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Abstract

Efficiently calculating accurate soft shadows cast by area light sources remains a difficult problem. Ray tracing

based approaches are subject to noise or banding, and most other accurate methods either scale poorly with

scene geometry or place restrictions on geometry and/or light source size and shape. Beam tracing is one solu-

tion which has historically been considered too slow and complicated for most practical rendering applications.

Beam tracing’s performance has been hindered by complex geometry intersection tests, and a lack of good accel-

eration structures with efficient algorithms to traverse them. We introduce fast new algorithms for beam tracing,

specifically for beam–triangle intersection and beam–kd-tree traversal. The result is a beam tracer capable of

calculating precise primary visibility and point light shadows in real-time. Moreover, beam tracing provides full

area elements instead of point samples, which allows us to maintain coherence through to secondary effects and

utilize the GPU for high quality antialiasing and shading with minimal extra cost. More importantly, our analysis

shows that beam tracing is particularly well suited to soft shadows from area lights, and we generate essentially

exact noise-free soft shadows for complex scenes in seconds rather than minutes or hours.

1. Introduction

Soft shadows are valuable for photorealistic rendering. They
provide visual depth cues and help to set the mood in an
image. However, generating accurate soft shadows involves
solving an expensive integral at each pixel.

The most common technique to approximate such inte-
grals in computer graphics is Monte-Carlo integration us-
ing distributed ray tracing. These methods sample the light
source many times and are prone to noise due to vari-
ance in the estimate. While importance sampling and light
source stratification can reduce this noise, it remains, and
increasing the sampling density provides only diminishing
returns [SWZ96].

Ray tracing has a long history in graphics [Whi80], and
has received particularly focused attention in the past few
years, spurred by new acceleration techniques which de-
termine primary visibility for complex scenes in real-time.
These methods use ray bundles [WSBW01], frustum prox-
ies for kd-tree traversal [RSH05, WIK∗06, TA98, HB00],
and make efficient use of the register SIMD (e.g., SSE) in-
structions available on most modern processors [WSBW01,
RSH05, WIK∗06]. All of these approaches leverage geo-
metric coherence of neighboring rays as they traverse a
scene. However, per-pixel shading can still significantly
reduce their performance (even by as much as 33% or
more [RSH05]). Furthermore, initial indications are that the

benefits of these methods are relatively modest for sec-
ondary effects such as soft shadows. The recent results
from [BEL∗07] show only a 2×–3× performance improve-
ment for ray packets as compared to individual rays for dis-
tribution ray tracing tasks.

When taken to the limit, full use of geometric coher-
ence leads us to beam tracing. Beam tracing was introduced
by [HH84] as a method of leveraging the geometric coher-
ence of groups of rays by tracing a volume of rays instead of
each ray individually. While not as general a rendering solu-
tion as ray tracing, beam tracing can solve many problems
including antialiasing, specular reflections, and soft shad-
ows. However, it has received limited attention from the ren-
dering community since its inception for several reasons.
The basic geometry intersection tests become significantly
more complicated when moving from rays to beams. More-
over, there has not been significant success in applying ac-
celeration structures to beam tracing.

In this paper, we develop novel acceleration and intersec-
tion techniques for beam tracing. We obtain real-time results
for primary rays, faster than the best accelerated ray-tracing
methods [RSH05] for many scenes where the average vis-
ible triangle size is large compared to the sample density.
Moreover, it is important to note a fundamental difference
between beam and ray tracing. For rendering primary visi-
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bility, ray tracing first point samples the image, and then de-
termines visibility for each sample. On the other hand, beam
tracing deals directly with coherent area elements (visible
triangles), and delays image space sampling to the very end.
In our beam tracing system, this final image-space sampling
is delegated to the highly parallel and specialized GPU ras-
terizer. Therefore, beam tracing can retain coherence much
further, which we can exploit for antialiasing, shading, and
point light shadows. Perhaps more importantly, beam trac-
ing is particularly well suited to secondary visibility for area
lighting. No point sampling of the light is needed in this
case—only area samples are required. As seen in Fig. 11, we
obtain essentially exact soft shadows from area lights sig-
nificantly faster than previously possible. The shadows are
exact in the sense that they are computed using an exact rep-
resentation of the visibility between the light source and the
shade point. Compared to a ray tracer which approximates
soft shadows using 256 light source samples, our beam tracer
can be 10×–40× faster.

The performance of our method derives from two main
technical contributions. We have designed a new algorithm
for beam–triangle intersection (Sec. 3.2) which splits beams
at triangle edges. This algorithm combines the successes
of fast ray–triangle intersection and polygon clipping algo-
rithms. The computational cost of the beam splitting oper-
ations is nearly equivalent to generating only one new ray
in a conventional ray tracer. We also introduce the first ef-
fective method of kd-tree traversal (Sec. 3.3) for beam trac-
ing. While frusta have previously been used to determine a
conservative traversal estimate for a bundle of rays (and our
approach is inspired by these works) we found that beam
tracing can benefit even more than rays from efficient kd-
traversal. As a high level decision, we specifically designed
both our beam–triangle intersection and kd-tree traversal al-
gorithms to be parallelizable through use of SIMD SSE in-
structions. For beam tracing, this data parallel design leads to
new algorithms quite distinct from their serial counterparts.

Our performance now scales linearly with the number of
visible triangles with relatively minimal dependence on ab-
solute scene size. Compared to ray tracing for primary vis-
ibility (Sec. 4), we achieve a speed-up relative to the ratio
of ray sample density to the average visible triangle surface
area. When the triangles are large relative to sample density,
beam tracing can be more than an order of magnitude faster
than the fastest ray tracers, and it is competitive even for
moderate to large scenes (thousands of visible triangles).

However, perhaps the biggest advantage of beam tracing
is for precise soft shadows from compact area light sources.
As our analysis in Sec. 5.1 shows, the average number of
visible triangles (and hence hit beams) at each pixel tends to
be significantly lower than for primary visibility (less than
10 for our test scenes), enabling substantial performance
improvements over ray tracing. Even in highly tesselated
scenes, where the performance benefits relative to ray tracing

are reduced, we get exact noise-free soft shadows, indepen-
dent of resolution in a matter of seconds.

2. Previous Work

We first discuss previous work on high quality soft shadows.
We then consider methods for acceleration of primary rays
in ray tracing, and early efforts at beam tracing.

2.1. Accurate Soft Shadows

Sampling: The sampling-based approach was first intro-
duced as distributed ray tracing [CPC84]. Using Monte
Carlo integration, it solves a variety of rendering problems
including motion blur, depth of field, fuzzy reflections, and
soft shadows. As with any sampling based method, vari-
ance in the estimate is evidenced by noise in the result (see
Fig. 11). In order to reduce variance to a reasonable toler-
ance, a large number of rays are often required—typically
256 shadow rays for generating a single 24-bit image, and
1024 or more shadow rays for production level rendering.

