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Figure 1: When used to simulate the motion of a cloth sheet with 6561 vertices our method (left) produces real-time results on a single CPU
comparable to those obtained with a much slower off-line method (middle). The method also performs well for one dimensional strands,
volumetric objects, and character clothing (right).

Abstract

We describe a scheme for time integration of mass-spring sys-
tems that makes use of a solver based on block coordinate descent.
This scheme provides a fast solution for classical linear (Hookean)
springs. We express the widely used implicit Euler method as an
energy minimization problem and introduce spring directions as
auxiliary unknown variables. The system is globally linear in the
node positions, and the non-linear terms involving the directions
are strictly local. Because the global linear system does not depend
on run-time state, the matrix can be pre-factored, allowing for very
fast iterations. Our method converges to the same final result as
would be obtained by solving the standard form of implicit Euler
using Newton’s method. Although the asymptotic convergence of
Newton’s method is faster than ours, the initial ratio of work to
error reduction with our method is much faster than Newton’s. For
real-time visual applications, where speed and stability are more
important than precision, we obtain visually acceptable results at a
total cost per timestep that is only a fraction of that required for a
single Newton iteration. When higher accuracy is required, our algo-
rithm can be used to compute a good starting point for subsequent
Newton’s iteration.
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1 Introduction

Mass-spring systems provide a simple yet practical method for mod-
eling a wide variety of objects, including cloth, hair, and deformable
solids. However, as with other methods for modeling elasticity, ob-
taining realistic material behaviors typically requires constitutive
parameters that result in numerically stiff systems. Explicit time inte-
gration methods are fast but when applied to these stiff systems they
have stability problems and are prone to failure. Traditional methods
for implicit integration remain stable but require solving large sys-
tems of equations [Baraff and Witkin 1998; Press et al. 2007]. The
high cost of solving these systems of equations limits their utility
for real-time applications (e.g., games) and slows production work
flows in off-line settings (e.g., film and visual effects).

In this paper, we propose a fast implicit solver for standard mass-
spring systems with spring forces governed by Hooke’s law. We con-
sider the optimization formulation of implicit Euler integration [Mar-
tin et al. 2011], where time-stepping is cast as a minimization prob-
lem. Our method works well with large timesteps—most of our
examples assume a fixed timestep corresponding to the framerate,
i.e., h = 1/30s. In contrast to the traditional approach of employing
Newton’s method, we reformulate this minimization problem by
introducing auxiliary variables (spring directions). This allows us to
apply a block coordinate descent method which alternates between
finding optimal spring directions (local step) and finding node po-
sitions (global step). In the global step, we solve a linear system.
The matrix of our linear system is independent of the current state,
which allows us to benefit from a pre-computed sparse Cholesky
factorization.

Newton’s method is known for its excellent convergence properties.
When the iterates are sufficiently close to the optimum, Newton’s
method exhibits quadratic convergence which out performs block
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coordinate descent. However, each iteration of Newton’s method
requires solving a linear system which changes from one iteration to
the next. Those solves are computationally expensive, and therefore
commonly used techniques often do not iterate until convergence,
but instead apply only one iteration of Newton’s method. That
approach is justified by the practical requirement of obtaining stable,
visually plausible results with a limited computational budget.

Although the asymptotic convergence of our method is poor, its
initial progress is quite fast. Specifically, the computational cost
required to reach a relative error equivalent to a single iteration of
Newton’s method is only a small fraction of the cost of a single New-
ton iteration. Our method can be also terminated earlier, resulting
in crude yet visually plausible approximation. Such functionality is
difficult to achieve otherwise because early termination of conjugate
gradients may produce unreliable descent directions due to the fact
that conjugate gradients do not reduce the error smoothly [Shewchuk
1994]. In this light, we believe that our method will be appreciated
in physics-based animation, because it can compute visually plau-
sible results very quickly. The ability to compute fast yet stable
simulations is critical in real-time applications, where speed is much
more important than accuracy. In applications requiring higher ac-
curacy, our method can be used to produce a good starting point
for Newton’s method, because its initial error reduction speed often
outperforms the damped Newton phase.

