical discontinuities

tially requires 50 hours or more. skew diagonal direction, reducing the effectiveness of a classical

factorization.

5 Factorization

. ) . ) We veried the structure of the subsurface scattering matrix
In this section we introduce our compact factored form, suitable for Rq(Xi;Xo) on a slab of marble, shown in Figure 3. The marble re-
representing and rendering the spatial component of heterogeneougonses are measured for different points on a single line, indicated
subsurface scattering materials acquired using the setup describeg green. The discontinuities are not as pronounced as expected in
in the previous section. the subsurface matriRg(xi; Xo), because the veins through the mar-
5.1 Motivation ble do pot block.the Iight ppmplgtely. Howgver, the horizonta] gnd

) ) skew diagonal discontinuities, highlighted in red, are clearly visible

Inorderto nd a suitable factored form for the spatial component of in the reparameterized matrRQ(xi;d). This empirically con rms
the BSSRDF, we rst stor&(xi; Xo) in a matrix. Studying the gen-  our conclusions of the experiment in Figure 2, regarding the struc-
eral form of this matrix helps to determine a suitable factorization tyre and form of the subsurface scattering ma®jx
form. The global subsurface scattering matRx is a linearized o
matrix of 2D surface points, where rows are oxeand columns 5.2  Factorization Formula

overxo. Each element contains the ratio of light transferred from |, this paper, we will not use a reparameterization to make the sub-
% 10 %o, and vice versa. For simplicity we will assume that brth — gyrface matrixRy(xi; o) more suitable for factorization, but will
andx, are parameterized over the surface with the same resolution.stead divide out as much as possible the diagonal structure that

The construction and form of the subsurface scattering magis hinders ef cient factorization.

illustrated in Figure 2. For illustration purposes, only 2D subsurface grom the reparameterized matf@(x;d), an average response
scattering functions are considered; that is, bgtandx, are on a function g(d) can be computed by simply taking the average re-
single line (1D). The conclusions drawn from this example, how- gponse or by taking the maximum value over each column (Fig-
ever, are analogous when using linearized 2D coordinates éord ure 4.a). This average response functi¢d) is a good approxima-

Xo. Figure 2.a shows a material exhibiting homogeneous subsurfaceyjon, for the homogeneous subsurface scattering kernel, and can be

scattering, except in the middle, where a vein obstructs light prop- \;sed to create a homogeneous approximaBpq; X,) of Ry(Xi; Xo)
agation. Two responses are depicted; the left is unaffected by the(Figure 4.b):

vein, while the right response is cut off. In Figure 2.b the resulting
subsurface scattering mati(Xi; Xo) is shown. This is a banded
matrix, in which the homogeneous response is shifted along the di-
agonal. In the middle of this matrix a discontinuity can be observed, ) ) . .
caused by the light blocking vein. In general, heterogeneities are An interesting result can be obtained by dividing the subsurface

expressed as horizontal and vertical discontinuities in the diagonal SCattering matrixRq(xi;xo) component-wiséy G(x;Xo), effec-
structure, which is the result of the subsurface light transport. tively dividing out the diagonal subsurface scattering features.
This is depicted in Figure 5 (left). The dashed elements of

Using classical factorization methods, such as singular value de- Ry(x;; x0)=G(Xi;%o) in Figure 5 mark elements that are the result of
composition (SVD) or non-negative matrix factorization (NMF),  a division by zero. As a consequence, a matrix suitable for factor-
directly on the matrixRy(x;; Xo) does not yield satisfactory results.  jzation can be obtained by careful selection of the values of these
The matrixRy(Xi;Xo) is dominated by a diagonal structure. Ma- elements inRg=G. In Figure 5, the dashed elements are lled in

trices with these kinds of structures usually have a high rank, and such that the resulting matrix can be easily separated into a 2-term
consequently do not decompose very well into lower order terms. A factorization.