There are also methods that use visibility coherence to re-
duce the number of shadow rays [ARHM00]. However, they
typically offer only a 3×–4× speedup for intricate shadow-
ing. Moreover, they introduce measurable overhead when
used with a heavily optimized ray tracer, such as the one we
use in our comparisons in Sec. 5.1, which can significantly
reduce the benefit.

Exact Methods: Only an exact solution is capable of guar-
anteeing an accurate and noise-free result and many are
available. These methods gather exact occluder geometry
and integrate over the resulting area elements. [HDG99]
turns point samples into area samples using a flood-fill al-
gorithm. Most methods search for silhouette edges through
back-projection and/or tracking visibility events [SG94,
DF94]. While these methods can produce very high qual-
ity results, they tend to be much slower than the sampling
approaches and scale very poorly with scene geometry. Our
beam-tracing approach also uses an exact representation of
the occluding geometry for noise-free images, but is sensi-
tive only to visible scene complexity making it fast even for
large scenes.

Soft Shadow Volumes: The most recent work, introduced
by [LAA∗05] uses a mixture of the visibility event and
sampling approaches. Building upon the idea of shadow
volumes [Cro77], they utilize penumbra wedges to narrow
down the scene space from which a given edge may be
a silhouette. Their algorithm scales much better with sam-
pling density than ray tracing, allowing them to render sig-
nificantly faster for scenes with low geometric complexity.
They use a hemicube to cache silhouette information which
is highly sensitive to light orientation producing fast render
times only when the light is near axis-aligned. [LLA06]
fix many of these problems and produce impressive results
even with finely tesselated geometry. To achieve these re-
sults, they introduce a BSP construction and query phase
which is expensive both in time and memory relative to
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scene size. Both [LAA∗05] and [LLA06] determine the vis-
ible depth complexity from a point, so they still must spend
most of their time in a sample integration phase. Our method
provides higher accuracy results and raises potential perfor-
mance by completely removing dependence on point sam-
pling density.

Real-Time Methods: Our work is distinct from approxi-
mate real-time techniques [HLHS03]. While these methods
can work much faster than our approach or the above al-
gorithms, they focus on plausible rather than accurate soft
shadows, requiring significant approximations that break
down in specific situations. [SS98], for example, convolve
a shadow map to blur the edges of a hard shadow, result-
ing in some visually pleasing results. However, they have
difficulties with bodies in contact and self-shadowing. An-
other recent body of work is precomputed radiance trans-
fer or PRT [SKS02, NRH03]. PRT methods move the vis-
ibility computations to a preprocess, and project the result
into some basis (often spherical harmonics or wavelets) for
compression. With visibility already determined, the illu-
mination can then be integrated in real-time with dynamic
(usually distant) lighting environments. Our method is not
comparable, since it only requires precomputation of the
kd-tree which has been shown to be interactive even for
large scenes [HMS06], easily allows dynamic local light-
ing, and can be used with general shaders. The recent work
of [RWS∗06] approximates scene geometry as a set of
spheres to quickly project visibility to a spherical harmonic
basis removing the need for precomputation. However, they
are only able to display extremely low-frequency approx-
imate soft shadows, whereas our system can handle exact
shadows using accurate scene geometry.

2.2. Real-time Ray Tracing

There has been a significant amount of work focused on ex-
ploiting geometric coherence of rays to accelerate primary
visibility determination. Wald et al. [WSBW01] showed that
substantial benefits could be obtained by casting four rays
at a time and using SSE instructions to handle these rays in
parallel, reducing the number of kd-tree traversal steps and
increasing memory coherence. [RSH05] use frusta as ray
proxies to accelerate kd-tree traversal. They determine the
deepest kd-tree node that all of the rays in the frustum must
visit, then start ray traversal there. This further reduces the
number of kd-tree traversal steps, and along with extensive
optimization, results in up to an order of magnitude speed
improvement. Recently, [WIK∗06] extend frustum traversal
to grids.

These algorithms attempt to adapt to variations in coher-
ence using heuristics to split the frustum along image plane
axes. However, these splits are inexact for scene geometry
(both acceleration structures and triangles in general orien-
tations), and one misplaced ray is enough to slow down an
entire packet. In our work, we split beams precisely at ge-
ometry boundaries, exploiting all available coherence with
dramatic benefits for both primary and secondary effects.

Split beam at the first 

visible triangle edge

Split beam recursively at 

all visible triangle edges

End with the visible surface 

of the scene (blue).  

Often, the beams cover

many image pixels

Ns
NL

First beam is the

view frustum

Primary Beams

Shadow Beams

Beam connects surface point

to area light vertices to 

integrate visibility

Figure 1: (Top) Beam tracing for primary visibility. (Bot-

tom) Beam tracing for soft shadows.

2.3. Beam Tracing

Beam tracing was introduced in [HH84]. While it has found
limited applicability in rendering, it has proven very use-
ful in architectural acoustics [FCE∗98, FMC99] where an-
tialiasing is a primary concern. Similarly, our beam-tracing
approach provides antialiasing essentially for free, and may
therefore also be relevant in this domain.

Two related techniques are cone tracing [Ama84] and ray
differentials [Ige99]. They use a partial representation of the
ray’s volume by including the ray’s spread angle and dis-
tance to the ray’s image space neighbors respectively. These
elegant methods present a compromise: providing some of
the benefits of beam tracing with the simplicity of ray trac-
ing.

Most recent beam tracing methods are essentially im-
proved or accelerated ray tracers. [GH98] provide for adap-
tive sampling, sending beams to predict portions of an im-
age which need higher sampling densities but fall back
to rays to perform the actual visibility testing. The work
of [TA98] uses beams as a bounding volume for a single ray,
then spreads the ray’s results to the rest of the beam. They
use splits aligned to the image axes at kd-tree and triangle
boundaries to progressively improve the result.

These works and the frustum proxy methods in Sec. 2.2
circumvent beam intersection methods based on the assump-
tion that calculating beam–geometry intersections is more
expensive than tracing many extra rays. While this has been
true in the past, our paper removes this assumption, and en-
ables one to explore the full power provided by precise area
sampling over point sampling.

3. Our Beam Tracing Algorithm

For simplicity of exposition, we describe the general beam
tracing algorithm in the context of primary visibility. The

c© The Eurographics Association 2007.



Ryan Overbeck & Ravi Ramamoorthi & William R. Mark / A Real-time Beam Tracer with Application to Exact Soft Shadows

same ideas extend to secondary shadow beams (see Fig. 1
top and bottom).

As shown in Fig. 1(top), we start with one large pyrami-
dal beam representing a volume of perspective parallel rays.
This beam is recursively split at geometry primitive bound-
aries (triangle edges) into a list of beams which is the visible
surface of the scene.

