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Abstract—Extended reality (XR) devices such as the Meta Quest and Apple Vision Pro have seen a recent surge in attention, with
motion tracking “telemetry” data lying at the core of nearly all XR and metaverse experiences. Researchers are just beginning to
understand the implications of this data for security, privacy, usability, and more, but currently lack large-scale human motion datasets
to study. The BOXRR-23 dataset contains 4,717,215 motion capture recordings, voluntarily submitted by 105,852 XR device users
from over 50 countries. BOXRR-23 is over 200 times larger than the largest existing motion capture research dataset and uses a new,
highly efficient and purpose-built XR Open Recording (XROR) file format.

Index Terms—Dataset, virtual reality, extended reality, motion capture, big data

1 INTRODUCTION

For decades, human motion capture (MoCap) recordings have been
an important resource in a variety of fields, ranging from animation
and computer-generated imagery (CGI) to authentication and human-
computer interaction (HCI). Recently, the proliferation of extended
reality (XR) devices has created a prominent new application for this
data, with motion data being central to almost all XR and “metaverse”
experiences. Since 2002, at least 25 motion capture datasets have been
created based on laboratory studies of up to a few hundred users to
facilitate research in this important domain.

An emerging area of interest for security and privacy researchers is
the passive identification and authentication of XR users based on their
movement patterns. Until recently, XR identification and authentication
studies have been limited to a few hundred users due to the lack of large-
scale human motion datasets. By contrast, studies involving traditional
biometrics, such as fingerprints or facial recognition, often use datasets
with 100,000 or more subjects [57].

In this paper, we introduce the BOXRR-23 dataset, which contains
4,717,215 motion capture recordings uploaded by 105,852 XR device
users from over 50 countries. Our data is derived from two popular
VR games, “Beat Saber” and “Tilt Brush.” In addition to being more
diverse and ecologically valid than laboratory studies, BOXRR-23 is
over 200 times larger than the largest known public motion capture
dataset (see §4). This dataset was recently used, for the first time, to
demonstrate that XR motion data provides a biometric signal on par
with fingerprints [34]. The identification result, published in USENIX
Security ’23, was made possible by this novel dataset. However, we
envision the potential uses of this data may go far beyond security and
privacy to include areas such as motion synthesis, human-computer
interaction, and machine learning research.

In addition to assembling this dataset from three public sources and
enriching it with additional metadata, we developed a new “Extended
Reality Open Recording” (XROR) file format due to the lack of an
existing standard format suitable for this use case. The XROR format
is about 30% more space efficient than the original motion capture file
formats, without loss of precision.
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To help interested researchers evaluate this dataset, we provide docu-
mentation pursuant to a number of open standards, including Datasheets
for Datasets [12] and Dataset Nutrition Labels [14]. Furthermore, we
conducted a large-scale survey (N = 1,006) of the users contained
in this dataset to better understand their demographics, the results of
which are summarized herein.

2 BACKGROUND

Since the 1990s, computerized motion tracking systems have been used
for animation and CGI in a large number of popular movies, television
series, and video games. A typical commercial motion capture solution
uses optical tracking or inertial measurement units (IMUs) to measure
the location of various body parts, with prices ranging from $10,000 to
over $250,000 for a full-body tracking system. Conventional motion
capture datasets have involved expensive laboratory studies with up
to 300 subjects paid to perform a variety of tasks while wearing a
professional motion capture setup.

Motion capture data is also central to the operation of extended
reality (XR) systems, which include devices supporting augmented
reality (AR), virtual reality (VR), and mixed reality (MR) technologies.
XR has experienced a recent surge in attention and popularity with the
release of self-contained VR devices like the Meta Quest and Apple
Vision series. Most consumer-oriented virtual reality systems include
a head-mounted display (HMD) and two hand-held controllers. The
system uses either external or onboard sensors to measure the position
and orientation of these devices in 3D space, providing six degrees of
freedom (6DoF), captured at a rate of between 60 and 144 times per
second. In essence, XR devices have recently become an affordable
and widely-adopted form of motion tracking system.

The motion data generated by an XR device is used by a client-side
application, such as “Beat Saber” or “Tilt Brush,” to render auditory,
visual, and haptic stimuli, creating an immersive 3D experience. In
some cases, users capture and share recordings of this motion data to
allow other users to “replay” the same virtual experience.

2.1 Beat Saber

“Beat Saber” [11], shown in Figure 1, is a VR rhythm game where
players slice blocks representing musical beats with a pair of sabers
they hold in each hand. It is the primary data source for the BOXRR-23
dataset. With over 6 million copies sold, Beat Saber is the most popular
VR application of all time [58]. The game contains a number of “maps,”
which consist of an audio track and a series of objects presented to the
user in time with the audio. These objects include “blocks,” which the
player must hit at the correct angle with the correct saber, “bombs,”
which the player must avoid hitting with their sabers, and “walls,” which
the player must avoid with their head. The player is given a score based
on their accuracy in completing these tasks. Reacting to these events
typically requires users to deploy fast ballistic movements [6, 56].
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Fig. 1: “Beat Saber” — VR rhythm game.

