
From the 2002 ACM SIGGRAPH Symposium on Computer Animation

Synthesizing Sounds from Rigid-Body Simulations

James F. O’Brien Chen Shen Christine M. Gatchalian

EECS, Computer Science Division
University of California, Berkeley

Abstract

This paper describes a real-time technique for generating realistic
and compelling sounds that correspond to the motions of rigid ob-
jects. By numerically precomputing the shape and frequencies of an
object’s deformation modes, audio can be synthesized interactively
directly from the force data generated by a standard rigid-body sim-
ulation. Using sparse-matrix eigen-decomposition methods, the de-
formation modes can be computed efficiently even for large meshes.
This approach allows us to accurately model the sounds generated
by arbitrarily shaped objects based only on a geometric description
of the objects and a handful of material parameters. We validate our
method by comparing results from a simulated set of wind chimes
to audio measurements taken from a real set.
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tation]: Sound and Music Computing—Signal analysis, synthesis,
and processing
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1 Introduction

One of the central goals for the field of computer graphics is the
compelling portrayal of realistic synthetic environments. However,
generating convincing animations of scenes such as that shown in
figure 1 requires depicting not only the visual aspects of the scene,
but its audio components as well. While constructing a soundtrack
by hand often provides a feasible option for animations that are gen-
erated off line, interactive applications increasingly rely on physi-
cally based simulation techniques to generate animated motions in
real-time and these applications require methods for generating the
corresponding audio in real-time as well.

One class of simulation method that has found widespread use
in real-time applications is rigid-body simulations. Because rigid
bodies are made up of incompliant materials, they experience only
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Figure 1: A synthetic environment containing a set of simulated
wind chimes. Both the motion of the chimes and the corresponding
audio can be computed at interactive speeds.

small-amplitude deformations during interactions with their envi-
ronment. Explicitly discarding these small deformations allows
rigid-body simulators to model a system’s remaining degrees of
freedom efficiently. However, although visually insignificant, it is
the vibration of these small-amplitude deformations that generates
the sounds heard from these objects.

This paper describes a real-time technique for generating real-
istic and compelling sounds that correspond to the motions gener-
ated by rigid-body simulation methods. Precomputing the shape
and frequencies of an object’s deformation modes allows that ob-
ject’s vibrational response to contact forces to be efficiently com-
puted at runtime. The vibrational response is then used directly
to compute the corresponding audio. Our technique computes an
object’s deformation modes numerically by performing an eigen-
decomposition of the system matrices from a finite element model
of the object. This approach allows us to accurately model the
sounds generated by arbitrarily shaped objects based on a geomet-
ric description of the object and a handful of material parameters.
The diagram in figure 2 provides an overview of this process.

2 Background

The technique presented in this paper is closely related to previous
methods developed by van den Doel, Kry, and Pai. The concept of
using the vibrational modes of an object for generating sound was
originally introduced to the graphics community in [van den Doel
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Figure 2: This diagram illustrates both the preprocessing steps that
are used to construct the audio/visual model for an object, and the
processes that subsequently generate sound and motion from this
description at interactive speeds.

and Pai, 1996] and [van den Doel and Pai, 1998]. They showed
that the analytically computed vibrational modes of simply shaped
objects, such as square plates or cylindrical rods, could be used to
generate sound maps over the object surfaces. They constructed a
system that computed realistic contact sounds when an interactive
user indicated a point on the surfaces of the modeled objects. Be-
cause the maps were generated from the mode shapes, the system
correctly captured the variations that arise when objects are struck
at different locations. More recently, [van den Doel et al., 2001] de-
scribed a method that uses recorded data to construct sound maps
over the surface of an object. In addition to allowing a user to inter-
actively generate sounds by tapping the object surfaces, they used
contact forces from a real-time rigid-body simulation to excite the
sampled modes.

