&

These fracture patterns
propagate arbitrarily in

3D solid objects as they break,
crack, or tear realistically.

JAMES F. O’BRIEN AND JESsicA K. HODGINS

even a simple animated object like a bouncing ball is
surprisingly difficult. This difficulty is due, in part,
to our highly developed human skill of observing
movement and quickly detecting motion that is
unnatural or implausible. Moreover, the motion of
many objects is complex, and specifying their move-
ment requires the generation of a great deal of data.
For example, cloth can bend and twist in many
ways, and the breaking bunny statue in Figure la
involves hundreds of individual shards.

Animators use three main techniques to generate
synthetic motion: keyframing (manually specifying
motion); motion capture (using data recorded from
actors); and procedural methods (using computer
algorithms to generate motion).

Keyframing and motion capture both
require that motion be specified by
some external source. In contrast,
procedural methods compute origi-
nal motion automatically. Many pro-
cedural methods are based on
informal heuristics, but a subclass

known as “physically based modeling” employs
numerical simulations of physical systems to generate
synthetic motion of virtual objects. With the intro-
duction of simulated water in the 1998 feature film
Antz [7] (see Foster and Metaxas's “Modeling Water
for Computer Animation” in this section) and cloth-
ing in the 1999 Stuart Little [8], physically based
modeling was clearly demonstrated to be a viable
technique for commercial animation.

Physically based modeling is especially effective for
animating passive objects, because these objects are
inanimate and lack an internal source of energy. The
advantage of using simulation is not surprising, as
these objects tend to have many degrees of freedom,
making keyframing or motion capture difficult.

Moreover, while passive objects
are often essential to the plot of
an animation and to its appear-
ance or mood, they are not char-
acters and do not require the
same control over the subtle
details of their motion. Therefore,
simulations in which motion is

COMMUNICATIONS OF THE ACM July 2000/Vol. 43, No. 7

&

Figure |. Images produced by our technique: (top) a hollow ceramic bunny as it is struck by
a heavy, fast-moving weight and (bottom) a plate of simulated glass shattered by a heavy wei

controlled only by initial conditions, physical equa-
tions, and material parameters are often sufficient to
produce appealing animations of passive objects.

The computer graphics literature includes many
examples of passive systems modeled with simulation.
For example, computational fluid dynamics models
have been used to animate splashing water, rising
smoke, and explosions in the air. Footprints and other
patterns left by objects falling on the ground have
been modeled by representing the ground surface as a
height field. Clothing, hair, and other flexible objects
have been approximated with spring and mass sys-
tems or collections of beam elements.

In 1999, we developed a simulation technique that
uses nonlinear finite element analysis and elastic frac-
ture mechanics to compute physically plausible
motion for 3D solid objects as they break, crack, or
tear [6]. When these objects deform beyond their
mechanical limits, the system automatically deter-
mines where fractures should begin and in what
directions they should propagate. Our technique
allows fractures to propagate in arbitrary directions by
dynamically restructuring the elements of a tetrahe-
dral mesh. Because cracks are not limited to the orig-
inal element boundaries, the objects can form
irregularly shaped shards and edges as they shatter.
The result is realistic fracture patterns (see Figure 1b).

In the computer graphics literature, two previous
techniques were developed for modeling dynamic
fracture caused by deformations. In 1988, Demetri
Terzopoulos and Kurt Fleischer at Schlumberger

70 July 2000/Vol. 43, No.7 COMMUNICATIONS OF THE ACM

Research introduced a general technique for animat-
ing viscoelastic and plastic deformations [10]. They
modeled certain fracture effects by severing the con-
nection between two nodes when the distance
between them exceeded a threshold. They demon-
strated this technique by simulating sheets of paper
and cloth that could be torn apart. In 1991, Alan
Norton and his colleagues at IBM Research broke a
model of a china teapot using a similar technique [5].
Both of these animation techniques produced good
results, especially considering the computational
resources available at the time. But both also allow
fractures only along the boundaries in the initial mesh
structure, creating artifacts in the crack pattern. These
artifacts are especially noticeable when the mesh used
to define the objects follows a regular pattern, creat-
ing an effect similar to the “jaggies” that occur when
rasterizing a polygonal edge.