‘While hundreds of maps are included in the base game, over 100,000
user-created maps can be played by installing open-source game mod-
ifications. Beat Saber enthusiasts may choose to install open-source
leaderboard extensions in order to compete with other players to achieve
a higher “rank” on the leaderboards for popular maps. Two of the most
popular Beat Saber leaderboard services are “BeatLeader” [44] and
“ScoreSaber” [48], with a combined 4 million scores being submitted
to the platforms to date. When submitting a score to either of these
services, users attach a motion capture recording of them playing the
corresponding Beat Saber map, which is then made publicly available
on the BeatLeader or ScoreSaber website to allow others to audit the
legitimacy of the claimed score.

Fig. 2: “Tilt Brush” — VR painting app.

2.2 Tilt Brush

“Tilt Brush” [52], shown in Figure 2, is a VR painting game created by
Google that allows users to create 3D virtual objects using a variety of
brushes and tools. Users can then export their drawings in various file
formats, along with a motion capture recording of them creating the
object, allowing other users to re-watch the original painting process.
From 2017 to 2021, Google hosted “Google Poly,” a free service for
sharing virtual creations (and accompanying motion capture recordings)
from Tilt Brush. After the shutdown of Google Poly in 2021, the
“PolyGone” project [42] was created to host a free archive of over
50,000 user-submitted creations from Google Poly under a CC-BY
license. Contrary to Beat Saber, Tilt Brush motion consists primarily of
precise fine motor movements, providing a complementary data source.

3 DATA COLLECTION

Figure 3 shows the data collection process used to produce the BOXRR-
23 dataset. We downloaded over 4.7 million publicly-available motion
capture recordings stored on the BeatLeader, ScoreSaber, and Poly-
Gone websites, and obtained additional metadata information, such as
player experience levels and in-game events, from the public web APIs

Motion Recording Sources Additional Metadata Sources

BeatLeader ScoreSaber PolyGone Steam BeatSaver
.bsor .dat ilt Json .zip

I I [ | |
!

BOXRR-23
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Fig. 3: Data collection/processing pipeline for BOXRR-23.

of Steam [51] and BeatSaver [45]. We then removed identifiable details
like player IDs and pseudonyms to protect the identity of each user.
Finally, we converted all recordings from their original formats into
our purpose-built XROR format, described in §5. The sizes of each
of the sources, and of the dataset, are summarized in Table 1. We per-
formed this data collection process in April 2023 and have included all
valid, non-corrupt recordings submitted to all three platforms between
November 1st, 2017 and April 15th, 2023.

Table 1(A): Sources for data in BOXRR-23 dataset.

Source Application | Users Recordings | Format | Size
BeatLeader | Beat Saber 95,192 3,525,456 .bsor 6.25TB
ScoreSaber | Beat Saber 55,331 1,136,581 .dat 1.44 TB
PolyGone Tilt Brush 27,693 55,178 ilt 1.87 TB
Table 1(B): Output characteristics of BOXRR-23 dataset.
[ Dataset | Users | Recordings | Format | Size |

| BOXRR-23 Dataset | 105,852 | 4,717,215 | xior | 471TB |

Table 1: BOXRR-23 characteristics and data sources.

4 RELATED WORK

”

We searched for existing datasets relating to “motion capture,” “teleme-
try,” “VR motion,” “XR motion,” etc., on dataset hosting platforms like
Kaggle, Zenodo, and Dryad, as well as for academic papers relating to
motion capture data and experiments. The full set of search parameters
used is included in the appendices. We found over 25 existing datasets
containing human motion recordings, as summarized in Table 2.

Table 2(A): Current motion capture datasets outside XR.