Our work builds on the ideas of these two previous methods by
extending the range of objects that can be modeled to include ones
that are neither simple shapes nor available to be measured. The
analytically computed modes used in [van den Doel and Pai, 1996]
and [van den Doel and Pai, 1998] are the continuous equivalent
of the numerically computed discretized modes described in Sec-
tion 3.1 of this paper. Numerical computation allows determining
the modes for essentially arbitrary shapes as opposed to a few sim-
ple shapes, and it makes fewer assumptions about the underling
differential equations. Our method for driving the sound generation
from a rigid-body simulation is essentially identical to the method
used in [van den Doel et al., 2001], but we have found that useful
results can be generated using “off-the-shelf” rigid-body simulators
and that a special contact method is not necessarily required unless
one wishes to produce rubbing or scraping sounds.

Another related method for generating sound has been described
in [O’Brien et al., 2001]. Their approach uses a nonlinear finite
element method to explicitly model the response of an object to
external forces. Audio is generated by analyzing the computed sur-
face behavior and then applying a set of filters to the computed
motion for extracting frequency components that fall within the au-
dible range. Unlike the method detailed in this paper and the previ-

ously described methods of van den Doel and his colleagues, the use
of a nonlinear finite element method allows them to model sounds
that arise from nonlinear behaviors such as buckling. The main
limitation of their method is that it requires large amounts of com-
putation. In contrast, our method can accurately model only sounds
produced by linear phenomena, but it can compute these sounds in
real-time.

In addition to the above physically motivated work on sound gen-
eration, other prior work in the graphics community has focused
on sound propagation and heuristic approaches to sound genera-
tion. Producing synchronized soundtracks for animations was ad-
dressed in [Takala and Hahn, 1992] and [Hahn et al., 1995]. For
modeling tearing cloth, [Terzopoulos and Fleischer, 1988] gener-
ated soundtracks by playing a pre-recorded sound whenever a con-
nection in a spring mesh failed. Work described in [Savioja et al.,
1997] focused on creating virtual musical performances in virtual
spaces using physically derived models of musical instruments and
acoustic ray-tracing for spatialization of the sound sources. Other
researchers have developed methods for correctly modeling reflec-
tions and transmissions within the sonic environment [Funkhouser
et al., 1998; Funkhouser et al., 1999; Min and Funkhouser, 2000;
Tsingos et al., 2001].

The method described in this paper is also related to previous
work in the graphics community on modeling deformable objects.
The idea of decoupling an object’s rigid-body behavior from it’s
elastic deformation was proposed in [Terzopoulos and Fleischer,
1988] as an efficient method for modeling deformable objects. This
idea was extended in [Pentland and Williams, 1989] by using modal
analysis for modeling deformable objects, although instead of ac-
tually using the object’s vibrational modes they approximated them
with arbitrary linear and quadratic deformation fields.

Outside the field of computer graphics, an extensive amount of
research on sound modeling has been conducted in the digital sound
and music communities. There the focus has been primarily on ac-
curately modeling the sounds generated by musical instruments, in-
cluding the fine subtleties that distinguish high-quality instruments.
A comprehensive review of the work that has been done in those
areas can be found in [Cook, 2002].

3 Methods

The mechanical dynamics of a solid physical object can be decom-
posed into two components: idealized rigid-body motions and elas-
tic deformations. An object is referred to as being rigid, or incom-
pliant, if its response to typical interactions includes only negligi-
ble deformations. For example, when a person taps the side of a
drinking glass it flexes slightly but the amplitude of this deforma-
tion is small enough to be unobservable by sight. However, this
small deformation may be observable by hearing. In particular, if
the elastic properties of the glass are such that the small deforma-
tion induced by the tap results in vibrations at frequencies between
approximately 20 and 20, 000 Hz, then the small pressure fluctua-
tions caused by the oscillating deformation will be heard as sound.
For further information on the physical process of sound generation
we refer the reader to [Kinsler et al., 2000].

3.1 Modal Analysis

Our method for modeling the sounds generated by rigid objects
makes use of a well studied technique known as modal analysis.
This section presents a brief overview of modal analysis and pro-
vides the framework for describing our methods. We refer the
reader to [Cook et al., 1989] for additional information on modal
analysis.