Fracture has been studied more extensively in the
mechanics literature. Fundamentally, a material frac-
tures when the forces acting on an atomic level are
sufficiently large to overcome the interatomic bonds
holding the material together. The mechanical litera-
ture contains theories that abstract this small-scale
description of fracture to a macroscopic level where it
can be used with a continuum model. A comprehen-
sive review of this work can be found in [1] and a
good survey in [4].

The requirements for simulation techniques in
graphics and in engineering are quite different from
one another. Engineering applications require the sim-

ulation be able to accurately predict real-world behav-
iors. In computer animation, simulations of physical
phenomena are tools that allow the animator to realize
a preconceived behavior. As a result, numerical accu-
racy is less important, while issues relating to visual
appearance, ease of use, and computational efficiency
are critical. Although the techniques described here
draw heavily from the fields of fracture mechanics and
finite element analysis, the differing requirements in
graphics and engineering applications allow simulation
techniques for computer animation to make use of
simplifications that would be unacceptable in an engi-
neering context. Conversely, some of the assumptions
used in engineering applications, such as symmetry,

Because we are interested in graphical appearance,
rather than rigorous physical correctness, we assume a
continuum model is adequate.

Strain, which measures how much a material has
deformed, can be defined in a number of different
ways; in our work, we use the strain formulation due
to Green [3]. Green’s nonlinear metric measures only
deformation; it is invariant with respect to rigid-
body transformations and vanishes when the mater-
ial is not deformed. In addition to the strain tensor,
we use the strain rate tensor, which measures the rate
at which the strain is changing. It is defined as the
time derivative of strain and exhibits the same invari-
ant properties as the strain tensor.

are not acceptable for com- 'L-%

puter animation.

Creating Fractures As
a Material Deforms
Our goal in computer anima-
tion is to model fractures cre-
ated as a material deforms.
First, we need a model of the
material’s deformation pro-
viding information about the
magnitude and orientation of
the material’s internal stresses
and whether they are com-
pressive or, conversely, ten-
sile. We therefore derived our

Because cracks are not
limited to the original
element boundaries,
the objects can form
irregularly shaped
shards and edges as
they shatter.

@T Although the strain
" and strain rate tensors
provide the raw informa-
tion required to compute
internal elastic and damp-
ing forces, they do not
account for the properties
of the material. The stress
tensor combines the basic
information from the
strain and strain rate with
the material properties in
order to determine forces
internal to the material.
For many materials, a lin-
ear relationship among

deformation technique by
defining a set of differential

equations describing the@—

aggregate behavior of the

the components of the
stress and strain tensors is
-ng" adequate. When a mater-

ial is isotropic, the linear

material in a continuous fashion, then using a
finite element method to discretize these equations
for computer simulation. This approach is fairly
standard, and many different deformation models
can be arrived at in this fashion.

The continuous model is based on continuum
mechanics (see [2] for an excellent introduction to
this area). The primary assumption in the continuum
approach is that the scale of the effects being modeled
is significantly greater than the scale of the material’s
composition. Therefore, the behavior of the mole-
cules, grains, or particles composing the material can
be mathematically modeled as a continuous media.
Although this assumption is often reasonable for
modeling deformations, macroscopic fractures can be
significantly influenced by effects occurring at small
scales where this assumption may not be valid. For
example, microscopic scratches in a drinking glass can
concentrate stress, causing fracture in situations in
which a new, unscratched glass would not break.

relationship is “parameterized” by two indepen-
dent variables—p and A—known as the Lamé con-
stants of the material. The material’s rigidity is
determined by the value of w, while N controls the
resistance to changes in volume (dilation). Similar
parameters relate the strain rate to damping stress.
When the stress is computed directly from the
strain in this way, the material behaves elastically—
meaning the force exerted depends only on how much
the material has been deformed. For example, the
force exerted by an ideal spring is determined com-
pletely by how far the spring has been stretched. In
contrast, the stress in a plastic material depends on
how the material has been deformed in the past. A
nonideal spring stretched too far deforms plastically
and bends. Once the spring is bent, the force exerted
depends on both how far it is currently stretched and
how it was stretched previously.
Although an elastic relationship between stress and
strain is adequate for defining the behavior of most

COMMUNICATIONS OF THE ACM July 2000,/Vol. 43, No. 7 71

Figure 2. Tetrahedral mesh for a simple object. In (a), only the external faces of the
tetrahedra are drawn; (b) shows the internal structure. A tetrahedral element is defined by
its four nodes, each with (c) a location in the material coordinate system and
(d) a position and velocity in the world coordinate system.