Dataset Or Year | Subjec Recordings | Markers
BMLrub [54] Ruhr Univ. Bochum 2002 111 3,061 | 41,3DoF
HDMO5 [32] Max Planck Society 2007 4 215 | 41, 3DoF
CMU-MMAC [22] Carnegie Mellon Univ. 2008 5 5 | 41, 3DoF
EYES Japan [30] EYES Japan 2009 12 750 | 37, 3DoF
HumanEva [50] Univ. of Toronto 2010 3 28 | 39,3DoF
SFU MoCap [49] Simon Fraser Univ. 2012 7 44 | 53, 3DoF
ACCAD [1] Ohio State Univ. 2012 20 252 | 82, 3DoF
Sleight of Hand [15] Trinity College Dublin 2012 1 62 | 91, 3DoF
Human3.6m [16] Romanian Academy 2013 11 44 | 24, 3DoF
MoSh [24] Max Planck Society 2014 19 77 | 87, 3DoF
MPI Limits [2] Max Planck Society 2015 3 35 | 53,3DoF
KIT MoCap [26] Karlsruhe Inst. of Tech. 2016 232 2,925 | 50, 3DoF
Total Capture [55] Univ. of Surrey 2017 5 37 | 53, 3DoF
AMASS [25] Max Planck Society 2019 344 11,265 | 37, 3DoF
CMU MoCap [4] Carnegie Mellon Univ. 2019 144 2,605 | 41,3DoF
MoVi [13] Queen’s Univ. 2021 90 1,890 [ 12, 3DoF
Table 2(B): Current motion capture datasets inside XR.
Dataset Or i Year | Subjec Recordings | Trackers
Behavioural Biometrics [40] | Bundeswehr Univ. Munich | 2019 22 88 3, 6DoF
TTI [27] Stanford Univ. 2020 511 511 3, 6DoF
Body Normalization [23] Univ. of Duisburg-Essen 2021 16 48 3, 6DoF
Obfuscation [31] Univ. of Central Florida 2021 60 120 3, 6DoF
Body Sway [5] Purdue Univ. 2021 28 336 3, 6DoF
You Can’t Hide [53] Univ. of Padova 2022 35 69 3, 6DoF
Motion Matching [43] Univ. of Catalonia 2022 1 12 3, 6DoF
Personal Identifiability [28] Stanford Univ. 2023 232 1856 3, 6DoF
Who is Alyx [47] Univ. of Wiirzburg 2023 71 142 3, 6DoF

Table 2(C): Our new XR motion capture dataset.
Dataset | Organizati [ Year | Subjects | Recordings | Trackers |
BOXRR-23 | UC Berkeley, et al. [ 2023 | 105852 | 4,717,215 | 3,6DoF |

Table 2: Comparison of BOXRR-23 with existing datasets.
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The majority of these datasets come from conventional non-XR mo-
tion tracking systems, as listed in Table 2(A), while several originate
from XR-based laboratory studies, listed in Table 2(B). The largest
existing study contained 511 subjects [27], with a single session cap-
tured from each subject. By contrast, our dataset, summarized in Table
2(C), contains over 105,000 subjects and 4.7 million recordings from
the three sources described in §3.

In addition to being over 200 times larger than the largest existing
dataset, we found that all of the existing datasets come from a laboratory
study in which participants used a small number of homogeneous
devices and were generally physically present in a narrow geographical
area. Thus, the BOXRR-23 dataset is more useful for obtaining a
representative sample of XR users, as it originates from real XR users
using their own devices in their own homes. As a result, it contains
diverse data from over 40 types of XR devices, and includes users from
over 50 countries around the world.

As evidenced by Table 2, BOXRR-23 is more comparable to existing
XR datasets with a small number of 6DoF trackers than non-XR datasets
with a large number of 3DoF markers. In applications where detailed
full-body tracking is required, a conventional MoCap dataset may be
more appropriate than an XR dataset like BOXRR-23.

5 XROR FORMAT

As detailed in §3, the data included in the BOXRR-23 dataset
was scraped from three separate public data sources (BeatLeader,
ScoreSaber, and PolyGone), each using three separate custom file
formats designed specifically for those platforms ((BSOR, .DAT, and
.TILT, respectively, summarized in Table 3(A)). We felt that the ex-
perience of researchers consuming this dataset in the future would be
improved if the recordings were all converted to a single file format
that could be analyzed and ingested via a unified pipeline.

We began by evaluating open-source motion capture file formats
such as .BVA, .BVH, and .MVNX. Unfortunately, we found that the
existing formats were unsuitable for this database for a variety of
reasons. Some formats, such as .BVA and .BVH, only have support fc
motion data, and did not allow us to embed the rich metadata and evel
data streams we wished to include in the dataset. Others, like MVN:
did support the inclusion of arbitrary metadata and event data stream
but used an inefficient underlying text-based file format (.XML) th:
would have caused the dataset to balloon to over 300 TB in size. Finall
some proprietary formats did contain all of the necessary features i
an efficient binary format, but were not open-source and required pai
tools or licenses to utilize them. Overall, we found that none of th
existing open-source file formats were unsuitable for this dataset.

A formal specification of the XROR format, using the BSON ver-
sion of the JSON Schema notation, is here: https://rdi.berkeley.
edu/metaverse/boxrr-23/dict. json.

Table 3(A): Source file formats for motion data.

Format | Metadata | Motion Data | Event Data | Compression | Avg. Size
il v v v 33.89 MB
bsor v v 4 1.77 MB
dat v v v 1.27 MB
Table 3(B): Existing general file formats for motion data.
Format | Metadata | Motion Data | Event Data | Compression | Avg. Size
.mvnx 61.90 MB
bvh v 25.79 MB
bva v 13.98 MB
Table 3(C): Proposed new open file format for motion data.
[ Format | Metadata | Motion Data | Event Data | Compression | Avg. Size |
| xror v v ] v | 099MB |

Table 3: Comparison of XROR with existing formats.