A physical system that has been discretized using a finite ele-
ment, finite differencing, or other similar method can be expressed
in the following general form:

�
( � ) + � ( � , ˙� ) + � ( ¨� ) = � (1)
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where � is the vector of node displacements, an overdot indicates
a derivative with respect to time,

�
and � are nonlinear functions

that respectively determine the internal forces due to node displace-
ments and node velocities, � maps node accelerations to node
momenta, and � represents any other (e.g. external) forces. Typi-
cally, the forces determined by

�
are internal elastic forces and �

determines damping forces.
In general, equation (1) is nonlinear, however if we assume that

the displacements are small then we may linearize about the sys-
tem’s rest configuration giving:

� � + � ˙� + � ¨� = � (2)

where
�

, � , and � are respectively known as the system’s stiff-
ness, damping, and mass matrices. For the physical systems corre-
sponding to solid objects, all three matrices are real and symmet-
ric. Both

�
and � are positive semi-definite, and � is positive

definite. Linearizing in this fashion is consistent with our goal of
modeling the small-amplitude, high-frequency vibrations in solid
objects that produce sound. Unfortunately, the linearized system
cannot model the rotational components of rigid-body motion. We
will put this issue aside for now, but later we will return to it and
show how the rigid-body modes can be decoupled from all other
modes.

Once we have the linearized system, the next step in the modal
analysis is to perform a series of manipulations that will diagonal-
ize equation (2). To facilitate this process, we will first assume
that � = α1

�
+ α2 � for some α1 and α2. Expressing the

damping matrix as a linear combination of the stiffness and mass
matrices is known as Raleigh damping. Although this assumption
simplifies diagonalization while still producing good results, it is
not strictly necessary. A more general assumption, known as pro-
portional damping, that expresses the damping matrix as a linear
combination of powers of the stiffness and mass matrices would
also be diagonalized by the process described below but the equa-
tions would be more cumbersome. Additionally, even if for some
reason � must be arbitrary, then other, slightly more complicated,
methods are available for decoupling equation (2) [Anderson et al.,
1999; Bai et al., 2000].

Replacing � with α1
�

+ α2 � gives:

�
( � + α1

˙� ) + � (α2
˙� + ¨� ) = � . (3)

Since � is symmetric and positive definite, it may be decomposed
using a Cholesky factorization so that � = ��� T. If we introduce
another variable, � = � T � , and then rewrite equation (3) in terms
of � after pre-multiplying by � −1 we then have:

� −1 � � −T( � + α1 ˙� ) + (α2 ˙� + ¨� ) = � −1 � . (4)

The real and symmetric matrix � −1 � � −T can be decomposed
into � −1 � � −T = � Λ � T where � is the orthogonal ma-
trix whose columns are the eigenvectors of � −1 � � −T and Λ is
the diagonal matrix of eigenvalues. Introducing another variable,
� = � T � , and pre-multiplying by � T transforms equation (4)
into:

Λ( � + α1 ˙
� ) + (α2 ˙

� + ¨
� ) = � T � −1 � (5)

which can be rearranged to give:

Λ
� + (α1Λ + α2 � ) ˙

� + ¨
� = 	 (6)

where 	 = � T � −1 � .
At this point the original linear system of equation (3) has been

diagonalized into a set of decoupled oscillators. The i’th row of
equation (6) is the scalar second-order differential equation:

λizi + (α1λi + α2)żi + z̈i = gi (7)

where λi is the i’th entry of the diagonal matrix Λ. Equation (7)
may be solved by numerical integration or it may be solved more
efficiently using the analytic solution:

zi = c1e
tω

+
i + c2e

tω
−

i (8)

where c1 and c2 are arbitrary (complex) constants, and ωi is the
complex frequency given by

ω±

i =
−(α1λi + α2) ±

√

(α1λi + α2)2 − 4λi

2
. (9)

The absolute value of the imaginary part of ωi is the frequency
(in radians/second, not Hertz) of the mode, and the real part is the
mode’s decay rate.

The decoupled system of equation (6) is not an approximation
of the original linear system in equation (3), it is exactly the same
as the original linear system. Of course the linear system was an
approximation of the original nonlinear one, but any problem that
could be solved using equation (3) could also be solved with equa-
tion (6).