As with other recent work on fast ray tracing, our scenes
are built strictly with triangle primitives, and we use a kd-
tree for acceleration. Beams traverse the scene’s kd-tree in
a method somewhat similar to standard ray tracing. Visible
triangles found in the kd-tree’s leaf nodes will split the beam
into two lists of sub-beams: hit beams and miss beams. The
miss beams continue scene traversal until they either hit a tri-
angle or exit the scene. As the beams split, they form a beam
tree (not to be confused with that generated by reflected and
refracted beams in [HH84]).

The primary challenges in making beam tracing efficient
are (1) fast beam-triangle intersection routines, and (2) fast
methods to traverse the kd-tree acceleration structure. In this
section, we give a high-level overview of our novel algo-
rithms for these tasks. The appendix provides more low-level
details and pseudocode—interested readers will wish to fol-
low it in parallel with this section.

3.1. Beam Representation

We represent our beams by 3 or 4 corner rays emanating
from a common origin. Operations on these corner rays can
be performed in parallel using SIMD instructions available
on most modern processors (similar to [WSBW01]). Pseu-
docode for our beam representation is in the appendix. It
is important to note that we represent the ray directions as
points on some plane as this helps with our efficient triangle
intersection algorithm described below. For primary beams,
we use the image plane. For secondary point light beams, we
use the plane of the hit triangle, and for area light beams, we
can use a plane on or near the light source. This ensures that
accuracy is measured in the relevant space.

3.2. Beam–Triangle Intersection

Algorithm Overview: When intersecting a beam and a tri-
angle, we seek to split the beam into two parts: that which
hits, and that which misses. The beam is split by planes
defined by the beam origin and the triangle edges. Most
beam tracing methods do not provide details on their beam-
triangle intersection tests, and generally use standard geom-
etry set operations [HH84] or off-the-shelf polygon clipping
algorithms. Our algorithm is unique and specifically opti-
mized for beam tracing.

High Level Decisions: Our design is based on two deci-
sions:

1. Mirror, as closely as possible, ray–triangle intersection,

diverging only where necessary. This is aimed at keep-
ing our algorithm as simple as possible, while benefitting

a) b) c) d)

e) f) g) h)

i) j) k) l)

Trivial Cases Needs Split

Split Procedure

Other Split Cases

Figure 2: Illustration of beam–triangle intersection. The ini-

tial beam is green, the initial triangle is blue, miss beams are

red, and hit beams are yellow. (a)-(c) are trivial cases (step

2). In (d), the beam must split (step 3). (e)-(g) split along

each edge of the triangle. In (h), the beam needs an extra

split to maintain a maximum of 4 vertices per beam. (i)-(l)

show several other possible beam–triangle splits discussed

in the text.

from most published ray-triangle intersection optimiza-
tions.

2. Parallelize through the use of SIMD SSE instructions.

While this is not usually viewed as a high-level decision,
in our case it fundamentally impacts all levels in the beam
tracer, leading to an algorithm quite distinct from its se-
rial counterpart.

Note that (2) reinforces (1) by operating on the corners
of the beam as if they were a single ray. This leads to an
algorithm that is as fast as ray–triangle intersection in the
most common cases, and only as slow as generating 1− 5
new rays (in a conventional ray tracer) in the worst cases.
Step 1–Triangle Projection: As with ray tracing, we make
the problem easier by solving it in 2D. However, instead
of projecting the beam to the triangle’s plane (the common
ray approach), we project the triangle onto the image plane.
This is mostly to avoid numerical problems introduced by
solving each beam–triangle intersection on a different plane:
intersections with neighboring triangles will not precisely
agree on their shared edge’s location. When we project, we
must clip some triangles at a near plane parallel to the im-
age plane, because some triangle vertices may be behind the
camera’s focal point. The vertices are then orthographically
projected onto either the xy, xz, or yz plane depending on the
image plane’s normal. As noted above, the beam’s corner ray
directions are points on the image plane, so they need not be
projected.
Step 2–Handle Trivial Cases: Figure 2 provides an illus-
tration of the 2D beam–triangle intersection problem. There
are 3 trivial cases as shown in Figs. 2a-c. In case (a), one of
the triangle edges completely separates the triangle and the
beam, so the beam misses the triangle. In case (b), one of
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the beam edges is a separating edge. Case (c) shows a beam
completely contained by the triangle, since all points of the
beam are inside all three edges of the triangle. Cases (a) and
(c) behave the same as for rays—we use SSE to test all 3 or
4 of the beam’s corner rays in parallel, such that handling
these cases is similar (and as efficient) for a beam as for a
single ray. Similarly, we handle the 4 beam edges in parallel
for case (b).
Step 3–Beam Splitting: The rest of the cases fall into
Fig. 2d, where some of the beam is inside the triangle and
some is outside. The beam now needs to split along triangle
edges. We do this using a method like [SH74], who clip one
edge at a time. The splitting process is shown in Figs. 2e-
h. The first edge (e) splits the beam into 2 sub-beams: one
which misses the triangle, and one which partially hits and
needs further processing. The second edge (f) splits the re-
mainder into a miss sub-beam, and partial hit. After splitting
along the third edge (g), we are left with a beam completely
inside the triangle, and three beams which miss.

The splitting requires finding intersection points between
beam edges and triangle edges. The standard Sutherland–
Hodgman algorithm processes vertices one at a time. We use
a parallel SSE based algorithm which handles all beam ver-
tices at once for each triangle edge (See the appendix for de-
tails). Computationally, finding the two intersection points
for each triangle edge is equivalent to simply generating one
new ray in a conventional ray tracer.

All splits are guaranteed to generate beams with convex
cross-section. But as the beam splits, the cross section may
become more complex, requiring more than the 4 corner rays
we can handle with SSE instructions. In these cases, we per-
form an extra split (shown as a dashed line in Fig. 2h), gen-
erating one 4-corner beam, and one 3-corner beam. The 3-
corner beam has a triangular cross-section. We still use 4 cor-
ner rays with one being degenerate. Note that Fig. 2d shows a
relatively simple situation where the triangle lies fully inside
the beam. Figures 2i-l show several other beam–triangle in-
teractions. Note that all of them can be handled in the exact
same way, but not all of them are split by all 3 triangle edges.
Again, any extra splits added to keep the beams down to 3-4
corners are shown as dashed lines.

Robust Splitting: Robustness is a major issue for beam trac-
ers. Precision errors in ray tracers are highly localized to the
individual ray and are evidenced by black pixels and seams
between triangles. Errors in beam tracers accumulate down
the beam tree possibly leading to the misclassification of en-
tire image regions. There are two enhancements we use to
combat precision errors. First, we perform all intersection
tests in the same plane, otherwise the same edge belong-
ing to the different triangles may give different results even
when tested against the same beam. Second, we use “fuzzy”
logic tests throughout our beam tracer (See the appendix for
details) to use all of the beam’s corner rays to inform any
decision.