standard solution to such a problem is to reparameterize the matrix
so that it becomes more suitable for factorization. An obvious repa-
rameterization would be to shear the matrix, such that the diagonal
becomes aligned to one of the axes. In Figure 2.c, a reparameter- Ri(Xi;X0)  (F(xi;t)H(t;%0)) ?G(Xi;%o);

ized Rg(xi;d) is shown, withd = X, X;. The diagonal structure

that hindered factorization is now recti ed. However, the hetero- where? denotes acomponent-wisenatrix multiplication de ned
geneities are now expressed in features along the horizontal andoy: (A?B)j; = ajbjj. The width ofF and height ofH are user

G(Xi;%) = g(d) = g% %):

Moving theG term to the other side yields the nal factored form:
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Xo

o(d) = avg(RY(; ) |
[

[1
G(xi;%o) = 9(d)
(@ (b)
Figure 4: By computing the average respogéd), a homogeneous approximation
G(xi;%o) of the subsurface scattering matRy(xi; %) can be obtained.

Xo

Ru(Xi; X0)=G(X;; Xo) F(xi;t)
Figure 5: The homogeneous approximat@®(x;; X,) can be used to eliminate the diag-

onal subsurface scattering featureiitx;; X,) by a component-wise division. Dashed
elements are the result of a division by zero. The values of these elements can be set
such that the resulting matrix is better suited for factorization.

selected (i.e., number of terms), and determine the compression ra-

tio and the degree of approximation. Althou@x;;x,) has the
same dimensions d&;(X; Xo), the storage requirements are mini-
mal, since onlyg(d) needs to be stored.

As mentioned previously, the conclusions from this 2D example
also hold for general 4D subsurface scattering functions. It is im-
portant to realize that, regardless of the speci c geometrical form

. RHT
T(FH)?G)HT®
To regularize the update rules above, we follow the method of Ci-

chocki et al. [2006]. Furthermore, to avoid dividing by zero, a small
e-value is added to each elemengjd).

of a heterogeneity (e.g., the blue marked vein on the marble slab in5.4  Clustering

Figure 3), the effects on the subsurface scattering mRyfx;; Xo)
are always expressed as horizontal and vertical discontinuities.

5.3 Update Rules

As detailed in the previous section, the homogeneous subsurfac

scattering matri>G can be easily determined iy is known. The

F andH terms, however, cannot be determined directly and need to

be factored out. In this paper, we employ a variant of iterative non-

€

We have thus far assumed that the subsurface scattering sample con-
sists of a homogeneous material, where the heterogeneities are the
result of geometrical de ciencies. This works well for materials
such as marble but fails when the sample contains a combination
of basis materials, such as a chess board made of two interlocking
materials (see Figure 7.b).

We solve this problem by rst clustering the responses (rowRQf

negative matrix factorization [Lee and Seung 2000] to decompose and computing a subsurface scattering keggd) for each cluster

the matrixRy(Xi;X0). F andH are initialized to random values,
and subsequently iteratively updated, using the multiplicative up-
date rules presented below, until convergence is reached.

More speci cally, the factorization should minimize the following
error function, keeping in mind the non-negativity constraint:

E2= JjW2(Ry (FH)?0)ii%;

wherejj jj g is the Frobenius norm arwf a weighting matrix. By
following a similar strategy as Lee and Seung [2000], multiplicative
update rules can be derived:

Y R FT(W2?2G?Ry)
"FT(W22G?((FH)?G))’
o Eo (W22G?2Rg)HT :
(W22G?((FH) ?G))HT

where the division isomponent-wisandW? = W ?W. A formal

derivation and proof of convergence can be found in [Peers and

Dutré 2006].