The columns of � −T � are the vibrational modes of the object
being modeled. (See figure 3.) Each mode has the property that
a displacement or velocity over the object that is a scalar multi-
ple of the mode will produce an acceleration that is also a scalar
multiple of the mode. This property means that the modes do not
interact with each other, which is why decoupling the system into a
set of independent oscillators was possible. The eigenvalue for each
mode is the ratio of the mode’s elastic stiffness to the mode’s mass,
and it is the square of the mode’s natural frequency (in radians per
second). In general the eigenvalues will be nonzero, but for each
free body in the system there will be six zero eigenvalues that cor-
respond to the body’s six rigid-body modes. The rigid-body eigen-
values are zero because a rigid-body displacement will not generate
any elastic forces.

3.2 Rigid Body Simulation

As discussed previously, the rigid-body modes for an object do not
interact with the object’s deformation modes provided the amount
of elastic deformation experienced by the object is small.1 Addi-
tionally, small-amplitude elastic deformations will not significantly
effect the rigid-body collisions between objects. These observa-
tions allow us to model the rigid-body behavior of the objects in al-
most the same way as if we were not interested in generating audio.
The only change that must be made to the rigid-body simulation is
that information about contact forces must be gathered and exported
to another process that will generate the audio. Of course, hearing
the results of the rigid-body simulation, in addition to seeing them,
may reveal previously unnoticed inadequacies of the simulator, but
we have not found this to be a problem with the simulation engines
we have worked with.

We have implemented our system using two existing rigid-body
simulation engines that were not originally designed for generating
audio. Our choice of engines was motivated by what systems were
readily available and how well they were able to model the scenar-
ios we wished to test. The first is a commercial software package,
Vortex, sold by Critical Mass Labs. The second system we are us-
ing had been previously written by Okan Arikan, a graduate student

1Actually, the requirement was that all displacements be small, includ-
ing displacements corresponding to the rigid-body modes. The translation
modes are inherently linear so they cannot interact with the elastic modes
regardless of their magnitude, but for a rapidly rotating body there will be
some coupling between the rotation modes and the elastic ones. Unless the
object is rotating very rapidly or experiencing large angular accelerations,
the coupling between rotation and elastic modes with frequencies in the au-
dible range will be negligible, so we ignore this interaction.
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not involved in this project. No special changes were made to either
package other then instrumenting them to allow reporting collision
forces.

3.3 Deformation Model

Once the task of modeling the rigid-body modes has been dele-
gated to a rigid-body simulator, the remaining elastic deformation
modes can be used for generating audio. Because we are interested
in modeling sounds from incompliant objects, we can use the modal
decomposition methods described in Section 3.1 to compute their
behavior efficiently. However before we can perform a modal de-
composition, we must first select a deformable modeling method
that can be used to generate the

�
, � , and � matrices.

The method we are using for modeling deformable behavior
is the tetrahedral finite element method described by [O’Brien
and Hodgins, 1999] for modeling fracture propagation, and subse-
quently used in [O’Brien et al., 2001] for modeling nonlinear audio
generation. As discussed by O’Brien, Cook, and Essl, a variety of
methods could be used, including spring/mass systems or finite dif-
ferences methods. We selected this finite element method because
their previous results show that it is accurate enough for generating
compelling audio.

Computing the global stiffness and mass matrices proceeds by
first computing individual 12 × 12 stiffness and mass matrices for
each element and then assembling the results to form the global
matrices. From [O’Brien and Hodgins, 1999] the nonlinear node
forces are given by:

f[i]a = −
vol

2

4
∑

j=1

p[j]a

3
∑

k=1

3
∑

l=1

βjlβikσkl (10)

where f[i]a is the a’th component of the force exerted on the i’th
node of the element, vol is the volume of the element, p are the
node positions, β is the element basis matrix, and σ is the stress
tensor within the element. Details for computing β and σ appear
in [O’Brien and Hodgins, 1999].