—_ | (a)

I 4

M3

mj:

()

materials, plasticity also plays an important role in
fracture. Ductile materials, including many metals,
that tear do so largely because of the material’s plas-
ticity. Plastic behavior can be added by separating the
strain into two components—one elastic and one
plastic. The plastic strain is subtracted from the total
strain, yielding the elastic strain, which is then used to
compute the stress according to the elastic stress-to-
strain relationship.

The definitions used to compute such quantities as
the strain and the strain rate assume the existence of a
function that maps an object from some reference
state to its deformed configuration. We use a finite
element method to perform this mapping by tesselat-
ing, or decomposing, the material into distinct ele-
ments, as shown in Figure 2. Within each element,
the material is described locally by a function with a
finite number of parameters associated with the nodes
of the element. Our discretization method employs
tetrahedral finite elements with linear polynomial
shape functions. Just as triangles can be used to
approximate any surface, tetrahedra can be used to
approximate arbitrary volumes. Adjacent elements

72 July 2000/Vol. 43, No. 7 COMMUNICATIONS OF THE ACM

have nodes in common, so the mesh defines a piece-
wise linear function over the entire material domain.

Each tetrahedral element is defined by four nodes,
each with a position in the material coordinates, a
position in the world coordinates, and a velocity in
world coordinates (see Figures 2c and 2d.) The con-
tinuous functions that determine strain, strain rate,
plastic strain, and stress within the object are now
described in a piecewise fashion in terms of the values
at the nodes. The stress is used to compute the inter-
nal forces acting on the nodes. These forces determine
the accelerations, and the motion of the deformable
object is computed by numerically integrating the
entire system forward in time.

Although our system works with solid tetrahe-
dral volumes, rather than with the polygonal
boundary representations created by most modeling
packages, a number of commercial and public-
domain systems are available for creating tetrahe-
dral meshes from polygonal boundaries. The
models we used were generated either from a con-
structive solid-geometry description or a polygonal-

boundary representation using NETGEN, a

Figure 3. First row: A terra-cotta tray dropped onto a hard floor (images spaced 20ms apart).
Second row: An adobe wall struck by a wrecking ball. The bottom edge of the wall is attached to
the ground plane; the farthest-right image shows the final configuration (images spaced 66.6ms
apart). Third row: Mesh for the adobe wall; (left) the facing surface of the initial mesh used to
generate the wall; (right) the reassembled mesh after being struck by the wrecking ball.

publicly available mesh-generation package [9].

In addition to the forces internal to the material, the
system computes collision forces when two elements
intersect or if an element violates a geometric con-
straint, such as the ground plane. Because determining
which elements intersect can be computationally very
expensive, we use a dynamic hierarchy of bounding
boxes with cached traversals to reduce the cost.

To compute collision forces, we use a penalty
method that applies a force based on the volume of
the region formed by the intersection of two objects.
The overlapping volume is computed by clipping the
faces of each tetrahedron against the other. A penalty
force proportional to the volume, acting at the center
of mass of the intersecting region, is applied to the
two tetrahedra. Provided that neither tetrahedra is
completely contained within the other, this criteria is
quite robust, and the forces computed with this
method do not depend on the object’s tessellation.