To address the issues with existing open-source file formats, we
introduce the new “Extened Reality Open Recording (XROR)” file for-
mat. XROR files contain metadata as well as rich event and motion data
streams, and are based internally on BSON (Binary JSON), a flexible,
widely-supported format with libraries in dozens of languages. Meta-
data is stored as JSON key-value pairs, while event data and motion
data streams are converted to 2D floating-point arrays and compressed
using fpzip, a lossless compressor of multidimensional floating-point ar-
rays designed by Lawrence Livermore National Laboratory specifically
for the efficient storage and transmission of scientific datasets.

To evaluate the relative efficiency of our new format, we converted a
portion of our dataset into a variety of existing open formats, summa-
rized in Table 3(B), as well as our proposed XROR format, as shown
in Table 3(C). Even compared to the original, purpose-built formats
shown in Table 3(A), XROR achieves space savings of at least 30%
with no loss in precision due to the use of fpzip compression.

Due to the advantages of our new XROR format over the existing
alternatives, the entire BOXRR-23 dataset is offered exclusively as
XROR files. To help researchers process this format, we have provided
open-source tools to parse XROR files, and convert them to and from a
variety of formats (e.g., TILT, BSOR, DAT, and JSON).

6 RECORDING CONTENTS

Motion
== Right Hand

mmm Left Hand === Head
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Fig. 5: “Tilt Brush” motion.
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Fig. 6: “Beat Saber” event. Fig. 7: “Tilt Brush” event.

Figures 4-7 illustrate the typical contents of each recording in the
BOXRR-23 dataset. The following data is included in each recording:

1. Metadata. A variety of metadata is included with each entry, in-
cluding anonymized user IDs, hardware and software descriptions,
and virtual environment and activity descriptions.

2. Motion data. Recordings principally consist of motion data cap-
tured in 6DoF at between 60 Hz and 144 Hz. Beat Saber recordings
include head and hand motion data (see Fig. 4), while Tilt Brush
recordings include brush motion and pressure data (see Fig. 5).

3. Event data. Motion data is accompanied by rich contextual infor-
mation about events occurring in the virtual world. This includes
information about the in-game objects and obstacles in the case of
Beat Saber (see Fig. 6), and about each brush stroke in the case of
Tilt Brush (see Fig. 7).

Detailed data examples of Beat Saber and Tilt Brush recordings in
the BOXRR-23 dataset are provided in the supplemental materials.
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7 ACCESS INSTRUCTIONS

Researchers interested in using the BOXRR-23 dataset are invited to
visit https://rdi.berkeley.edu/metaverse/boxrr-23/. The
permanent DOl is https://doi.org/10.25350/B5NP4V. For ease
of access, the dataset has been split into 106 .zip files, each containing
up to 1,000 users. Each user is represented by a folder containing .xror
recordings from that user.

We developed the licensing terms for this dataset in conjunction
with the Committee for Protection of Human Subjects (CPHS) and
Intellectual Property & Industry Research Alliances (IPIRA) groups
at UC Berkeley, with the chief goal of protecting the human subjects
contained in this dataset. The dataset is licensed under a Creative
Commons Attribution-NonCommercial-ShareAlike 4.0 International
(CC BY-NC-SA 4.0) license, and is additionally subject to a data use
agreement (DUA) that prohibits unethical uses of the data, such as
attempts to deanonymize the subjects. Online access to the dataset is
automatically granted upon agreeing to the license and DUA.

8 INTENDED USE CASES

As discussed above, known uses of this dataset are primarily in the
authentication and biometrics domain. However, there are a number of
interesting envisioned uses for this dataset within the VR community,
beyond security and privacy research.

8.1 Notable Known Uses

Until recently, this dataset has only been available for internal use at UC
Berkeley. Thus far, we have published four papers using this dataset in
the XR security and privacy domain:

* We conducted a study that uniquely identified over 55,000 VR users
based on their head and hand motion [34]. By using the BOXRR-23
dataset, this study was over 200 times larger than the next largest
VR identification study, and the first to demonstrate parity with
biometrics like fingerprints.

— Result: After training a classification model on 5 minutes of data
per person, a user can be uniquely identified amongst the entire
pool with 94.33% accuracy from 100 seconds of motion.

— Availability: The source code and documentation required to repli-
cate this result using the BOXRR-23 dataset can be found at
https://github.com/metaguard/identification.

* In another study, we combined the BOXRR-23 dataset with a survey
to demonstrate that a large number of sensitive data attributes can be
inferred from VR users based on motion alone [37].

— Result: Using simple machine learning models, over 35 private
data attributes could accurately and consistently be inferred from
VR users using head and hand motion data alone.