The element stiffness matrix, � , is computed by taking the par-
tials of � and evaluating them at zero displacement:

k[ij]ab =
∂f[i]a
∂p[j]b

∣

∣

∣

∣�
=

�
rest

(11)

= −
vol

2
(λβiaβjb + µβibβja + µ

3
∑

k=1

βikβjkδab) (12)

where δ is the Kronecker delta, and λ and µ are the material’s Lamé
constants.2 This is the exactly the same matrix that would have re-
sulted if Cauchy’s infinitesimal strain had been used in place of
Green’s strain, however with Cauchy’s strain the partials would be
constant with respect to node position so that it would not matter
where they were evaluated.

The element mass matrix, � is computed by taking the second
partials of the kinetic energy within the element with respect to the
node velocities, which turns out to be constant with respect to node
position and velocity:

� [ij]ab =
∂2κ

∂ṗ[i]a∂ṗ[j]b
(13)

=
ρvol

20
(1 + δij)δab (14)

2Unfortunately, the symbol λ is conventionally used both to indicate one
of the system eigenvalues and the first Lamé constant. In this paper it should
be clear from context (and the presence or absence of a subscript) what the
symbol is referring to.

where κ is the kinetic energy within the element, an overdot repre-
sents a derivative with respect to time (i.e. ṗ are node velocities),
and ρ is the material’s density.

The global stiffness and mass matrices,
�

and � , are built by
assembling the element matrices. Assuming that we are working
with three-dimensional objects, each of the global matrices will be
3N × 3N where N is the number of nodes in the finite element
mesh. Each entry in each of the 12 × 12 element matrices is accu-
mulated into the corresponding entry of the global matrix.

Since each node in a tetrahedral mesh will share an element with
only a small number of the other nodes, the global matrices will be
very sparse. This sparseness means that an eigen decomposition of�

can be performed efficiently using sparse matrix algorithms. Un-
fortunately, the Cholesky decomposition tends to generate a dense
� matrix even when � is originally sparse, and as a result com-
puting � −1 may be costly and � −1 � � −T will be densified.

Dense matrix algorithms can be used for systems up to approx-
imately 1000 nodes, but beyond that we suggest using an alternate
mass matrix that does not generate a dense Cholesky decomposi-
tion. The alternate mass matrix, known as a lumped mass matrix,
simply shifts the sum of each row onto the diagonal:

� lumped
[ij]ab

=
ρvol

4
δijδab . (15)

Because the element mass matrices are diagonal, the global mass
matrix will be as well, and its Cholesky decomposition will also
be diagonal: � will be a diagonal matrix whose entries are simply
the square root of the entries of the lumped � . For small systems
generated by coarse meshes, the errors introduced by mass lump-
ing may be significant. However, as the mesh gets finer the errors
introduced by lumping quickly become insignificant [Cook et al.,
1989]. Luckily, the large systems corresponding to fine meshes are
precisely the ones that require the sparse solvers facilitated by mass
lumping. Our implementation includes both dense and sparse de-
composition routines and we use whichever is appropriate to the
size of a particular system. For dense decompositions, we use the
routines from LAPACK [Anderson et al., 1999], and for sparse de-
compositions we use the TRLan package [Wu and Simon, 1999].
The method used for each of our examples, along with computation
times and the number of nodes, is listed in table 1.

The use of Raleigh damping was another simplification that we
made to facilitate decoupling equation (2). In [O’Brien and Hod-
gins, 1999] they used a nonlinear stiffness-proportional damping
term based on the strain rate with parameters φ and ψ. Raleigh
damping is equivalent to a linearization of this damping term with
the additional constraint that λ

φ
= µ

ψ
, and the Raleigh parameter α1

should be set to this ratio to generate equivalent results. O’Brien
and Hodgins did not discuss a mass proportional damping term, but
setting α2 to a non-zero value would be equivalent to including a
(−α2ḋimi) damping force on each node.