Due to sub-pixel errors in the camera-projector calibration, it is pos-
sible that the peak of the average exponential fall-off funcg)
is slightly off-center. This will have a signi cant impact on the er-

separately. The resulting matr& will be a mix of the different
kernelsg(d). Ideally we would like to cluster on subsurface scat-
tering properties (i.e., exponential fall-off) and not on spatial het-
erogeneities. To minimize the effect of these spatial heterogeneities
we cluster according to the feature vectdggr):

fi(r) = maxRq (%; px (a@:1));

wherepy (a;r) is a polar mapping o, aroundx;. This function

fx (r) will be an approximation of the exponential fall-off function

of the response at positioqy and is further normalized to eliminate
the effect of different response albedos. In our implementation,
we use &k-means clustering algorithm. The number of clusters

is selected by the user, and should correspond to the number of
distinct materials with different scattering characteristics that are
present in the dataset. Since the clustering is performed beforehand
and the resulting homogeneous approximat®ean be computed
without much additional overhead, factorization will not incur a
penalty.

6 Visualization

Our compact material model for subsurface scattering can be easily
incorporated into an existing renderer. The results in this paper are
generated by an adapted photon map [Jensen 2001] implementation

ror E2, and the factorization process will spend a large percentage of PBRT [Pharr and Humphreys 2004]. Photons entering a translu-
of all iteration steps trying to keep the peak as close as possible tocent material are stored in a special subsurface scattering map. Pho-

the center. A suitable weighting mati¥ can minimize the effect
of a misaligned peak, aBd
erations. Settingvij = 1=" gjj
simpli es the update rules:

has this desired effect. Moreover, it

FTRy

" e Em Pe)

H

tons not absorbed by a subsurface scattering material are traced as

convergence can be attained in fewer it-usual. During rendering, when a ray hits a translucent material, all

photons from the subsurface scattering map, within the range of the
subsurface scattering response, are gathered and weighted by the
response at that point. The weighting can be ef ciently computed
using the factored representation. In our current implementation we
use standard texture mapping to apply a material model to a mesh.
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But low-distortion texture mapping would be preferable to mini- scattering is most visible at the interface of the red and yellow wax.
mize approximation errors. A texture synthesis technique, such asIn Figure 6, the well known Buddha model is visualized using the
Liu et al. [2004], can be adapted to better texture arbitrary geome- material models for layered white onyx and cracked crystal onyx

tries. (respectively, the third and fourth columns in Figure 7). For both
examples we also included a visualization under a texture projec-
7 Results and Discussions tion light to better illustrate the effects of the subsurface scattering.

We veri ed our factorization method on several real-world sub- 8 Conclusions

surface scattering examples, ranging from fairly homogeneous

to highly translucent heterogeneous materials. Table 1 gives anlin this paper we have presented a compact factored representation
overview of the acquired and factored materials, the parametersfor the spatial component of heterogeneous subsurface scattering
used, the compression ratio, and relative errors. Although the kernelmaterials that is based on non-negative matrix factorization. Our
size is a slight exaggeration of the subsurface scattering footprint, it representation consists of a number of terms that modulate incom-
can still be used to show the extent of the subsurface scattering foring and outgoing radiance and a piece-wise linear homogeneous ap-
each example (i.eKernelSize Physical SizeResolutio). For proximation of the subsurface scattering core. We observe that the
example, the wax candle material used in Figure 7.a has a kernelhomogeneous subsurface scattering kernel can be divided out, leav
radius of approximately:8cm, while the kernel radius for marble  ing just the discontinuities caused by the heterogeneities present in
is approximately #5cm On average, a compression ratio b0 the material. These residual discontinuities can be ef ciently fac-
is obtained. Note, that this ratio compares the size of factored re-torized using a non-negative factorization approach.

sults with the total storage requirements of only the kernels of each We have illustrated the ef ciency of our factorization technique on

][g? gggzes.u'r:f?c?e”)g oti'rl? ;ﬁgmlgaig?éz f‘ergpc()?ggl\j\t,ﬁﬁ tl?]ye?gggfer:jn?e’ anumber of real-world heterogeneous subsurface scattering mate-
sponse, normalized b)’/ the energy of the response rial datasets. These datasets are obtained using a projector-camera
’ : pair. To speed up acquisition, multiple responses are recorded in
The approximation error is determined by the number of terms, the parallel. Finally, we have demonstrated that the compact factored
number of clusters, and the number of iterations. Similarly to stan- representation of our material models can be easily integrated into
dard non-negative matrix factorization, the error decays exponen-a standard global illumination rendering system, resulting in con-

tially, and drops signi cantly during the rst 50 iterations. The op-  Vvincing images.