— Availability: The source code and documentation required to repli-
cate this result using the BOXRR-23 dataset can be found at
https://github.com/metaguard/profiling.

* In a third paper, we presented ‘“MetaGuard,” [33] a differential
privacy-based tool for protecting user data privacy in the metaverse,
which we evaluated using the BOXRR-23 dataset.

— Result: We show a significant degradation of attacker capabilities
when using MetaGuard.

— Availability: The source code and documentation required to repli-
cate this result using the BOXRR-23 dataset can be found at
https://github.com/metaguard/metaguard.

* In a fourth study, we presented “Deep Motion Masking,” [36] a
machine learning architecture for anonymizing VR motion data,
which we trained and evaluated using the BOXRR-23 dataset.

— Result: Through a large-scale user study (N=182), we demonstrate
that our method is significantly more usable and private than
existing VR anonymity systems.

— Availability: The source code and documentation required to repli-
cate this result using the BOXRR-23 dataset can be found at
https://github.com/metaguard/metaguardplus.

8.2 Future Directions

While the dataset has primarily been used in the security and privacy
domain, we can envision a number of additional interesting applications
for this data. Historically, motion capture data has primarily been used
for computer graphics, animation, and CGI, and our data could also
be used in this domain. For example, it could be used to train large-
scale generative machine learning models for natural human motion
synthesis. It may also be of interest to researchers studying human-
computer interaction in XR (e.g., researchers could use the data to
investigate interaction patterns likely to cause discomfort or injury).

One area of active research that is relevant to our dataset is the
inference of full-body pose information from sparse tracking inputs.
Researchers have demonstrated the ability to recover full-body motion
data from the motion of a few tracked points [7, 17]. Using these
techniques, the sparse tracking data offered by our dataset could be
used to recover inferred full-body motion for various uses.

Furthermore, the dataset contains numerous labels, including
anonymized user IDs, hardware and software descriptions, and vir-
tual environment and activity descriptions, that can be used to construct
novel classification and regression tasks. For example, a very inter-
esting use of the Tilt Brush portion of the dataset could be to use the
brushstroke motion data to infer the title or description of the drawing,
which are provided in the metadata as potential labels.

Finally, this dataset presents a challenging and unique opportunity
for theoretical machine learning research, because it consists of long,
sequential data, with sequence lengths often in excess of 100,000. Most
existing deep learning algorithms are not well equipped to handle se-
quential data of this size. Currently, our dataset is a rare instance
of a task in which classical ML algorithms seem to outperform deep
learning methods [34]. Developing models that can accurately and effi-
ciently ingest the data contained in this dataset may require theoretical
advances in machine learning techniques.

9 PRELIMINARY ANALYSIS

In this section, we offer a preliminary analysis of the BOXRR-23
dataset, in which we primarily summarize the metadata associated with
each recording to complement the existing uses of the dataset (§8.1) and
benchmarking results (§11). The dataset contains 4,717,215 recordings
from 105,852 users. Recordings vary in length from one second to over
an hour, with an average length of about three minutes. Over 97% of
recordings in the dataset are between one and seven minutes in length.
The recordings are also not evenly distributed across the 105,852
users: the most prolific individual users have over 1,000 recordings
each in the dataset, while 90% of users have 15 or fewer recordings.
The top 1,000 users alone account for nearly 500,000 recordings or

about 10% of the dataset, despite being less than 1% of the users.
Additionally, over 30 different models of extended reality devices
are present in the dataset. However, as illustrated in Fig. 8, Oculus
Quest 2 devices are by far the most popular, with all Oculus models
together representing about 66% of the dataset. Our metadata also
includes the runtime environment of each recording, with about 75%
of recordings using SteamVR (including Quest Link) and about 25%
using the Oculus runtime. Neither the Oculus Quest 3 nor the Apple
Vision Pro were broadly available at the time this dataset was collected.
XR Devices Used in BOXRR-23 Dataset Countries Represented in BOXRR-23 Dataset

Oculus Quest 2 (Standalone) us
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Others
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Fig. 8: Distribution of devices and countries in BOXRR-23 recordings.
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Furthermore, IP-based geolocation estimates are available for about
70% of the users in the dataset. While over 50 different countries are
represented, users from the United States account for nearly half of the
dataset as shown in Fig. 8. About 66% of the dataset originates from
the top five countries alone, as discussed further in §12.

Finally, basic anthropometric data can be observed from the dataset.
For example, 4.3% of users have configured their device in left-handed
mode, while 95.7% use the default right-handed mode. Globally, it is
believed that approximately 10% of people are left-handed, indicating
that left-handed users are either underrepresented in our dataset, or
largely choose to leave their device in right-handed mode. Furthermore,
the median height setting of users in the dataset is approximately 1.7
meters, which closely aligns with the true global median height.