Even with sparse matrix methods, computing a system decompo-
sition still requires a significant amount of time, so it is worth noting
that certain changes may be made without recomputing the decom-
position. The damping parameters, α1 and α2, have no effect on
the decomposition, so the only work involved when changing them
is re-evaluating equation (9). Changing the material’s density does
not change the mode shapes, it only scales the eigenvalues by the
inverse of the scale factor applied to the density. Similarly, scal-
ing the Lamé constants both by the same scale factor (i.e. so that
the ratio between λ and µ is preserved) only scales the eigenvalues
by the same ratio. Changing the ratio between the Lamé constants,
changing the shape of the object, or modifying the mesh all require
recomputing the decomposition.

3.4 Sound Generation

Once all of the computational machinery described above is avail-
able, the actual process of computing audio matching the motion
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Figure 3: The top shows a multi-exposure image from an anima-
tion of a bowl falling onto a hard surface with the path of the bowl’s
center traced by a yellow curve. Only the bowl is sounding. The
two bottom rows show a side and top view of the bowl along with
three of the bowl’s first vibrational modes. (The modes selected for
the illustration are the first three non-rigid ones with distinct eigen-
values that are excited by a transverse impulse to the bowl’s rim.)

from a rigid-body simulation is both straightforward to implement
and computationally efficient:

1. A rigid-body simulation is set up for the desired scenario.

2. For each object in the simulation, the system matrices are as-
sembled and decomposed into their vibrational modes (i.e. the
columns of � −T � ).

3. For each object in the simulation, only the columns of � −T �
corresponding to |Im(ωi)| in the range 3.18 . . . 3,180 Rad/s
(20...20,000 Hz) are retained, the rest are discarded (or if the
sparse method is used, never computed).

4. As the rigid body simulation runs, collision forces are pro-
jected onto the retained modes. The response of each mode is
modeled using equation (8).

5. Each mode response is scaled according to how it moves the
objects surface and the scaled responses are then summed to-
gether.

6. Finally, the result is output to the computer’s audio device.

In practice, not all of the modes in the audible range need to
be retained. As discussed in [van den Doel et al., 2001], high-
quality results can easily be obtained using only the first 800 or
fewer modes.

A mode’s response to a projected impulse is given by equa-
tion (8) with

c1 =
2∆tgi

ω+
i − ω−

i

(16)

c2 =
2∆tgi

ω−

i − ω+
i

(17)

where ∆t is the interval over which the projected force is applied,
and t is time relative to when the impulse was applied. Substitut-
ing these values of c1 and c2 into equation (8), recalling that only

modes with |Im(ωi)| in the range 3.18 . . . 3,180 Rad/s are used,
and then simplifying yields

zi =
2∆tgi
|Im(ωi)|

etRe(ωi) sin(t|Im(ωi)|) . (18)

Evaluating equation (18) for every audio sample is inefficient.
By noting that eω(t+s) = eωteωs, the value of the oscillator at one
audio sample can be computed from the previous value using only a
single complex multiply. Additionally, as a mode is excited at sub-
sequent times by different contact forces, the additional excitations
can be modeled by simply adding the new value to the oscillator’s
current value. Because the cost of modeling additional impulses is
essentially zero, the forces from the rigid-body simulation may be
convolved with a Gaussian kernel to model the effect of soft colli-
sions, or with a noise function to model small-scale roughness that
is below the resolution of the rigid-body simulator [van den Doel
et al., 2001]. Our results were generated using the former.

A method for modeling the coupling between vibrations in an
object and vibrations in the surrounding air is described in [O’Brien
et al., 2001]. Unfortunately, their method is too slow for real-time
use. We compute an approximate coupling coefficient for each
mode by summing the amount of normal displacement generated by
that mode over the surface of the object multiplied by the mode’s
frequency. The coupling coefficient for each mode multiplies the
result computed by that mode’s oscillator and the sum of the scaled
oscillators is the final sound generated by the system. A result
of this simplification is all objects are treated as omni-directional
sources.

4 Results and Discussion

We have built a system that implements the methods described
above and used it to generate a number of demonstrative examples.
Table 1 lists the parameters that were used in each of the examples,
and the video tape accompanying this paper contains animations
that exhibit the sounds and motions produced.