Performance: The triangle intersection algorithm is rela-

Figure 3: (Left) The large red plane is the current kd split

plane. (Right) the split plane is isolated, the beam is in blue,

and our viewpoint is down the axis of the beam pyramid. In

this case, the beam’s corner rays only want to traverse the

far cell, but, clearly, we also need to visit the near cell.

tively fast by itself. For simple scenes (those less than 2000
or so triangles) we render primary visibility in real time (10-
40 FPS) without using any acceleration structure. However,
as with ray tracing, beam tracing slows down very quickly
without an acceleration structure. Therefore, we next intro-
duce our beam–kd-tree traversal algorithm.

3.3. KD-Tree Traversal

Ray–kd-tree Traversal: The standard ray–kd-tree traversal
algorithm as introduced by [Whi80] maintains a minimum
and maximum distance along the ray. The minimum distance
is where the ray enters the current kd cell’s bounding box,
and the maximum is where it exits. These distances multi-
plied by the ray’s direction give intersection points with the
kd cell’s bounding box. At each inner kd cell, the distance to
its split plane is tested. If the distance is less than the mini-
mum distance, the ray only needs to traverse the far cell. If
it is greater than the maximum distance or the plane lies be-
hind the ray origin, the ray need only traverse the near cell.
If it is in between, the ray must visit both cells.

Extending to Beams: The frustum shaped beam’s near and
far planes are analogous to the ray’s minimum and maxi-
mum distances. However, simply using the beam’s four cor-
ner rays to decide the path of all its rays can be inaccurate.
This is shown in Fig. 3 where a corner of a kd split plane
pierces a face of the beam. All corner rays believe they only
need traverse the far cell, when clearly some of the rays in
the pierced face also need to visit the near cell ( [RSH05]
also describes this situation).

Figures 4a-c show our solution to this problem in 2D. The
“active” portion of the beam (the portion which is traversing
the current kd cell) is dark gray. The near plane is tmin (red)
and far plane tmax (blue). The next kd split plane is shown
as a dashed line. If we attempted to use just the corner rays’
maxima, we don’t have enough information to represent the
green portion of the beam. While this doesn’t cause a prob-
lem in 2D, it leads to situations like the one in Fig. 3 for
3D. One possible solution would be to split the beam where
the kd planes split the far plane as in Fig. 4b. This approach
is precise in that it traverses all of and only the cells which
intersect the beam. We tried this approach with positive re-
sults, but there is significant overhead in the beam splitting
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tmin

tmax

Next Split Plane

tmin

tmax

Next Split Plane
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tmax

Next Split Plane

tmin
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Figure 4: (a) The minimum and maximum distances for all

of a beam’s rays cannot be represented by single near and

far planes. If we just used the corner rays’ far distances, we

wouldn’t be including the green portion of the beam. (b)We

could split the beam with a new far plane. (c) Or we can use

multiple (3 for 3D) near and far planes. (d) The large yellow

triangle will be intersected before the small purple triangle

even though the purple is closer. The hit beam for the yellow

triangle must continue traversal.

operations so it does not scale well with larger kd-trees, and
dramatically reduces available coherence.

Our Solution: Instead, we use the much simpler ap-
proach in Fig. 4c inspired by frustum proxy methods like
MLRT [RSH05] and LCTS [HB00]. We maintain 3 near and
3 far planes, one for each axis. This is like keeping track
of 3 beams, where the “active” ray volume is their intersec-
tion. If the beam’s corner rays’ distances to the current split
plane are all less than the distances to either of the other
axes’ near planes, the beam traverses only the far node. Like-
wise, if the distances are all further than either of the other
axes’ far planes or lie behind the beam’s origin, the beam
traverses only the near node. Otherwise, the beam must visit
both nodes. This leads to only two extra comparisons in the
traversal code (see pseudocode in the appendix).

Handling Hit Beams: Our algorithm for walking a beam
through a kd-tree is not much different from that for a ray,
with some notable exceptions. The biggest difference, shown
in Fig. 4d, is how hits are handled. Once a ray finds a hit in a
leaf node that is closer than its maximum exit distance from
the leaf node’s bounding box, that hit is guaranteed to be
closer along the ray than any triangle in any other leaf node.
A beam hit, on the other hand, may include a triangle that
is not wholly contained by the current kd cell (the yellow
triangle in Fig. 4d). There may be another triangle (the pur-
ple triangle) inside the beam which occludes the hit triangle
but resides in a further leaf cell. While we could clip all hit
beams to the planes of the kd cell to assure that we get only
the parts of the triangles that are guaranteed to be closest,

this leads to excessive fragmentation of the beam. Instead we
keep the full hit beam which must continue kd-tree traversal
until it reaches a kd cell which is wholly further than the hit
beam.
Comparison to Frustum Proxies: Once the beam is split,
the sub-beams continue scene traversal from the leaf node

where they are generated. This is an important distinction
from frustum proxies for ray tracing, such as [RSH05].
Those methods merely find a deep sub-tree within the kd-
tree from which to start shooting rays. Each ray or ray packet
must start from the root of this sub-tree leading to more re-
dundant kd steps. Moreover, the frusta must often visit even
more nodes to find a suitably deep one.

It is possible that one of our sub-beams may start from
a leaf node that it would not have visited if it had not been
led there by its parent. However, in practice, this is quite
rare because we split exactly at geometry boundaries. This
substantially reduces redundant kd steps, increases memory
coherence, and thus minimizes our performance dependence
on absolute scene size.

3.4. Miscellaneous Acceleration Techniques

Since we expect to visit far fewer kd leaf nodes than for ray
tracing (or at least visit them much less frequently), we can
expend a little more time there to reap some benefits.
Leaf Cell Optimizations: Upon reaching a leaf node, we do
one processing pass on the triangles before performing any
intersection tests. It is during this pass that we project the
triangles and split ones that don’t fully project to the image
plane. Since each triangle vertex only needs to be projected
once per frame, we maintain a list of projected triangle ver-
tices. We mark triangles that are either backfacing or fully
behind the beam’s near plane so that we needn’t bother ac-
cessing them with later beams in the same frame. We also
found that sorting the triangles in the leaf nodes according
to surface area, with larger triangles first, leads to less split-
ting and better performance. We perform this sorting during
the kd-tree build.
Mailboxing For Beams: [WIK∗06] observe that while
mailboxing often adds more overhead than benefit for a ray
tracer, it becomes increasingly valuable for ray bundles and
frusta. However, mailboxing is also more complicated for
our beams since a triangle may have been previously tested
against the current beam or any of its parents. To deal with
this, we maintain a hierarchical mailboxing structure (we
call it the Post Office) where each node is just an inte-
ger pointing to its parent node. Each level of the Post Of-
fice represents the new beams generated at a kd-tree leaf.
Each beam contains its own mailbox ID, and each triangle is
marked with the current beam’s ID. The mailbox test checks
whether the triangle’s mailbox ID matches either the cur-
rent beam’s ID or any of its parents’ IDs. It turns out that
it is excessive to test every parent ID since it is much more
likely that a triangle was intersected with one of the 3 or 4
immediate parents of the current beam. We test against the
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thumbnails on top correspond to that particular view.)

current beam and its 3 parents. Mailboxing gives us a speed
improvement between 10% and 50%.