10 POPULATION SURVEY

To shed additional light on the demographics of the users within our
dataset, we conducted a large-scale online survey of VR users. The
survey contained about 50 questions and received 1,006 responses,
of which 830 users were present in the BOXRR-23 dataset. It was
conducted in coordination with BeatLeader and other Beat Saber or-
ganizations, and thus did not reach the 1% of BOXRR-23 users from
Tilt Brush. The full results of this survey are available online [38], with
primary demographics summarized in Figure 9 below.

Marital Status

18-20

Never
Married
Divorced

21-24 Married

25-29

Gender Employment Status

Student

Other Not

Employed

Female

Employed

Ethnicity Income

< $10k

= $100k

Other $60k-99k

$40k-59k

$10k-19k $20k-39k

Fig. 9: Survey results from 830 users in the BOXRR-23 dataset.

11 BENCHMARK RESULT

In this section, we present a baseline motion-based XR user identifi-
cation result to demonstrate the potential of the BOXRR-23 dataset
for large-scale user identification tasks, above and beyond the existing
deployments detailed in §8.1. We describe the basic principles behind
existing VR identification models and then show that with the large
volume of data available in BOXRR-23, models can now be trained
that are far more robust and capable than those discussed in prior work.

11.1 Prevailing Architectures

At present, most existing papers on VR user identification utilize clas-
sical machine learning models, such as those based on the Random
Forest [3] and LightGBM [18] architectures. The motivation for us-
ing these models over more powerful deep learning approaches is that
deep learning typically requires a significantly larger volume of data to
successfully train and converge, whereas tree-based architectures can
produce generalizable classifiers with fewer samples per user.

On the other hand, the sequential time-series format of VR motion
data streams is not a natural fit for tree-based models, which require a
one-dimensional tabular data format. As such, prior works suggest de-
liberate feature engineering to convert motion data streams into tabular
samples by using summary statistics to eliminate the time dimension.

Specifically, Pfeuffer et al. [41] suggest dividing motion data into
one-second chunks, and then converting each chunk into a flat feature
vector by taking four statistics (min, max, mean, and standard deviation)
across each tracked dimension. Miller et al. [29] use a very similar ap-
proach, but also include the median of each axis. Moore et al. [31] use
identical features to Miller, while Nair et al. [35] use similar features
but add contextual data specific to the VR application. At a high level,
many prior works have found the basic idea of summarizing one-second
chunks of motion to be highly effective. Still, these approaches remain
a concession forced by not having enough data to use deep learning.
Now, having access to the massive BOXRR-23 dataset, we are moti-
vated to produce similar identification experiments using deep learning
architectures in order to achieve better identification performance.

11.2 User Identification Benchmark

We now demonstrate how an LSTM architecture can be used to drive
improvements in motion-based identification accuracy, provided a large
amount of training data per user is available. Using the BOXRR-23
dataset, we first found the 500 users for which the greatest number
of individual recordings were available. For these top 500 users, an
average of 821 recordings were available per user, with each recording
averaging about three minutes in length. We used the 500 most recent
recordings of each user for our evaluation, with 400 of these being
used for training, 50 for validation, and the remaining 50 being used
for testing. Only the first 30 seconds of each recording were utilized,
and recordings were normalized to a constant 30 frames per second by
using a numerical linear interpolation for positional coordinates and a
spherical linear interpolation for orientation quaternions.

To evaluate the performance of the LSTM funnel architecture on
this particular dataset, we implemented a two-layer LSTM architecture
in Keras v2.10.1 [19] and trained it for 500 epochs on the described
dataset using the Adam optimizer [20] with a learning rate of 0.001.
The validation dataset was used for early stopping after 25 epochs of no
improvement. For the sake of comparison, we also trained and tested
several previously proposed identification model architectures using
the same dataset, the results of which were as follows:

e Our new LSTM funnel architecture achieves a per-sample accuracy
of 98.12% and a per-user accuracy of 100.00%.

* The Nair et al. [35] architecture achieves a per-sample accuracy of
71.66% and a per-user accuracy of 100.00%.

» The Miller et al. [28] architecture achieves a per-sample accuracy of
56.59% and a per-user accuracy of 97.60%.

As evidenced by the above results, our architecture substantially
exceeds the identification performance of the most notable prior models
when using identical datasets. This, on its own, is not entirely surprising,
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given that we used over three hours of training data per user to perform
this demonstration, which also exceeds all prior works; the previously
proposed models and featurization approaches were not designed to
take full advantage of this volume of data. However, due to the volume
of training data used, the model achieves an unprecedented level of
robustness to reductions in input dimensionality:

e The original representation with the full 21 features
({head, left_hand,right_hand} x {x,y,z,i,j,k,w}) gives a sample
accuracy of 98.12% and a user accuracy of 100.00%.