To test how well the computed results match real objects, we
generated the wind chimes shown in figure 1. These chimes were
modeled based on measurements from a real set of chimes. Each
tube is a hollow cylinder 1.25 cm in radius with a nominal wall
thickness of 1 mm. The measured lengths of the chimes are listed
in table 2. We computed the modal decomposition for each chime
using reference parameters for aluminum. The resulting base fre-
quencies matched measured ones to within 2% error. However, the
real chimes were slightly out of tune, so we tuned the simulated set
by adjusting the tube lengths so that they were within ±1Hz of the
correct (D scale) tuning.

Figure 3 shows a bowl model that was used for two of the ex-
amples. The modal decomposition of the bowl was computed once
with material parameters for aluminum and again with material pa-
rameters for wood (oak). Two animations were created, both with
the same rigid-body motion but with the two sound tracks gener-
ated from the two different modal decompositions. The resulting
audio (refer to video tape) captures the general characteristics of
both materials as well as details such as the sound produced as the
bowl rolls on its edge. Figure 3 also illustrates the mode-shapes
for three of the bowl’s vibrational modes by showing the results of
applying the mode as a displacement over the bowl’s original shape.

An example generated using a more complex model consists of
bunny figurines falling through a chute. (See figure 4.) Both the
bunny and the shelves in the chute generate sounds when struck.
The shelves are made of plastic, metal, and wood. The bunny is
ceramic. The tetrahedral bunny model was generated by meshing
the region between the surface of the Stanford Bunny model and an
interior offset surface to create a hollow figure with finite thickness
walls, as shown on the right side of figure 4. The right side of
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Example Figure λ (Pa) µ (Pa) α1 α2 ρ (Kg/m3) Base Freq. (Hz) Decay Num. Nodes Method Precompute

Chime(D3) 1 4.98 × 10
10

2.57 × 10
10

1 × 10
−7

0 2700 587.4 0.6 18796 Sparse 2h 24min

Bowl #1 3 4.98 × 10
9

2.57 × 10
9

1 × 10
−7

30 2700 551.3 15.6 387 Dense 4min 12sec

Bowl #2 – 5.00 × 10
8

1.00 × 10
8

8 × 10
−6

50 750 216.7 22.4 387 Dense 4min 12sec

Bunny (Ceramic) 4 3.99 × 10
9

2.05 × 10
9

1 × 10
−6

10 2700 855.9 19.5 37114 Sparse 4h 40min

Plastic Shelf 4 2.49 × 10
10

1.28 × 10
10

1 × 10
−6

50 2700 488.9 29.7 361 Sparse 30sec

Aluminum Shelf 4 4.98 × 10
10

2.56 × 10
10

1 × 10
−7

0 2700 691.5 0.9 361 Sparse 30sec

Wood Shelf 4 5.00 × 10
8

1.00 × 10
8

8 × 10
−6

50 750 154.6 28.8 361 Sparse 30sec

Bunny (Metal) – 4.99 × 10
10

2.56 × 10
10

1 × 10
−7

0 2700 855.9 19.5 37114 Sparse 4h 40min

Blocks 5 5.00 × 10
8

1.00 × 10
8

8 × 10
−6

50 550 1596.2 428.1 1160 Dense 5h 28min

Boxes 5 5.00 × 10
8

1.00 × 10
8

8 × 10
−6

50 550 159.1 49.0 1160 Dense 5h 28min

The End (T) 6 1.49 × 10
9

7.70 × 10
8

2 × 10
−7

30 2700 247.7 15.2 71 Dense 42sec

Table 1: This table lists parameters that were used for each example object, the resulting frequency and decay for the object’s primary mode,
the number of nodes in the tetrahedral mesh, the method used for the modal decomposition, and the amount of time required to compute the
decomposition. Once the model decomposition has been computed, all of the above examples can generate audio in real-time. For “Chimes”
and “The End,” the information listed is for the D3 tube and the letter T.

Ideal Measured Computed Adjusted
Note Freq. Length Freq. Freq. Length Freq.

