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Abstract

We present a method, based on pre-computed light transport, for
real-time rendering of objects under all-frequency, time-varying il-
lumination represented as a high-resolution environment map. Cur-
rent techniques are limited to small area lights, with sharp shadows,
or large low-frequency lights, with very soft shadows. Our main
contribution is to approximate the environment map in a wavelet
basis, keeping only the largest terms (this is known as a non-linear
approximation). We obtain further compression by encoding the
light transport matrix sparsely but accurately in the same basis.
Rendering is performed by multiplying a sparse light vector by a
sparse transport matrix, which is very fast. For accurate rendering,
using non-linear wavelets is an order of magnitude faster than using
linear spherical harmonics, the current best technique.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gener-
ation; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism; G.1.2 [Numerical Analysis]: Approximation—Nonlinear
Approximation, Linear Approximation; G.1.4 [Numerical Analy-
sis]: Quadrature—Error Analysis

Keywords: Shadow Algorithms, Relighting, Image-Based Ren-
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1 Introduction

In story-telling applications such as movies and games, shadows
serve not only as a practical tool for establishing depth and shape,
but also as an artistic device for refining mood and character. Subtle
lighting design requires the ability to work with lights of different
frequencies, or put another way, lights of different sizes. This paper
describes real-time relighting of rigid scenes with complex shad-
owing, under high-resolution illumination that may contain all fre-
quencies. For lighting design from a fixed viewpoint, our technique
supports arbitrary reflection models and light transport effects. For
applications that require changing viewpoint, we currently handle
only transport effects that terminate on diffuse surfaces.

Our goals and general approach are similar to the pre-computed
radiance transfer method of Sloan et al. [2002] for low-frequency
environments, which extends earlier techniques such as irradiance
environment maps [Ramamoorthi and Hanrahan 2001]. Sloan et
al. pre-compute light transport in a spherical harmonic basis, and
render by calculating a dot product between each vertex’s precom-
puted transport vector and the harmonic coefficients of the incom-
ing lighting. By using a fixed set of approximating functions for
the lighting signal, Sloan et al. employ what is known as a linear
approximation [Mallat 1998] in a spherical harmonic basis. Their

Figure 1: Comparison of a linear spherical harmonic lighting approxima-
tion (left) [Sloan et al. 2002] and our non-linear wavelet approximation.
We scale the linear technique to use as many harmonics as wavelets (100).
Notice the superior definition of wavelet shadows, which closely match a
reference image. The environment depicts the interior of St Peter’s Basilica.

approach provides compact storage because high-frequency infor-
mation is discarded from the transfer matrix, but it is only accurate
for very low-frequency lighting.

Our approach differs in that we do not choose our set of approx-
imating functions a priori, but rather choose from a space of tens of
thousands based on the given illumination. This process is known
as non-linear approximation. DeVore [1998] has written a survey
of such techniques.

One might consider the use of a spherical harmonic basis for
nonlinear approximation, but harmonics do not localize well in
space. A small area light would require many harmonics for ac-
curate approximation. Conversely, one might consider using a ba-
sis of point-like lights; in fact, techniques such as layered attenua-
tion maps [Agrawala et al. 2000] and the method of Heckbert and
Herf [1997] take this approach. However, point lights do not lo-
calize well in frequency, and these techniques are limited to small
area sources. In addition, nobody has yet found a principled way to
represent an arbitrary environment map as a combination of point
sources and spherical harmonics.

For these reasons, we choose to use a non-linear wavelet approx-
imation. A wavelet basis contains area lights that vary from the
size of a cubemap pixel to essentially the size of the entire sky.
Consequently, a non-linear wavelet approximation can efficiently
represent lighting with features at all frequencies. We show that
just 0.5–1% of the wavelet basis functions accurately approximate
detailed photographed illumination [Debevec and Malik 1997], and
that 0.1–0.2% suffice for simpler environments or synthetic area
lights (see our video on the Full Conference DVD-ROM). As an



aside, another important factor in choosing wavelets over spheri-
cal harmonics is the speed of their respective transforms: linear
time for wavelets, and practically O(n3/2) for harmonics, since the
asymptotically faster O(n log2n) algorithm is actually slower at
these relatively low resolutions.