* Removing the head, the remaining 14
({left_hand,right_hand} x {x,y,z,i,j,k,w}) reduce
accuracy to 94.76% (and still 100% user accuracy).

e Using only hand rotations, the remaining 8 features
({left_hand,right_hand} x {i, j,k,w}) give a sample accuracy of
93.42% and a user accuracy of 100.00%.

e Using only left hand rotations, the remaining 4 features
({left_hand} x {i, j,k,w}) still result in a sample accuracy of 92.77%
and a user accuracy of 100.00%.

e Using only left hand rotational magnitude, the single feature
({left_hand} x {w}) still results in a sample accuracy of 84.23%
and a user accuracy of 100.00%.

features
sample

In other words, by observing just the magnitude of the rotation of
one hand of a user for a period of 30 seconds, the model can still
correctly identify the user out of 500 options with nearly 85% accuracy,
provided it was first trained on over three hours of data for each user.

Previously, obtaining over three hours of motion capture data from
each of 500 users would have been infeasible in the context of a labora-
tory study, with prior studies either having 500 users but less than ten
minutes of data per user [27], or having hours of data per user but less
than 100 users [47]. As the above results demonstrate, having both a
large number of users and a large amount of data per user is critical to
enabling highly robust motion-based identification in VR.

If extended reality truly replaces existing mobile devices as a default
method of human-computer interaction for millions of users in the
near future, having multiple hours of cumulative time spent using
XR devices may soon come to represent an average or even below-
average usage pattern. The BOXRR-23 dataset provides the first major
opportunity for researchers to understand the potential implications of
this large-scale motion data were it to become broadly available.

12 LIMITATIONS

As may be evident by the survey results provided in §10, the users
included in our dataset are not necessarily representative of a general
population. For example, the dataset consists primarily of white and
male subjects. While the subjects are demographically similar to the
overall population of VR device users [8], they consist entirely of users
who chose to upload a BeatSaber performance or TiltBrush drawing to
a public platform. As such, we believe enthusiast or expert-level users
are likely to be overrepresented in the dataset. However, for the same
reason, the dataset likely contains far more geographic diversity than
existing laboratory-based datasets. Furthermore, the data is derived
from just two VR applications, Beat Saber and Tilt Brush, with almost
75% of the users and 99% of the recordings being from Beat Saber
alone. Overall, researchers should be cautious when attempting to
use this dataset to draw conclusions about larger populations than the
ones directly included. When attempting to use BOXRR-23 to draw
conclusions about broader populations, researchers should follow best
practices for accounting for sampling bias in datasets [21,39].
Additionally, there are some risks associated with the dataset be-
ing derived from ordinary XR users. Some metadata values, such as
Beat Saber song titles or Tilt Brush drawing descriptions, may contain
objectionable content due to their user-submitted nature. Metadata
constituting user-configured settings like height and handedness should
be considered self-reported, and are subject to the typical response
biases associated with self-reported values. Finally, because the data is
from “the wild” rather than a laboratory study, it originates from a wide
variety of heterogeneous XR devices and physical environments, and
may include more noise and tracking errors than a lab-created dataset.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

13 ETHICAL CONSIDERATIONS

Because our dataset consists entirely of motion capture recordings from
human subjects, significant attention was given to ethics throughout
the process of designing and collecting the dataset. Our collection of
this dataset was approved and overseen by the UC Berkeley Office for
Protection of Human Subjects (OPHS), an OHRP-certified Institutional
Review Board (IRB), approved as protocol #2023-03-16120. .

We note that in producing this dataset, the authors had no direct
contact with human subjects. Instead, our data is derived from three
public sources. All data utilized in this study was already broadly,
publicly available, to any person in the world with an internet con-
nection, without the need for permissions, credentials, authentication,
or any special tools or applications, via the websites of ScoreSaber,
BeatLeader, and PolyGone. No new data is being made accessible
to the public in the publication of this dataset; our contribution is in
finding, scraping, aggregating, reprocessing, enriching, and distributing
this existing data, and in surveying the underlying population.

Despite the public nature of the data and the IRB approval, we
chose to obtain written permission from ScoreSaber, BeatLeader, and
PolyGone before proceeding out of an abundance of caution and respect
for the communities from which this data originates. We did not begin
collecting data until authorized to do so by these communities, and
sought their input throughout the collection process.

Users of the ScoreSaber, BeatLeader, and PolyGone platforms must
voluntary install custom software to share their motion recording data
with these platforms. They are fully aware of the nature of the data
being shared, as uploading and publicly sharing XR data is the explicit
purpose of these platforms. They also consent to their recordings
being made publicly available in the privacy policies of these platforms.
For example, the BeatLeader Privacy Policy, which can be found at
https://www.beatleader.xyz/privacy, states that “Replays may
contain personally identifiable information... Your data, including
associated personally identifiable information, will be broadly publicly
available to anyone with an internet connection via the BeatLeader
website.” Users of Google Poly (and PolyGone) consent to making
their data publicly available under a CC-BY license.