D3 587.33 .505 585.8 589.17 .5061 587.40

E3 659.26 .475 656.0 665.03 .4770 659.27

G3 783.99 .435 781.8 787.01 .4366 784.06

A4 880.00 .410 877.5 884.70 .4115 879.36

B4 987.77 .388 982.5 984.75 .3878 987.32

D4 1174.66 .353 1167.0 1186.88 .3548 1174.67

Table 2: The notes and ideal frequencies listed indicate the values
specified by the manufacturer of the real wind chimes. The mea-
sured values were taken from the real wind chimes. The computed
frequencies are what our model produced using the parameters from
table 1 and the measured lengths. The adjusted values indicate the
length and resulting frequency of the simulated chimes after tuning.
Lengths are in meters and frequencies in Hertz.

figure 4 also shows the results of projecting a pair of impulses onto
the retained modes of the bunny model.

The blocks and boxes shown in figure 5 illustrate how scale can
effect the resulting audio. Both the boxes and blocks are geometri-
cally similar: hollow cubes with a wall thickness of 5% their width.
However, the boxes are 10× the size of the blocks. While the dif-
ferent scales are subtly revealed by the rigid-body motions (by the
rate of acceleration with respect to the object sizes), the sounds
produced by the two sets of objects are distinctly different, and the
difference provides a clear cue as to the size of the objects.

As we discussed previously, similarities exist between the ap-
proach we have presented here and that presented in [van den Doel
et al., 2001]. The main difference between the two methods is that
we synthesize audio from only geometry and material properties
whereas their system makes use of extensive measurements of a
given object’s response to impacts. Each of these methods presents
distinct advantages: by relying on recorded data their method may
easily match a given object, but our method is applicable when no
real object or no robotic measuring devices are available. One di-
rection that might be worth pursuing would be using their measured
data for a given object to infer material parameters that could then
be applied to the geometry of a different object. This approach
might allow audio models for an entire set of cooking pots, for ex-
ample, to be generated from measurements of a single pot in the
set. It might also allow us to determine the sound made by a novel
bell design, based on data from bells of similar materials, before we
actually make the bell. Based on the good correspondence between
our synthetic chimes and the physical set, we are optimistic about
this direction of future work.

Figure 4: The left side of this figure shows an image from ani-
mation of several bunnies falling through a chute. Both the bunnies
and the shelves are sounding. The images on the right show in order
from top to bottom: the exterior of the bunny model, a cut-away re-
vealing the wall thickness and hollow interior, modal response to an
impulse on the bunny’s nose, and the modal response to an impulse
on the bunny’s back. The impulse responses are greatly exaggerated
for illustration.

Although the resolution of the mesh can affect the resulting au-
dio, we have found that even very coarse meshes may be used for
generating acceptable results. The meshes used for each of the let-
ters shown in figure 6 are very coarse, yet the resulting audio is still
acceptable. We have found that low mesh resolution tends to shift
frequencies higher and may add a “hollow” quality to the sound.
The frequency shifting may be partially compensated for by simply
modifying the material parameters (e.g. raising the density) to com-
pensate, so it will only be a problem if one is attempting to match a
particular object (as we were for the wind chimes).

Although the modal decompositions may require up to a few
hours of computation, this work needs only to be done once for
a given object and audio can then be generated interactively. By
precomputing the modal decomposition and storing it with an ob-
ject, the approach we have presented could easily be applied to
interactive applications such as video games that already employ
rigid-body simulation methods. Additionally, because our method
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Figure 5: The top images show a stack of 5 cm blocks being
knocked over. The images on the bottom show a stack of 50 cm
boxes being knocked over. Only the blocks and boxes are sound-
ing. Other than the 10× scale, both models are identical. The plots
below each sequence show the frequency content of the resulting
audio, indicating a significant difference in the sounds. (The hor-
izontal axis ranges from 0 to 5000 Hz, the vertical axes are auto-
scaled independently.)

requires only a geometric model and a handful of material param-
eters, the extra effort required to generated the audio model of a
given object is minimal.
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Figure 6: Select frames from an animation of the words “The End”
falling onto a hard surface. Both the letters and the surface are
sounding.
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