An important aspect of our approach is that we pre-compute very
high-resolution transport matrices that encode exact transport from
any 6×64×64 cubical environment map. We approximate rendering
accurately and efficiently as a giant, sparse matrix multiplication
where sparsity derives from two sources: non-linear approxima-
tion of the lighting vector, and zero-coefficients within the encoded
matrix. The latter is a secondary but important aspect of our tech-
nique. Since we encode our transport matrix in a wavelet lighting
basis, coherence in the transport operator results in a matrix where
only a fraction of the elements are non-zero.

In summary, our main contributions consist of:

• Non-linear approximation of the lighting using a wavelet ba-
sis. Because wavelets provide locality in both angular and
frequency space, the encoded light vector and light transport
matrix are accurately approximated with a reasonable number
of terms.

• Interactive rendering of scenes under time-varying, all-
frequency lighting. Hard and soft shadows are both cap-
tured well (see Figures 1, 3 and 4). Real-time performance
is achieved through efficient sparse matrix multiplication.

2 Previous Work

Image relighting and shadowing techniques have a long history in
computer graphics. Recently, a number of general soft shadow
methods have been proposed, of which perhaps the most rele-
vant are convolution textures [Soler and Sillion 1998], layered at-
tenuation maps [Agrawala et al. 2000] and Heckbert and Herf’s
method [1997]. Our method may be considered a generalization
of these techniques. The methods developed by Agrawala et al. and
Heckbert and Herf use roughly 100 samples to resolve shadows
from small area lights; we use roughly 100 wavelet lights to accu-
rately relight from detailed environments. Furthermore, our tech-
nique allows real-time, dynamic relighting, which these techniques
do not, and naturally supports complex, self-shadowing geometry
(see Figure 3), which is problematic for convolution textures.

In image-relighting, most existing techniques make use of lin-
ear lighting approximations. Dorsey et al. [1991], Nimeroff et al.
[1994], Teo et al. [1997], Ashikhmin and Shirley [2002] and De-
bevec et al. [2000] all use pre-determined sets of lighting approx-
imation functions, such as points, steerable functions and com-
pressed principal component bases. As with Sloan et al. [2002],
commitment to a linear approximation enables compact representa-
tion, but limits accuracy.

Debevec et al. [2000] use the highest environment map resolu-
tion — roughly 2000 directions, but they focus on largely convex
objects without complex shadowing. Their compression scheme is
similar to ours; they use JPEG compression to achieve a compres-
sion of 20:1. In contrast, we compress the relighting computation
100:1 or 1000:1 by using wavelets to approximate the incoming
lighting as well as encoding the transport matrix sparsely. We re-
port real-time results for 24,576 (6×64×64) lighting directions.

Our method may bear similarities to a number of light field
compression techniques, such as wavelet light fields [Lalonde and
Fournier 1999], surface light fields [Wood et al. 2000], and fac-
tored forms such as those used in light field mapping [Chen et al.
2002]. The fundamental difference is that these methods deal with
static lighting, considering fast look-up of a single viewpoint from
a table of views, and we focus on real-time relighting, requiring

fast summation of illumination. It is not clear that explicit tabu-
lar representations or previous compression schemes give real-time
performance for this application.

Finally, our method makes use of wavelets for spherical illumi-
nation functions. For simplicity, we use a 2D Haar basis over each
face of the cubemap, but it would likely be profitable to use a more
sophisticated filter and a more elegant tesselation scheme, such as
spherical wavelets [Schröder and Sweldens 1995].

3 Algorithms and Implementation

In this section we treat two different cases: Geometry Relighting
(Figure 1), where the viewpoint changes but we assume diffuse sur-
faces, and Image Relighting (Figures 3 and 4), where the viewpoint
is fixed and we support arbitrary reflection models and light trans-
port effects.

First, consider direct illumination from an environment map:

B(x, ωo) =

∫∫
Ω

L(ω)S(x, ω)fr(x, ω → ωo)(ω · n(x)) dω, (1)

where x is the sample location of a vertex, or a pixel in the image,
ωo is the viewing direction, ω indexes incident directions, L is the
environment map, S is the (binary) visibility function indicating if a
ray from x in direction ω is shadowed, fr is the reflection function
at location x, and (ω · n) is the cosine of the incident angle.