Our fracture algorithm works in the following way:
After every time step, the system resolves the internal
forces acting on all nodes into their tensile and com-
pressive components. At each node, the resulting
forces are then used to form a tensor describing how
the internal forces are acting to cause a fracture at that
node. If one of the eigenvalues, or principle modes, of
this separation tensor is sufficiently large, a fracture
plane is computed. The resistance of a material to
fracture is characterized by the material’s toughness
parameter. When a fracture occurs, the node is split in
two, and all elements attached to the node are divided
along the plane, with the resulting tetrahedra assigned
to one or the other incarnations of the split node, thus
creating a discontinuity in the material. The algo-
rithm re-meshes the local area surrounding the new
fracture by splitting elements intersecting the fracture
plane and modifying neighboring elements to ensure
the mesh remains self-consistent. This re-meshing

73

COMMUNICATIONS OF THE ACM July 2000/Vol. 43, No. 7

Figure 4. First row: Bowls with successively lower toughness values and otherwise
identical material properties, each dropped from the same height. Second row: A series of sheets
struck by a heavy projectile: (a) stiff, very brittle material; (b) low-density, slightly flexible, but still

brittle, material; (c) stiff material that deforms plastically; and (d) another material that yields
plastically but with material properties that are directionally dependent, or “anisotropic.”

preserves the orientation of the fracture plane and
avoids the artifacts produced by other methods.

A Range of Effects

We have animated a number of scenes involving the
breaking of objects to demonstrate the range of
effects that can be generated with this technique.
For example, Figure 1a shows a simulation of a hol-
low, ceramic model of the Stanford Bunny as it is
struck by a heavy, fast-moving weight. Figure 1b
shows a plate of glass after a heavy weight, and has
been dropped on it. The area near the impact is
crushed into many small fragments; farther away, a
pattern of radial cracks has developed.

The first row of Figure 3 shows an object dropped
onto a hard surface. The second and third rows show
a wall being struck by a wrecking ball and the mesh
used to generate the wall sequence. The initial mesh
contains only 338 nodes and 1,109 elements. By the
end of the sequence, the mesh has grown to 6,892
nodes and 8,275 elements, because additional nodes
and elements are created wherever fractures occur. A
uniform mesh would require many times this number
of nodes and elements to achieve a similar result.

The simulation parameters correspond to physi-
cal quantities that can be adjusted by the animator
to achieve the desired effect. The first row of Fig-
ure 4 shows the final frames from four animations

74

July 2000/Vol. 43, No. 7 COMMUNICATIONS OF THE ACM

of bowls dropped onto a hard surface. Other than
the toughness of the material, the four simulations
are identical. A more varied set of materials is
shown in the second row of the figure.

The physical parameters of the simulation allow a
wide range of effects to be modeled, but selecting the
combinations of parameters needed to produce a
desired result is often quite difficult. Although many
parameters, including a material’s stiffness, have intu-
itive meanings when viewed in isolation, the interac-
tions among parameters can be quite complex. Many
of the quantities an animator may want to control,
including the violence with which an object shatters,
do not correspond directly to any single parameter.
One solution to this problem is to develop mappings
from intuitive parameters, such as “shattering vio-
lence,” to sets of simulation parameters automatically
adjusted to produce the desired effect.

Our approach avoids the “jaggy” artifacts in the
fracture patterns caused by the underlying mesh, even
though the results of the simulation are still influ-
enced by the mesh structure. The deformation of the
material is constrained by the degrees of freedom in
the mesh, which in turn dictates how the material can
fracture. This limitation occurs with any discrete sys-
tem. Our technique also restricts the particular loca-
tion a fracture can start by examining only the
existing nodes. As a result, very coarse mesh sizes

Figure 5. Comparison of a real-world event and a simulation. Top row: High-speed video
images of a real physical ceramic bowl dropped from approximately one meter onto a hard surface.
Bottom row: Output from a simulation in which we attempted to match the initial conditions of
the physical bowl. (Video images 8ms apart; simulation images |13ms apart.)

might behave unintuitively. However, nodes occur at
the concavities and sharp features where a fracture is
most likely to begin. Therefore, with a reasonable grid
size, this limitation is not a serious handicap.