Beyond consenting to the publication of their data in privacy policies
and license agreements, we made further attempts to notify users of their
involvement in academic research. Because users authenticate with
these platforms via OAuth, their contact information is not known to the
platforms, making direct consultation infeasible. However, we worked
in collaboration with the BeatLeader team to inform users of their
inclusion in academic research via their website and the official social
media channels of the platform, and to develop an opt-out mechanism.

Although users knowingly consented to the public availability of
their motion data, we took additional steps to protect the privacy of
data subjects. First, all known explicit identifiers, such as usernames
and user IDs, have been removed from the dataset. No potentially
sensitive information, such as protected health information, is included
in the data or metadata. Second, the dataset is offered under a data
use agreement (DUA) that prohibits researchers from attempting to
deanonymize the users, or to infer private attributes of the users that
may be deemed sensitive. We followed the strictest PII data handling
guidelines offered by our institution throughout the dataset collection
process to preclude the accidental release of non-anonymized data.

Participants originally submitted their motion data to the ScoreSaber,
BeatLeader, and PolyGone platforms for purposes other than academic
research. Namely, they chose to make their data freely publicly avail-
able for reasons such as competitive e-sports or collaborative artwork;
as such, users were not compensated for their original submissions,
nor for their inclusion in the dataset. Moreover, any participant risks
associated with the use of an extended reality device would have been
realized by the users regardless of the later inclusion of the resultant
motion recordings in this dataset. The scraping and redistribution of
publicly-available online data is a highly common and widely accepted
practice within the machine learning community [9,46].

While it is impossible to entirely eliminate the risks associated with
anew dataset, we believe the additional risk posed by our dataset is min-
imal in light of the fact that all of the included data was already public.
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On the other hand, the data has the potential to facilitate significant ad-
vances in fields like graphics, HCI, XR, AI/ML, and computer security
and privacy. We have taken significant steps to mitigate the potential
harms of this dataset while maximizing its utility for beneficial research.
Overall, we believe this research constitutes a net benefit to the subjects
whose data was included by shedding light on the implications of the
motion capture data which they have already, independently chosen to
publish. For instance, security and privacy research using this dataset
benefits society by highlighting the magnitude of the VR privacy threat
and motivating future work on countermeasures.

14 CONCLUSION

We have presented the BOXRR-23 dataset, a 4.7 TB dataset of extended
reality motion capture recordings from users around the world. Unlike
existing motion capture datasets, BOXRR-23 is derived from recordings
submitted by participants using their own XR devices, rather than a
laboratory setup. As a result, it contains over 200 times more users, and
over 400 times more recordings, than all known comparable datasets,
while simultaneously being more diverse and ecologically valid.

The two XR applications included in BOXRR-23, Beat Saber and
Tilt Brush, provide highly complementary motion data. Beat Saber
consists almost entirely of fast ballistic movements while Tilt Brush
consists almost entirely of fine motor movements, each controlled by a
separate part of the brain [10]. By combining these sources, BOXRR-23
provides researchers a diverse collection of motion patterns.

For the first time, BOXRR-23 allows the identifiability of human
motion data to be directly compared with biometrics like fingerprints
and facial recognition, which have long enjoyed large public datasets.
Our benchmarking results show that the massive scale of the BOXRR-
23 dataset enables the use of deep learning for XR identification tasks,
providing significant increases in identification accuracy and robust-
ness. As such, we hope to see new advances in passive authentication
mechanisms and privacy-preserving systems for XR, in addition to
potential deployments in fields ranging from graphics and animation to
usability and human-computer interaction.

In addition to identifying three new sources of motion data not
previously widely known to academic researchers, we contributed a new
XROR format to enable the efficient storage and transmission of this
data. XROR is approximately 30% more efficient than the three original
data formats, without any loss in precision, while also being more
versatile than most existing open-source formats. Documentation for
our dataset is offered according to widely-recognized open standards,
including Datasheets for Datasets [12] and Dataset Nutrition Labels
[14]. We also conducted a large survey of over 800 users present in the
dataset to help researchers understand its demographic constituency.

As advances in extended reality allow this technology to reach in-
creasingly large audiences, human motion data will remain vital to
the operation XR and “metaverse” systems for the foreseeable future.
In particular, augmented reality (AR) technology promises to be the
next major medium of human-computer interactions, potentially even
replacing the use of mobile devices such as smartphones. If this reality
comes to pass, it is vital that we improve our understanding of the uses
and implications of the motion data that these devices are designed
to generate. We look forward to seeing future work that deploys the
BOXRR-23 dataset to advance public knowledge in a variety of impor-
tant fields, and to drive improvements to XR and metaverse experiences
that benefit the field of extended reality as a whole.
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