Geometry Relighting In this case, fr depends only on surface
location (diffuse assumption), so we may define a combined trans-
port function:

T (x, ω) = S(x, ω)fr(x)(ω · n(x)). (2)

Image Relighting In this case ωo depends only on x, so the
combined transport is given by

T (x, ω) = S(x, ω)fr(x, ω → ωo(x))(ω · n(x)). (3)

In both cases, Equation 1 no longer depends on ωo, and using
numerical cubature on the integral (with appropriate normalizing
weights that we omit here),

B(xi) =
∑

j

T (xi, ωj)L(ωj), (4)

which is easier to write simply in matrix notation,

B = TL, (5)

where T is the light transport matrix, and B and L are column
vectors for computed radiance and incident illumination.

It is important to note that this form applies much more gener-
ally than originally introduced in Equation 1. First, the illumina-
tion may be parameterized over any manifold, not just a sphere,
so we can manipulate not just environment maps, which represent
distant lighting, but also a local light on a ceiling or from a win-
dow, for instance. Second, the function T can include global light
transport effects, such as interreflection, subsurface scattering and
caustics; the only restriction is in the case of geometry relighting,
where these effects must terminate on a diffuse surface. Finally,
Equation 5 holds not just for an explicit tabular representation of
L, but when it is expressed in any orthonormal basis, like spherical
harmonics or wavelets.

3.1 Pre-computation

Our method requires a significant amount of pre-computation,
which we accelerate in some cases by using graphics hardware.
Storage costs for T may be large if we desire accurate light trans-
port from high resolution and high frequency environment maps.
However, if the lighting is truly low-frequency, then low-resolution
maps suffice and our representation is comparably compact to lin-
ear spherical harmonic techniques [Sloan et al. 2002].



Rendering Raw Transport Matrix We first compute transport
matrix T in the raw lighting basis of cubemap pixel lights. We use
two different methods which provide different benefits.

The first method is to ray trace the columns of the matrix, which
are simply images of the scene illuminated under a single pixel of
the cubemap environment. This method is simple, and clearly al-
lows any light transport effect supported by the ray-tracer to be en-
coded into the matrix. However it works only for image-relighting.

The second method is to compute the matrix rows rather than
columns. In this case we handle only direct illumination, which
means that each row is simply the visibility cubemap for a partic-
ular x, weighted by the reflection function and cosine term at that
location. This simplification allows use of graphics hardware. We
rasterize a high-resolution visibility hemi-cube [Cohen and Green-
berg 1985] at each x, read back the pixels, apply the weighting due
to the reflection function and down-sample to the desired environ-
ment resolution.

Wavelet Transform We project each row of the raw matrix
(corresponding to the dot-product transfer of light from L onto a
single output location x) onto a wavelet basis. Our transform is 2D
Haar over each cubemap face. It is worth noting that after the trans-
formation is complete the representation is still lossless, and a full
matrix multiplication corresponds to exact re-lighting.

Quantization and Storage We dither and quantize the matrix
elements to 6, 7 or 8 bits, depending on the desired level of fidelity,
and discard all zero coefficients. Because the wavelet transform
translates coherence into small coefficients, the resulting matrix is
sparse. To prevent using memory bandwidth for lights that are un-
used in relighting a frame, we store the coefficients for each light
contiguously in memory. For improved cache coherence in accu-
mulating the outgoing radiance, we segment the matrix into blocks
of 256 output samples. We store each coefficient as an 8-bit value
and an 8-bit block index.

3.2 Rendering

We use a very small number of matrix columns to relight each
frame. In this section we describe how relighting works as a sparse
matrix multiplication.

Wavelet Transform We weight L by the normalization factors
required by numerical cubature, then perform a fast wavelet trans-
form. We use a 2D Haar transform here as well because Haar is an
orthonormal basis. In general one would project the light onto the
dual wavelet basis.