4. Beam Tracing Analysis–Primary Rays

We now study the performance of beam tracing for real-time
primary visibility and point lighting, which is very useful in
understanding its overall performance characteristics. Those
readers more interested in our application to soft shadows
are referred to Sec. 5.

For our beam tracer, we trace primary visibility, then send
our hit beams to the GPU as a list of quads for final ras-
terization. Since we send full area elements, we can ren-
der with 6× antialiasing and shade with a general per-pixel
programmable shader. These area elements exactly represent
the visible surface of the scene, most often with many fewer
elements than the total number of triangles in the scene. As
such, even at 1024x1024 resolution with antialiasing and
per-pixel shading, the GPU portion of our algorithm uses
almost negligible time. By contrast, optimized ray-tracing
techniques return point samples and can show as much as
10%-33% overhead just for cosine shading [RSH05]. To fo-
cus our comparisons on visibility computation rather than
shading, in this section we use only (antialiased) diffuse
shading and one light positioned at the camera.

We compare Beams to both our own optimized ray tracer
(Rays, Sec. 4.1) as well as MLRT [RSH05] (Sec. 4.2),
the fastest current method. We use MLRT’s kd-tree builder
(with settings tuned specifically for MLRT’s performance)
for beam tracer, ray tracer, and MLRT alike. We don’t use
antialiasing for either our ray tracer or MLRT as this would
slow down the performance of those systems. All images are
generated at 1024×1024 resolution on a 3.0 GHz Pentium 4
processor with 1.5 GB of memory and an ATI Radeon 9800
graphics card.

4.1. Beams vs. Rays

Comparison Setup: We compare to our own optimized
one-at-a-time ray tracer which uses cache coherent data

structures and optimized kd-tree traversal and triangle in-
tersection. While it doesn’t use ray bundles and frustum
proxies, it is competitive with other fast one-at-a-time ray
tracers—we will verify this by comparing timings with
MLRT in Sec. 4.3. We also use this ray tracer later for our
comparisons with secondary soft shadow rays in Sec. 5.

The table in Fig. 5 shows several statistics for both beams
and rays on several scenes. The values in the table repre-
sent averages taken over many viewpoints in the scene. The
number of kd-tree steps and intersection tests are the total
for rendering a single frame, divided by the image resolu-
tion (1024x1024).

Performance Comparison: For the simplest scene (Erw6),
our beam tracer performs several orders of magnitude fewer
kd steps and intersection tests leading to framerates well into
the hundreds. More impressively, beams achieve high fram-
erates on the soda hall model with over 2 million triangles.
While our average framerate is about 21 FPS, it often stays
in the hundreds while on the inside.

Even for the highly tesselated conference model, beams
perform one to two orders of magnitude fewer kd steps and
intersection tests, maintaining real-time performance. The
heavily tesselated Armadillo model is a worst case scenario
for our beam tracer with many small triangles which are of-
ten smaller than a pixel. Even so, this model shows that our
beam tracer is robust enough to handle even highly complex
models.

Analysis: There is some worry that the beam splitting pro-
cess could lead to exponentially more beams than the num-
ber of visible triangles, leading to an exponential decay in
performance as we move to larger scenes. In Fig. 6, we plot
visible triangles versus hit beams to show that this is not the
case. The ratio of hit beams to visible triangles stays fairly
constant at around 5.5–6.5.

Figure 7 plots visible triangles per frame versus wall-
clock time. Performance is almost perfectly linear in the
number of visible triangles (or hit beams), but is relatively
insensitive to absolute scene size. (The slope of the confer-
ence model graph is steeper showing some connection to
scene depth complexity.) Indeed, our beam tracer is faster
on the 2 million triangle soda hall model than on the 280K
conference model. For soda hall, only the first beam needs
to walk all the way to the leaves of the kd-tree and the rest
spend most of their time at the leaves, which is where we
want them to be.

4.2. Beams vs. MLRT

Comparison Setup: We now compare timings against
MLRT [RSH05], which is currently the fastest known ray
tracer. MLRT uses a frustum proxy mechanism to find deep
kd-tree entry points from which it sends 4x4 packets of rays.

To get closer to a direct algorithmic comparison, we set
MLRT to use only one thread and turn off quad generation
(MLRT aggressively groups axis-aligned triangles into large
quads allowing the use of a greatly simplified intersection
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test). We believe beam tracing would benefit equally from
these two optimizations, and that the complexity in imple-
menting them would be comparable. Image tiling for par-
allelization is as easy for beams as rays, and MLRT needs
to implement the quad optimizations for multiple ray types
(frusta, 4x4 packets, 4x1 packets, etc.) whereas we deal only
with beams. We summarize how these optimizations affect
MLRT’s performance in Fig. 8.

Timing comparisons are shown at the bottom of Fig. 5.
Note that these are averages over many views as usual. (They
are similar but not exactly the same as in Fig. 8, since the lat-
ter were taken from rendering a single view, to enable easier
comparison to published MLRT results.) We weren’t able to
measure the number of kd steps and intersection tests for
MLRT, but it is possible to estimate these numbers by taking
our ray tracer’s measurements (Fig. 5), and adjusting them
downward to account for the known improvement MLRT
provides. Specifically, to estimate MLRT’s kd steps, divide
our ray tracer’s measurements in Fig. 5 by about 10, and for
the intersection tests, divide by about 4. This gives a fairly
accurate estimate, agreeing with MLRT’s published results.
Since MLRT traces four rays at a time, the number of inter-
section tests and kd steps should be divided by 3 or 4. Be-
yond this, the kd steps should be further divided by 2.5 - 3.5

#
Threads

Quad
Optimization

S hading +
R endering

E rw6 S oda Hall Conference
R oom

Armadillo

2 On O� 87.58 FPS 20.42 FPS 15.23 FPS 10.34 FPS

1 On O� 74.12 FPS 16.26 FPS 10.85 FPS 6.98 FPS

1 O� Off 27.35 FPS 8.97 FPS 7.22 FPS 5.23 FPS

1 O� On 13.05 FPS 7.36 FPS 5.6 FPS 4.35 FPS

Figure 8: Impact of multi-threading, quad optimizations,

shading and rendering on MLRT. The timings were taken

from rendering a single view. To make a fair algorithmic

comparison for rendering and displaying diffuse shaded im-

ages, we consider the last line for our tests.

to account for MLRT’s frustum traversal. These adjustment
factors are taken from [RSH05].
Performance Comparison: From Fig. 5, we are over an
order of magnitude faster than MLRT for Erw6. Our most
impressive result is on soda hall, where we are 4× faster.
The absolute size of the model slows MLRT down in the kd-
tree’s inner nodes, while our beams keep to the leaves. While
speed is comparable to MLRT for the highly tesselated con-
ference model, we still perform an order of magnitude fewer
kd-steps and intersection tests. We perform fewer such tests
even on the armadillo where we are slower.
Point Light Hard Shadows: The true power of the ray
tracing body of algorithms is high quality secondary effects
such as shadows. However, gathering the primary pixels into
large enough coherent groups for either ray packets or frus-
tum proxies to be efficient is a difficult task. For our beam
tracer, we simply connect our primary hit beams, which of-
ten contain 10s to 1000s of pixels, to the point source with
another beam. When we trace this beam, the resulting hit list
represents obstructed portions of the beam, while the miss
list is fully unobstructed.