}_llmal numt()jer c;f t(tehrms af‘;' clustzrs depends okn the sptt_em Cmﬁte”al' For future work, we would like to look into out-of-core factorization
OWever, dueé to e rapid error decay, a quIck veri cation of IN€ Se- a5 Currently our implementation requires the whole subsur-

lected parameters is possible after only a few (|.e_., 50) iterations. In face scattering matrix to t in the main memory, limiting the reso-

general, we observe that the number of clusters is related to the de ;i 011 at which the samples can be acquired #ina”y a piece-wise

gree of heterogeneity in the material. It is possible that different linear homogeneous approximation is not always well suited to di-

n}aterlgls é"r? prtesertwkt] ina .St'.nﬁle p|t>.<e.l, r(tesajltllr_wk? ina I?Jrgerfr;umber vide out the subsurface scattering kernel. For example, a sample
orréquired clusters than initially anticipated. e number ot terms, might fall right on an edge between two different materials. In this

ﬁntthe othe(thand;l_\ls reblate(fj tothe dt(teg(ee of d{SC.OTt'mIi'%tque t%thecase the resulting sample response would be a linear combination
eterogeneities. A subsurface scatieéring material exnibiting sharp ¢ i, o responses of the two materials. Using a linear combination of

fdé;iorn;mumes requires fewer terms then a material with smooth multiple subsurface scattering kernels would yield a better approx-
ures. imation. However, it is not clear how this case might be factorized

A selection of acquired materials and factored results is shown in in @ computationally stable manner.

Figure 7. For each material, we include a photograph of the orig-

inal sample. We also show the diffuse albedo and a relative error Acknowledgments
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Sample Material Physical Resolution | Kernel Size | No of No of Original Factored Ratio Min/Avg/Max
Size en?) (pixels) (pixels) Terms | Clusters | Data Size | Data Size Relative Error
Candle (Red and Yellow Wax) (a)] 198 143 | 212 154 49 49 12 100 898Mb 13Mb 1=69 | 0:002=0:031=0:050
White and Green Marble (4 4) (b) 126 126 277 277 39 39 20 100 1.4Gb 39Mb 1=37 0:003=0:010-0:060
White and Green Marble (8 8) 251 251 222 222 39 39 8 10 859Mb 12Mb 1=72 0:003=0:019-0:094
Vertical Lines (White Onyx) (c)|| 152 152 229 229 39 39 20 10 914Mb 26Mb 1=35 | 0:004=0:017=0:100
Cracked Material (Crystal Onyx) (d)| 185 176 270 260 45 45 12 5 1.6Gb 22Mb 1=74 0:011=0:040-0:560
Marble (close up) 2:6 26 128 128 39 39 16 1 286Mb 6.6Mb 1-43 0:006-0:013-0:056
Densely Veined Marble 130 130 | 213 211 29 29 8 10 433Mb 9.9Mb 1=44 | 0:003-0:096-0:163
Slightly Veined Marble 179 179 207 207 29 29 20 1 413Mb 21.0Mb 1-19 0:001=0:005-0:024
Table 1: Statistics and details regarding acquired and factored subsurface scatsgenglsn
Candle (a) Checker boar@4 4) (b) White Onyx (c) Crystal Onyx (d)
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Figure 7: A selection of acquired and factored materials. For each material, a photofjtaptodginal sample, the diffuse albedo map, a relative error distributiorn @nd a
selection of measured responses with the corresponding factored approximatidisiareEhe locations of the responses are marked on the diffuse albedo mafasheel square
illustrates the relative size of the responses. Table 1 gives additionahiafion regarding the range of the relative errors.