2 Related Work

Mass-spring systems are conceptually simpler and easier to imple-
ment than more physically consistent models derived from contin-
uum mechanics using the finite element method [Bonet and Wood
1997]. In contrast to scientific computing, highly accurate mate-
rial modeling is not always necessary for physics-based anima-
tion. As a result, mass-spring systems are widely used for one
and two-dimensional structures, such as hair [Selle et al. 2008]
and cloth [Choi and Ko 2005], and to a lesser extent for elastic
solids [Teschner et al. 2004]. For a more detailed discussion we
recommend the survey article by Nealen et al. [2005].

Regardless of whether one employs a mass-spring system or another
method based on continuum mechanics, some numerical time in-
tegration technique is necessary to simulate the system dynamics.
The most straightforward integration methods are explicit, such as
explicit Euler [Press et al. 2007]. For the purposes of physics-based
animation, where performance concerns dictate large timesteps, ex-
plicit methods are often not sufficiently robust and experience sta-
bility problems. Seminal works [Terzopoulos et al. 1987; Baraff
and Witkin 1998] introduced the implicit Euler method which offers
robustness even for stiff systems and large timesteps. Unfortu-
nately, the traditional numerical solution of implicit Euler employs
Newton’s method, which requires the solution of a sparse linear
system at each iteration. The system matrix changes as the system
evolves, which typically precludes pre-factorization in direct linear
solvers [Botsch et al. 2005]. Recently, Hecht et al. [2012] proposed
scheduled updates of Cholesky factors, trading off accuracy of the
Hessian for its more efficient amortized evaluation. In contrast to
Hecht et al. [2012], our system matrix is fully state-independent
which allows us to completely rely on the pre-computed factor-
ization as long as the system parameters and connectivity remain
constant.

A drawback of implicit Euler is that integration error manifests as
excessive numerical damping. Symplectic integrators [Stern and
Desbrun 2006; Kharevych et al. 2006] are known for their energy
conservation properties. A related time-stepping strategy involves
the combination of implicit and explicit methods (IMEX) [Bridson
et al. 2003; Stern and Grinspun 2009]. However, numerical damping

may be tolerable in applications where energy conservation is not
critical and many recent methods continue to rely on the implicit
Euler method [Martin et al. 2011; Hahn et al. 2012]. A recently
proposed technique that allows for a more direct control of damping
is energy budgeting [Su et al. 2013]. Energy budgeting can be
applied on top of any numerical time integration method, including
ours.

An interesting alternative to classical force-based physics is Position
Based Dynamics (PBD) [Müller et al. 2007]. Due to its robust-
ness, speed, and simplicity, PBD has become very popular in the
game and visual effects industries. The spring projection concept
of PBD is also found in the Nucleus system [Stam 2009] and is
also closely related to strain limiting [Provot 1995; Goldenthal et al.
2007; Thomaszewski et al. 2009; Wang et al. 2010; Narain et al.
2012]. PBD presents certain trade-offs by departing from the tradi-
tional elasticity models and relying on heuristic constraint projection,
which utilizes parameters incompatible with standard models. An-
other issue is that the resulting stiffness of the simulated material
depends on the number of PBD constraint projection iterations. In
contrast, our method uses classical Hookean springs and converges
to the exact implicit Euler solution.

Physics-based simulation is computationally expensive, especially
for high-resolution models rich in detail. Long simulation times
complicate animation workflows because changing parameters and
re-simulating becomes time consuming, and achieving a specific
desired behavior may be tedious. This problem was addressed
by Bergou et al. [2007], who proposed to work with coarse, fast
simulations until the desired behavior was achieved, and only then
commit computational resources to high-resolution simulation that
attempts to mimic (track) the coarse one. Two significant limitations
are that an auxiliary coarse version of the model has to be developed
and tuned, and that the tracking process may compromise the visual
fidelity of the final high-resolution simulation. Our method enables
fast approximate previews directly with the high-resolution models.