The images in Fig. 9 were rendered with our beam tracer
at 1024x1024 inside the soda hall model at 21 FPS. MLRT
can only render this view at 5 FPS. The left image shows
our beam tracer’s high quality shadows, while the right
image shows the beams which created it—notice that our
beam tracer produces a perfect shadow cut-out for high qual-
ity antialiasing. We display a close-up of the yellow high-
lighted region for both beam tracing and MLRT in Fig. 10.
The MLRT image (right) clearly shows jagged object and
shadow edges along with spurious black pixels. Our image
is rendered with 6× antialiasing with almost no performance
penalty.

4.3. Rays vs. MLRT

Before moving on to soft shadows, we take a moment to
compare MLRT to our own ray tracer, since we use the lat-
ter for comparisons in Sec. 5. From the bottom of Fig. 5,
MLRT is consistently about 10×–14× faster. This is as ex-
pected since both ray packets and frustum traversal intro-
duce a multiplicative factor of about 3–3.5 each, and MLRT
is also strongly optimized for memory efficiency.

We therefore conclude that our ray-tracer is quite well
optimized for a one-at-a-time tracer. Moreover, MLRT’s
speedups are specific to primary visibility. It is unclear as to
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Anti-aliased Point Light Shadows Wireframe Beams

Figure 9: Real-time antialiased point light shadows. (Left)

This image was rendered at 21 frames per second at

1024x1024 resolution with 6× antialiasing inside the 2 mil-

lion triangle soda hall model. (Right) The wireframe beams

which generated the top-left image: all geometry and shad-

ows are cut out exactly providing for high-quality antialias-

ing (Fig. 10).

Beam Tracing (Anti-aliased) MLRT (Aliased)

Figure 10: (Left) close-up of highlighted region from Fig. 9.

We render with 6× antialiasing with almost no performance

penalty. (Right) same region with MLRT clearly displaying

jagged edges and spurious black pixels.

how these methods perform for secondary effects like area
lighting, and it is expected that the speedup will be much
smaller (a brief discussion of the arguments for this are given
in Sec. 5.2). Therefore, we use our heavily optimized ray
tracer as the comparison method in the next section.

5. Soft Shadows

We now describe the main application of our beam tracer,
to efficiently compute accurate soft shadows. To compute
soft shadows from an area source, we need to solve the area
lighting equation

B(x,ωo) =
∫

A
V (x,p)L(ωi)ρ(ωi,ωo)cosθi cosθl dp, (1)

which gives the exitant radiance at a point x. V (x,p) is the
visibility from x to a point on the light p, and ρ(ωi,ωo) is
the BRDF. θl is the angle made by the incoming ray with the
surface normal at the light, and we integrate over the area A

of the light source.

The most difficult part of solving this equation is the deter-
mination of the visibility V (x,p), between each image point
and all points on the light source, and this is where beam
tracing can be most useful. For a simple triangle or square
light source, we simply create a beam whose apex is the im-
age point and base is a triangle or quad of the light source
(See Fig. 1 (bottom)).

After shooting the beam, the beam trace’s hit list repre-
sents obstructed polygons on the light source while the miss
list is visible polygons on the light source. There are two op-
tions for calculating the irradiance from the visible portion
of the light. We can add up the contribution from each of the
polygons in the miss list, or first calculate the lighting as if
the entire light were visible and subtract the contribution of
the polygons in the hit list. Both methods are equivalent, and
we choose one based on which list is smaller.

For simplicity of comparisons in Sec. 5.1, we integrate
the lighting using the common approximation also used
in [SS98] and [ARHM00]. We modulate the irradiance of
a point source at the center of the light with the fractional
visibility of the entire area light. This allows us to pull the
lighting and BRDF terms as constants outside the integral
and focus on visibility,

B(x,ωo) = Lρ(ωi,ωo)cosθi cosθl

∫
A

V (x,p)dp, (2)

Note that this still requires integrating over the entire visibil-
ity function to find the average attenuation of the area light
source.

It is also possible to integrate the lighting exactly using ei-
ther [HDG99] for Lambertian surfaces or [Arv95] for specu-
lar. However, we found that equation 2 works well for small
area lights with diffuse objects. It also reduces noise in the
ray tracing comparison method by removing the samples’
shading dependence on light location.

5.1. Results

Comparison Setup: To render an area lit image, we first
need to trace primary visibility for which we use our ray
tracer. All timings include time to cast primary rays, as well
as shadow casting and calculation. All tests were run on a PC
with a 3.0 GHz Pentium 4 processor, 1.5 GB RAM, and an
image resolution of 512x512 (for soft shadows, timings for
both beams and rays scale linearly with image resolution,
and their ratio remains relatively unchanged).

Our beam tracer consistently produces noise-free results
regardless of scene complexity and sample density so it is
difficult to directly compare to ray traced solutions. We do
so here to provide a context to measure our performance. As
such, determining the correct number of samples and sam-
pling strategy for “comparable quality” results is somewhat
arbitrary. We use 256 samples on a jittered grid as this is
often considered the minimum requirement to produce high
quality soft shadows.

We compare to our own optimized ray tracer As we
showed in Sec. 4.3, our ray tracer is quite well optimized.
We do not use MLRT because it does not provide a suit-
able area lighting implementation. Besides, as described in
Sec. 5.2, we do not believe it would provide significant ben-
efits. Since we seek to study the effectiveness of secondary
visibility determination, we use Lambertian materials and a
single square light in all comparisons. We use our own kd-
tree builder (with the same tree for beams and rays) for all
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Figure 11: Beam Tracing vs. Ray Tracing. Beam tracing (center row) provides an exact lighting solution in seconds. Ray tracing

requires 256 samples or shadow rays (bottom) to reduce noise within tolerance. Attempting to ray trace with few enough samples

to match the speed of beam tracing (top) leads to severe noise. All images are rendered at a resolution of 512×512 pixels.

scenes except soda hall. It is constructed using the most basic
form of the surface area heuristic construction algorithm as
described in [Hav00], and the nodes use a cache optimized
layout as in [WSBW01].