Non-linear Lighting Approximation We choose a subset of
wavelet basis lights to use for the current frame. We have exper-
imented with three methods for selecting the lights. In the first
method, unweighted selection, each light’s priority is simply the
magnitude of its wavelet coefficient. This is easily shown to be the
optimal choice for minimizing L2 error in the illumination [Mallat
1998]. However, this is not the same as minimizing error of the
output images, which is our ultimate goal.

The second method, transport-weighted selection, scales the pri-
ority of the ith light by the energy of the ith column of T . For
image relighting the weight is the image energy of the scene lit by
the ith light; for geometry relighting, the weight is the irradiance
energy of the mesh lit by that light. These column energies may be
pre-computed and the weighting applied with negligible cost. The
net effect is to reduce the priority of lights which contribute little
or no variation in the output vector. An example of a zero-priority
light is the one directly beneath the floor in Figures 1, 3 and 4.

The third method, area-weighted selection, scales the priority of
each wavelet light by its area. Giving preference to larger lights
helps to resolve the diffuse color of the scene more quickly. Fig-
ures 1, 3 and 4 are generated with this selection scheme.

Sparse Block Matrix Multiplication We relight the scene
by performing the matrix multiplication formulated in Equation 5
where L is sparse because of non-linear approximation, and T is
sparse because of wavelet encoding. We have implemented this
multiplication entirely on the CPU. Graphics hardware has evolved
to support some forms of sparse matrix-vector multiplication [Bolz
et al. 2003], but it is not clearly general enough to support our algo-
rithm efficiently because we exploit sparsity in both L and T .

4 Results

In this section we first present an error analysis in which we com-
pare our technique against linear spherical harmonics. We then
present data for our compression rates in the lighting vector and
transport matrix, and for the speed of our relighting system.

4.1 Error Analysis

We compare the error induced by approximations using non-linear
wavelets and linear spherical harmonics. We make comparisons in
two spaces: in the cubemap pixels of the lighting approximation,
and the image pixels of the final renderings.

To present our findings we use two acquired environments: St.
Peter’s Basilica and Grace Cathedral (see cubemap insets, Figures
1 and 4) [Debevec and Malik 1997]. These environments contain
a dynamic range of 5 orders of magnitude and carry energy across
essentially all frequencies, as illustrated by the plots of spherical
harmonic energy in Section 4.1.1. They contain area light sources in
a range of sizes, some of which approach point lights in St. Peter’s.
Additional environments are shown on the video.

4.1.1 Error in Lighting Approximation

The process of choosing a small number of terms to approximate
the lighting induces error by neglecting the contributions of all basis
functions that are discarded. We visualize the approximate lighting
directly (Figure 2) by projecting the wavelet and spherical harmonic
lights back onto cubemap pixels.

Figure 2 shows that 100 (area-weighted) non-linear wavelets re-
solve the high-energy lights in the environment, but the first 100
spherical harmonics do not. 4096 wavelets capture even the low
energy detail, but even 10,000 harmonics blur the brightest lights

W (100)SH (100) SH (100) W (100)

ReferenceSH (10,000) SH (10,000) Reference

W (4096)SH (4096) SH (4096) W (4096)

Figure 2: Comparison of cubemap lighting approximations for St. Pe-
ter’s Basilica, with linear spherical harmonics (SH) and area-weighted,
non-linear wavelets (W) of different orders. Two views of the same data
are presented because the luminance values have a dynamic range of 105 .
High-energy lights (more than 104 ) are displayed in the left half, and low-
energy lights (less than 102 ) in the right half. Notice that 4096 wavelets
provide very high accuracy (0.6% error), but even 10,000 harmonics do not
(48% error). Also note that 100 wavelets resolve high-energy details well.



and exhibit sharp ringing in the low energy details. The graphs
below compare the L2 lighting error for linear spherical harmonic
and non-linear wavelet lighting approximations, as a function of the
number of terms used. They show that the linear approximation is
fundamentally less accurate at all approximation orders, with an er-
ror decay that is 2-3 orders of magnitude slower than for non-linear
wavelets. Note that the horizontal axis is plotted on a log scale.
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We omit the transport-weighted approximation from these graphs
because it depends on T and therefore changes with the scene.
Notice that area-weighted selection converges slightly less quickly
than the unweighted scheme, which is optimal in this error metric.