A more serious limitation involves the speed at
which a crack propagates, because the distance a frac-
ture can travel during a time step is determined by the
size of the existing mesh elements. The crack may
either split or not split an element; it cannot travel
only a fraction of the distance across an element but
has to travel all the way. If the crack’s speed is signifi-
cantly greater than the element width divided by the
simulation time step, then a high-stress area would
race ahead of the crack tip, causing spontaneous fail-
ures to occur in the material. We have developed
heuristics for dealing with this situation by approxi-
mating the stresses at the new crack tip and allowing
the crack to advance across multiple elements in a sin-
gle time step.

A second type of artifact can occur if a crack were
being opened slowly by an applied load on a model
with a coarse resolution mesh. This scenario would
lead to a “button popping” effect, whereby the crack
travels across one element, pauses until the stress builds
up again, then moves across the next element.
Although we have not observed this phenomena in our
examples, developing an algorithm allowing smooth,
slow fracture propagation is an area for future work.

Our goal is the realistic animation of fracture.
However, assessing subjective quantities, such as real-
ism, in the appearance of a fracture animation is quite
difficult. One possible way to do so is to compare
computer-generated results with images from the real
world. Figure 5 contrasts high-speed video footage of
a real bowl as it falls onto its edge with our imitation
of the real-world scene. Although the two sets of frac-
ture patterns are clearly different, the simulated bowl
shares some qualitative similarities with the real one.

Both initially fail along the leading edge where they
strike the ground and subsequently develop vertical
cracks before breaking into several large pieces.

For more about our work on animating fracture and
animated sequences corresponding to the images here,
see www.gvu.gatech.edu/animation/fracture/. H

REFERENCES
. Anderson, T. Fracture Mechanics: Fundamentals and Applications, 2nd

Ed. CRC Press, Boca Raton, Fla., 1995.

2. Fung, Y. A First Course in Continuum Mechanics. Prentice-Hall, Engle-
wood Cliffs, N.J., 1969.

3. Fung, Y. Foundations of Solid Mechanics. Prentice-Hall, Englewood

Cliffs, N.J., 1965.

Nishioka, T. Computational dynamic fracture mechanics. /nz. J. Fract.

86, 2 (1997), 127-159.

Norton, A., Turk, G., Bacon, B., Gerth, J., and Sweeney, P. Animation

of fracture by physical modeling. Vis. Comput. 7, 4 (July 1991),

210-217.

6. O’Brien, J. and Hodgins, J. Graphical modeling and animation of brit-
tle fracture. In Proceedings of SIGGRAPH99 (Los Angeles, Calif., Aug.
8—13). ACM Press, New York, 1999, 137-146.

7. Robertson, B. Aniz-piration. Comput. Graph. World 21, 10 (Oct.
1998).

8. Robertson, B. Building a better mouse. Comput. Graph. World 22, 12
(Dec. 1999).

9. Schéberl, J. NETGEN—An advancing front 2D/3D-mesh generator
based on abstract rules. Comput. Visualiz. Sci. 1 (1997), 41-52; see also
www.stb013.uni-linz.ac.at/~joachim/netgen/.

10. Terzopoulos, D. and Fleischer, K. Modeling inelastic deformation: Vis-
coelasticity, plasticity, fracture. In Proceedings of SIGGRAPH 88
(Atlanta, Ga., Aug. 1-5). ACM Press, New York, 1988, 269-278.

—_

b

e

JaMES O’BRIEN (job@acm.org) is a Ph.D. candidate in the College
of Computing at the Georgia Institute of Technology and a member of
the Graphics, Visualization & Usability Center.

JEssicaA HODGINS (jkh@cc.gatech.edu) is an associate professor in
the College of Computing and Graphics, Visualization & Usability
Center at the Georgia Institute of Technology, where she heads the
Animation Lab.

This research is supported in part by National Science Foundation NYI Grant No. IRI-
9457621, Mitsubishi Electric Research Laboratory, and a Packard Fellowship. The first
author was supported by a fellowship from the Intel Foundation.

Thanks to Wayne L. Wooten, Pixar Animation Studios, for helping light, shade, and
render the images in this article.

© 2000 ACM 0002-0782/00/0700 $5.00

75

COMMUNICATIONS OF THE ACM July 2000/Vol. 43, No. 7