Scenes: The plant scene has 5245 triangle faces. Almost
every edge is a silhouette edge making it difficult for edge
based methods such as [LAA∗05, LLA06]. The soda hall
model, with well over 2 million triangles, would require
occlusion culling in order for these methods to handle this
scene efficiently. The Sponza Atrium (76154 triangles) and
conference (282801 triangles) represent mid to large sized
scenes. The light source size and camera viewpoint were se-
lected to show interesting configurations for generating soft
shadows.

Image Comparison: Figure 11 compares image quality and
wall clock time using our beam tracer vs. ray tracing. The
center row, generated using our beam tracer, serves as the
reference result since we always obtain an exact solution
for the visibility. A minimum of 256 shadow rays, bottom
row, are required to reduce noise to acceptable levels. As can

be seen in all examples in the top row, reducing the sample
count leads to severe noise. For the plant image, we also in-
clude a close-up without jittering, to show alternative band-
ing artifacts—the noise from jittering is generally considered
less disturbing than banding. In these examples, our beam
tracer achieves a 10×–40× improvement over ray tracing
for “comparable” image quality.

Quantitative Comparison: Figure 12 shows several statis-
tics for beam tracing and ray tracing (with 256 shadow rays).
We divide all statistics by the image resolution (512x512) to
give per pixel measurements. We also include the number
of visible triangles seen from each pixel by our beam tracer
for the shadow beams, since the number of visible triangles
was identified as a primary scene component relating to our
performance in Sec. 4.

We are clearly operating well into the region where beam
tracing offers its greatest impact. With an average of less
than ten visible triangles from each pixel for these scenes,
our beam tracer can operate on hundreds of thousands of
image pixels per second with the highest accuracy.
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Figure 13: Beam tracing scalability with light source size.

Our beam results are nearly linear in the light source size.

Also note that secondary beams are able to process many
more triangles per second than primary beams (compare vis-
ible triangles per second in Figs. 5 and 12). Recall that for
primary visibility, the number of hit beams was about 6×
the number of visible triangles (Fig. 6). This is no longer
the case for secondary visibility. It is around 2 and often
less. This is because we no longer care about the nearest
hit, but rather any hit between the primary hit point and the
light source. Since the triangles are sorted by size within the
leaves, we can directly conclude much larger light source ar-
eas as occluded. This constant is a key for measuring beam
splitting efficiency, and it is clear that beams are particularly
efficient for secondary visibility. So, while rays benefit from
fewer rays and a first hit criterion, we benefit even more by
being able to quickly eliminate more of the light source.

Light Source Area vs. Time: Figure 13 shows light source
area versus wall clock performance using our beam tracing
method in the sponza scene. Even the smallest light source
in the figure generates a visible penumbra region, requiring
many rays to trace accurately in a ray tracer. Our results are
nearly linear in the light source size. (It is difficult to com-

pare this graph to the behavior of other shadow algorithms
with light source size, since most previous work does not
report this vital statistic.)

Note that our ray tracer renders these images in around
94-98 seconds with 256 shadow rays, so even for a very
large light source, our beam tracer is more than 2× faster.
Note also that as the light source size (and penumbra region)
grows, more shadow rays than 256 would likely be needed to
achieve the same level of accuracy with jittering, or reduce
banding artifacts without jittering. On the other hand, our
beam tracer always produces exact results, never needing to
point sample the light source.

5.2. Comparison to Other Methods and Limitations

MLRT: Although results on MLRT applied to area lighting
haven’t been published, it is easy to envision a simple exten-
sion of it. While we showed that MLRT can be 10×–14×
faster than our ray tracer for primary visibility, we don’t be-
lieve it would be nearly as efficient for soft shadows. When
calculating primary visibility, we are dealing with hundreds
of thousands to millions of samples where MLRT’s frus-
tum proxies can accelerate much larger (32x32 – 128x128)
groups of rays deep into the kd-tree. With only 16x16 rays, it
is hard to imagine getting much more than the 3×–4× pro-
vided by tracing 4-ray packets, not the 10×–40× improve-
ment that we demonstrate.

Limitations: Our method takes advantage of all geomet-
ric coherence available leading to fast render times when the
triangles are large relative to the sample resolution. Unfor-
tunately, this can also become a problem when there is little
geometric coherence. If the scene is highly tesselated, i.e., if
the visible triangles to sample density ratio is high enough
(such as scenes with millions of visible triangles), standard
Monte-Carlo ray tracing or the soft shadow volume method
in [LLA06] may provide faster results, but cannot guarantee
the same quality since we produce exact shadows without
noise. Also, sampling based methods can handle more gen-
eral situations (textured light sources, complex BRDFs, ...).

In practice, level of detail could be used (and our approach
gives it even greater importance) to avoid scenes where tri-
angles are small relative to the required sample density. This
presents an application specific choice: to ray trace with re-
duced sampling density or beam trace with reduced geomet-
ric detail. In the future, we plan to evaluate LOD methods,
and some approaches for falling back on standard ray tracing
when the beam’s cross-section gets too small or for evaluat-
ing more complex materials and/or lights.

6. Conclusions and Future Work

We have introduced a new beam tracing algorithm, mak-
ing this historically slow method competitive with the fastest
ray tracers for determining primary visibility for scenes with
moderate complexity. Using this beam tracer, we compute
exact and noise-free soft shadows in a matter of seconds.
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We have only begun to optimize our beam tracing imple-
mentation. The results in Fig. 5 give us hope that beam trac-
ing will eventually be faster than the best ray tracing meth-
ods for all scenes except those for which the triangle size is
close to sampling density.

Instead of only exploiting angular coherence from each
pixel for soft shadow generation, we would also like to ex-
ploit image space coherence. We have already started explor-
ing connecting the area light source and the image space area
elements by specific beams, to exactly determine visibility
obstructions between the two. The result is a discontinuity
mesh relating the light source and the visible triangles. This
intuitively extends to global illumination.

Beam tracing has the potential to efficiently create a vari-
ety of high quality visual effects, beyond soft shadows. Gen-
erating specular reflections and caustics is one promising di-
rection. In fact, the work of [LWY∗07], developed concur-
rently with ours, extends beams to nonlinear reflection and
refraction transformations. Caustics often require millions of
rays to get a sampling density high enough to remove noise
from the image. Just as for soft shadows, beams may be rel-
atively insensitive to this problem.

Beam tracing has largely been ignored by the render-
ing community recently due to its perceived poor perfor-
mance characteristics. Our work proves that this perception
is largely undeserved, and we have only provided a peek into
the true potential for high speed beam tracing. We hope this
work encourages more attention in this promising direction.
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Appendix A: Algorithm Details

In the following subsections we give low-level details and pseu-
docode for beam–triangle intersection and kd-tree traversal.