It might be surprising that spherical harmonics exhibit a 50%
L2 error even with thousands of terms, but this is in fact common
for high-dynamic range imagery involving localized bright light
sources. For an analytic directional light source or delta function,
the spherical harmonic coefficients do not converge, but increase as
the square root of the spherical harmonic order. In analyzing the
statistics of natural illumination, Dror et al. [2001] have noted that
the spherical harmonic coefficients remain almost flat until fairly
large numbers of terms (1000-3000), corroborating our results.

4.1.2 Error in Computed Radiance

The error of the computed radiance is of primary importance since
we visualize this error directly. We focus in this section on the radi-
ance computed at the output image pixels of the plant (Figure 3) and
teapot (Figure 4) scenes, but the same results hold for the irradiance
computed at the vertices of the buddha geometry.

We make use of two error metrics. The first is the standard L2

norm, which measures convergence in image energy. However,
since shadow details occur at boundaries that are essentially one
dimensional and carry little energy, blurred shadows – which are
perceptually striking – register low L2 error. For this reason we
also compute the Sobolev H1 norm, which is given by

∥∥f
∥∥

H1 =

(∫
f2(x) +

∣∣�f(x)
∣∣2dx

)1/2

The H1 norm measures error in boundary details better, because
it weights the energy of the derivative. Note that the L2 energy is
included in the H1 norm, and we subtract it out in reporting the
relative H1 error.

The graphs in the next column provide a numerical compari-
son of the error in Figures 3 and 4. These graphs illustrate two
important points. First, when using fewer than 1000 terms, area-
weighted wavelet approximation performs better than the transport-
weighted or unweighted methods described in Section 3.2. Sec-
ond, area-weighted wavelet approximation converges exponentially
faster than linear harmonic approximation. Note that the horizontal
axes are plotted on a log scale.

Figures 3 and 4 provide a visual comparison between the
best wavelet approximation and spherical harmonic approximation.
These images show that a 25 term [Sloan et al. 2002] linear har-
monic approximation completely blurs shadow details, and even an
impractically large 2,000 term expansion cannot resolve the high-
est frequencies. In contrast, a non-linear wavelet approximation
requires 1-2 orders fewer terms. 200 wavelets resolve essentially

all shadow details cast by these environments. The error values
below each picture show that very low relative L2 error is needed
for perceptually accurate shadows: 1% for the plant, and 0.1% for
the teapot. At these levels of accuracy, the error graphs show that
area-weighted wavelet approximation requires only 1–10% as many
terms as linear spherical harmonics.
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For truly low-frequency lighting, linear harmonics and non-linear
wavelets perform comparably, both visually and numerically. For
example, the Uffizi Gallery lighting environment is well approxi-
mated by a single large area light source for the visible sky. When
the plant is illuminated under this environment, using 25 linear har-
monics produces 7% error, and 25 non-linear wavelets 5% error.

4.2 Performance

4.2.1 Lighting Compression

We compress the lighting by 2-3 orders of magnitude. In prac-
tice, this means that out of 24,576 possible wavelet lights, we use
between 20 and 200 lights. We find that for St Peter’s and Grace,
using 100 terms produces visually pleasing animations. For smooth
outdoor environments (with no direct illumination from the sun) as
few as 20-30 terms suffice. Furthermore, area lights of any size,
including illumination from a single cubemap pixel, are well ap-
proximated by 30-40 wavelet lights.

An appropriate number of terms is easily chosen per-frame to
provide a desired level of accuracy in the lighting approximation.
Temporal artifacts result when so few terms are used that discarded
coefficients have significant non-zero values. In this case, artifacts
may occur because non-zero lights turn on and off discontinuously
as they are alternately retained and discarded from frame to frame.

4.2.2 Transport Matrix Compression

The plant and teapot scenes have fixed viewpoint and contain
512×512 pixels. The buddha scene contains 160,000 vertices over
the statue and floor, and may be rendered with good fidelity at
1280×1024 screen resolution. We pre-compute light transport as-
suming up to 6×64×64 cubemaps for St Peter and Grace, and as
little as 6×4×4 cubemaps for low-frequency environments.