Beam Representation
A 3D ray is defined by an origin, a direction, and a maximum dis-
tance along the ray (the hit distance once a hit is found for a pri-
mary ray). We represent a beam as four corner rays. In our work,
we exploit the SSE intrinsics, a library of macros, for ease of imple-
mentation. The atomic datatype used by these macros is the __m128
structure, which packs 4 32–bit single precision floating point values
together into one variable. Most standard floating point operations
can be performed on all four variables in parallel. In the following
pseudocode examples we will replace these intrinsics with more in-
tuitively meaningful terminology (__m128 ≡ float4) and operators.

Instead of representing a beam as an array of four rays (Array
of Structures or AOS), it is more efficient to interleave the rays’
members into Structures of Arrays (SOA):

// SOA representation of 4 3D vectors

struct soavec3 {

float4 x,y,z;

};

// A 3D Beam is defined by 4 corner rays which meet at a point.

struct Beam {

soavec3 Origin; // Beam origin

soavec3 Dirs; // Beam corner’s directions

soavec3 InvDirs; // Inverse of directions

float4 MinDist; // Min distance along corner rays

float4 MaxDist; // Max distance along corner rays

int Signs[3]; // Signs of Dir

int pad; // Keep the structure aligned

};

a) b)

Figure 14: A difficult intersection test case requiring fuzzy logic.

Does the infinitesimally small ray in (a) (green) lie inside or outside

the triangle (blue) as determined by its left edge (red)? Clearly the

beam in (b) (green) misses the triangle, but floating point accuracy

may tell us otherwise.

Triangle Intersection
In the image plane, the beam’s 3 or 4 corner points can all lie on one
side of a triangle edge or be split in two. Using SSE2 instructions,
we can simultaneously test the 4 beam points against the triangle
edge, and store the result in a 4-bit mask:

soavec2 diff = BeamPoints2D - triPoint2D;

float4 dotval = dot( diff,triPerp2D );

bool4 mask = (dotval < 0);

This mask tells us on which side of the plane each of the 4 points
resides. If all 4 bits are zeros, all points lie on the outside of the
plane, and if all are ones, they lie on the inside. Any other result in-
dicates that the plane splits the 4 points, and more than that, exactly
which edges the plane splits. There will be either 2 or 0 intersected
edges, and finding the actual intersection points requires two line–
plane intersection tests.

We use a switch statement on the mask from the plane test, to split
based on the 15 different possible orientations of the points relative
to the edge (in reality there are only 11 possible orientations as 0
and 15 are the no split cases and 5 and 10 aren’t possible as long
as the beam’s cross section is convex). We then shuffle the beam
points and edges such that we can find the two intersection points
in parallel. Computationally, finding these two intersection points
is about as expensive as generating one new ray in a conventional
ray tracer. However, the branching and the shuffling do add some
overhead. Once we have determined the intersection points, it is a
simple matter to shuffle the beam’s members with the intersection
points to generate the new beams.

Robust Splitting With Fuzzy Intersection Tests: What happens
when a plane passes through beam corner points as in Fig. 14b?
If we were dealing with rays (Fig. 14a), this is a difficult question
to answer, but when dealing with beams (Fig. 14b), the other cor-
ner points should determine the result. If we’re not careful, numer-
ical imprecision could lead us to split this beam when no split is
really necessary. Corner points which are within some distance ep-
silon from the plane shouldn’t affect the determination of which side
the beam is on and whether to split. These points can be masked out
using a fuzzy mask:

bool4 fuzzyMask = (Epsilon < abs(dotval));

This assures that only the points which can definitively decide
the result come into play. Similar fuzzy logic is used throughout our
beam tracer.

KD-Tree Traversal
Below we include pseudocode for our beam–kd-tree traversal algo-
rithm. Note that it is quite similar to the standard ray–kd-tree traver-
sal algorithm. In the actual implementation, there is also a test to see
if the plane passes through the origin, and we must visit the left or
right child node determined by the signs of the beam’s directions.

When the beam must visit both child nodes, we must push a
KDStackNode onto the KDStack to be retrieved later by Get-
NextBeam(). Each KDStackNode must hold a pointer to the far
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KDNode, the bounding box of the far node, and the current size
of the MissStack. All new beams pushed onto the MissStack
during triangle intersection must continue down the kd-tree as the
current beam would. GetNextBeam()(not shown here) must de-
termine the next KDNode to be visited as well as the next beam for
that node and the new TMin and TMax values for that beam.

void Traverse( Beam * CurBeam, KDTree & Tree ) {

const int mod[] = {1,2,0,1};

// Current bounding box relative to beam’s origin

AABBox CurBox = KDTree.Box - CurBeam->Origin;

soavec3 TMin; // Entry distances for each beam ray and axis

soavec3 TMax; // Exit distances for each beam ray and axis

// Check if the CurBeam hits the scene’s bounding box,

// and initialize TMin and TMax.

if ( !BeamVsAABBox(CurBeam,CurBox,TMin,TMax) ) return;

KDNode* CurKDNode = KDTree.Root;

while( CurBeam ) {

while( !CurKDNode->IsLeaf() ) {

int Axis = CurKDNode->GetAxis();

float4 Split = CurKDNode->GetSplit();

float4 SplitSubO = Split - CurBeam->Origin;

float4 Dist = CurBeam->InvDirs[axis] * SplitSubO;

bool4 ltZeroMask = (Dist < 0);

if ( ! ~ltZeroMask ) {

// Plane passes behind Origin

CurKDNode = GetNearChild(CurKDNode,CurBeam);

} else if(!(Dist < TMax[mod[Axis]]) || !(Dist < TMax[mod[Axis+1]])) {

// Traverse near node only

CurKDNode = GetNearChild(CurKDNode,CurBeam);

} else if(!(TMin[mod[Axis]] < Dist) || !(TMin[mod[Axis+1]] < Dist)) {

// Traverse far node only

CurKDNode = GetFarChild(CurKDNode,CurBeam);

} else {

// Traverse both nodes

int which = CurBeam->Signs[Axis];

AABBox FarBox = CurBox;

KDNode* FarNode = GetFarChild(CurKDNode,CurBeam);

// Save the far kd-node for later.

FarBox[which][Axis] = SplitSubO;

KDStack.push( KDStackNode( FarNode, FarBox, MissStack.size() ));

// Traverse the near node.

CurBox[1-which][Axis] = SplitSubO;

TMax[Axis] = Dist;

CurKDNode = GetNearChild(CurKDNode,CurBeam);

}

}

// Intersect with the triangles in this leaf node.

int NumTris = CurKDNode->GetNumTris();

if ( NumTris )

BeamVsTriList(CurBeam,CurKDNode->GetTriListPtr(),NumTris);

// Get the next beam and KDNode from the stack

(CurBeam, CurKDNode) = GetNextBeam(KDStack,CurBeam,TMin,TMax);

}

}
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