Pre-computation for an 80,000 vertex dataset (buddha without
floor), with 400,000 visibility samples takes under 3 hours. Pre-
computation times for image-relighting depend on the ray-tracer.

The pre-computed wavelet matrices are sparse at high resolution.
With 7-bit quantization, as few as 10% of the elements are non-
zero. This decreases to as few as 3% with 6-bit quantization, at the
expense of additional dithering noise in matrix images.

The following table reports the sparsity (Sp. columns) as the
fraction of non-zero coefficients compared to the full number of
matrix elements, and the size of our encoded matrices using 6-bit
quantization. Matrices are 60% larger with 7-bit quantization.



Reference Image W (25): 23% L2, 22% H1

SH (25): 20% L2, 18% H1 SH (200): 13.4% L2, 12% H1 SH (2000): 8.1% L2, 7.1% H1 SH (20,000): 2.0% L2, 1.8% H1

W (200): 2.2% L2, 2.0% H1 W (2000): 0.07% L2, 0.06% H1 W (20,000): 0.00% L2, 0.00% H1

Figure 3: Image relighting of a plant scene in St Peter’s Basilica displays sharp shadows from small windows. We compare shadow fidelity using linear
spherical harmonics (top row) and non-linear wavelets selected with area-weighted prioritization (bottom). The number of terms is given in parentheses below
each picture, as are the L2 and H1 error. Notice that for high quality shadows wavelets require two orders of magnitude fewer coefficients for comparable
error (compare W (200) and SH (20,000)). Model courtesy of O. Deussen, P. Hanrahan, B. Lintermann, R. Mech, M. Pharr, and P. Prusinkiewicz.

Reference Image W (25): 4.8% L2, 11% H1

SH (25): 4.0% L2, 13% H1 SH (200): 1.3% L2, 6.4% H1 SH (2000): 0.21% L2, 1.6% H1 SH (20,000): 0.09% L2, 0.33% H1

W (200): 0.46% L2, 2.1% H1 W (2000): 0.02% L2, 0.07% H1 W (20,000): 0.00% L2, 0.00% H1

Figure 4: Image relighting of a glossy teapot in Grace Cathedral (inset cubemap) epitomizes all-frequency cast shadows from area lights of different sizes.
We compare fidelity of the shadows and the specular highlight, using linear spherical harmonics (top row) and area-weighted, non-linear wavelets (bottom).
Note that harmonics blur the specular highlight at 200 terms and the tip of the spout’s shadow at 2000. Both features are well resolved with 200 wavelets.

Buddha Teapot Plant
Light Res. Sp. Size Sp. Size Sp. Size

6×4×4 32% 8.5 MB 19% 9.5 MB 17% 8.4 MB
6×8×8 32% 34 MB 16% 32 MB 15% 31 MB
6×16×16 26% 113 MB 14% 111 MB 14% 115 MB
6×32×32 10% 185 MB 10% 331 MB 12% 394 MB
6×64×64 3.8% 314 MB 3.1% 476 MB 7.4% 1.0 GB

The matrices are large but manageable for high-resolution lighting.
In the cases where Sloan et al. provide a perceptually valid approxi-
mation, the lighting is very low-resolution, and a comparably com-
pact wavelet matrix suffices. The video shows environments for
which these low-resolution approximations are valid.

It should also be noted that scaling the methods of Debevec
et al. [2000] or Sloan et al. [2002] to our resolutions would re-
sult in similarly sized datasets, but their systems would not work in
real-time because of the lack of sparsification provided by lighting
compression. In the case of linear spherical harmonics the resulting
matrices would also not provide the sparsity exhibited by wavelet
matrices, because harmonics are globally supported basis functions.

4.2.3 Total Compression and Rendering Speed

The combined lighting and matrix compression ratio is on the order
of 103:1 or 104:1. The associated reduction in computation allows
interactive relighting from environments that are at least ten times
greater in resolution than previously demonstrated.

We report performance on a commodity 2.8 GHz Pentium 4
computer with an nVIDIA GeForce4 graphics card. We present
end-to-end frame rates (“Full” columns below), as well as refresh
rates for just relighting (“Relight” columns below). Relighting in-
cludes everything in Section 3.2 except rasterization and display.

Buddha Teapot Plant
Terms Full Relight Full Relight Full Relight

40 19 / 9.8 38 / 13 15 / 6.9 25 / 7.4 18 / 8.1 25 / 9.9
100 14 / 6.2 21 / 7.7 8.8 / 3.4 10 / 4.4 12 / 5.1 13 / 5.5
200 9.5 / 3.5 13 / 4.4 5.0 / 2.5 5.3 / 2.4 6.6 / 2.6 6.7 / 3.3

Rates are presented in Hz. Each cell contains rates for both
monochromatic / color rendering. In color rendering, each channel
is handled separately, with no optimization to use vector operations.



5 Discussion and Conclusion

At the heart of our technique lies the simple and natural idea to
compress the relighting computation by taking the lighting data into
account. Our most important discovery is the fact that, in a wavelet
representation, less than 1% of the lighting information is required
to produce accurate renderings under detailed natural environments.
Previous research in image-based relighting has not exploited this
critical source of data redundancy.

An interesting feature of our results is that area-weighted co-
efficient selection is superior to unweighted or transport-weighted
selection. This is best understood in terms of the work of Ra-
mamoorthi and Hanrahan [2001]. They show that unshadowed, dif-
fuse reflection preserves only the lowest-frequency lighting energy.
As a result, area-weighting works well because it prioritizes larger,
lower-frequency lights, and because our scenes are mostly diffuse.

The teapot scene contains a glossy term, however, and for this
scene transport-weighted selection works almost as well as area-
weighting (see the error graphs for the teapot in Section 4.1.2).
Area-weighting works less well in this case because glossy surfaces
reflect energy from smaller, higher-frequency regions of the sky.

This result invites further study into the design of non-linear co-
efficient selection schemes. The 100-200 wavelet coefficients used
to approximate the St. Peter and Grace environments is large com-
pared to low-order harmonic approximations. This reflects the high
information content in these environments, and we believe that ac-
curate all-frequency shadows cannot be generated with many fewer
terms. Nevertheless, more intelligent coefficient selection has the
potential to minimize the number of terms needed in practice.

We have chosen to focus on shadows in this paper, because
shadows are an example of all-frequency light transport effects,
which produce different images under lights of different frequen-
cies. Shadows are all-frequency because lights of different sizes
create shadow boundaries with varying blurriness. Caustics are an-
other all-frequency effect. In contrast, some types of light transport,
such as multiple bounces of diffuse reflection, always blur lighting
and curtail high frequencies. One might call these exclusively low-
frequency effects.

We think it would be useful to systematically classify global il-
lumination effects according to which range of lighting frequen-
cies they preserve. Using such a classification, it may be possible
to separate a relighting problem into exclusively low-frequency ef-
fects, which are well approximated by linear methods such as that
of Sloan et al. [2002], and all-frequency effects, which require more
costly techniques such as the one proposed in this paper.

The main costs of our non-linear approach are memory and pre-
computation time: the transport matrices are very large. However,
in this paper we have focussed on simplifying the matrix-vector
multiplication, not on compressing the representation of the matrix
itself. An area of future work is to apply wavelet transforms on
the matrix columns as well as the rows, for a full 4D compression
scheme. A more challenging research direction is to support fully
dynamic geometry, which probably implies eliminating the depen-
dence on pre-computed data altogether.

Another challenging open problem is to support realistic materi-
als with changing viewpoint. One advantage of low-order harmon-
ics is that they lead to fast methods in this case [Sloan et al. 2002].
However, these only apply when both lighting and reflection are
very smooth; otherwise, specular highlights and shadows are dras-
tically blurred (Figure 4). For detailed lighting environments, new
methods are still needed. Our recent work suggests that non-linear
approximation can be usefully applied in this area also.

In summary, this paper introduces fast and accurate rendering
under detailed illumination, demonstrating its viability and poten-
tial. We hope that bringing these rich visual effects into the interac-
tive realm will provide a new medium for artistic expression.
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