3 Background and Notation

This section reviews the basic method of implicit Euler and derives
the method’s optimization formulation. We assume a mechanical
system with m points in 3D, evolving through a discrete set of
time samples t1, t2, . . . with constant time step h (we typically use
h = 1/30s). Let us denote the system configuration in time tn as
qn ∈ R3m. The system evolves in time according to Newton’s laws
of motion, where forces are represented by a non-linear function
f : R3m → R3m, so that f(qn) is the vector of forces acting on
all particles at time tn. We consider only position dependent forces
in this section and defer the discussion of damping to Section 4.1.
We assume the forces are conservative, i.e., f = −∇E, where
E : R3m → R is a potential function (often non-linear and non-
convex), encompassing both internal and external forces. The task
is to calculate system states q1,q2, . . . according to the laws of
motion.

Given the diagonal (lumped) mass-matrix M ∈ R3m×3m, implicit
Euler time integration results in the following update rules [Baraff
and Witkin 1998]:

qn+1 = qn + hvn+1 (1)

vn+1 = vn + hM−1f(qn+1) (2)

where vn represents velocity at time tn. Using the integration rule
eq. (1) we can express the velocities as:

hvn = qn − qn−1 (3)
hvn+1 = qn+1 − qn (4)
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Next, we eliminate velocities from eq. (2) by multiplying it with h
and substituting eq. (3) and eq. (4):

qn+1 − 2qn + qn−1 = h2M−1f(qn+1) (5)

This is nothing but a discretized version of Newton’s second law (the
well-known F = ma). If qn−1 and qn are already known (previous
states), we need to solve eq. (5) to obtain qn+1 (new state).

The classical recipe for solving the nonlinear system eq. (5) involves
linearization of the forces in a known state [Baraff and Witkin 1998]:

f(qn+1) ≈ f(qn) +
(
∇f
∣∣
qn

)
(qn+1 − qn) (6)

where ∇f = −∇2E ∈ R3m×3m is the Hessian, i.e., matrix of
second derivatives, evaluated at qn. Eq. (6) is then substituted into
eq. (5), reducing the problem to a linear system which is solved using
e.g. preconditioned conjugate gradients. Alternatively, the nonlinear
system in eq. (5) can be converted to an optimization problem. To
simplify notation, we will denote the unknown state as x := qn+1

and the known component as y := 2qn − qn−1. Multiplying by
the mass matrix M, we can write eq. (5) succinctly:

M(x− y) = h2f(x) (7)

The solutions of eq. (7) correspond to critical points of the following
function:

g(x) =
1

2
(x− y)TM(x− y) + h2E(x) (8)

Indeed, ∇g = 0 is exactly eq. (7). This leads to the optimization
problem minx g(x); this formulation is known as variational im-
plicit Euler [Martin et al. 2011]. To avoid confusion with symplectic
methods (sometimes also called variational [Stern and Desbrun
2006]), we will refer to eq. (8) as optimization implicit Euler. The
standard numerical solution of the optimization implicit Euler also
employs Newton’s method [Martin et al. 2011].

The optimization problem minx g(x) offers an interesting insight
into Position Based Dynamics [Müller et al. 2007]. If we define an
energy potentialEPBD as the sum of squares of the PBD constraints,
we notice that the PBD constraint projection solver attempts to
minimize g(x) using a Gauss-Seidel-like method. Unfortunately,
the PBD solver does not take the inertial term (x− y)TM(x− y)
explicitly into account, and further the projection of each individual
constraint is not guaranteed to decrease EPBD because the effect of
the remaining constraints is ignored. Nevertheless, PBD is typically
quite effective at reducing g(x) and can be therefore understood as
a heuristic variant of the implicit Euler method where E := EPBD .

4 Method

The main idea of our technique is to reformulate the energy po-
tential E in a way that will allow us to employ a block coordinate
descent method. The crucial components of E are spring potentials.
According to Hooke’s law, the spring potential is defined as:

1

2
k(||p1 − p2|| − r)2 (9)

where p1,p2 ∈ R3 are spring endpoints, r ≥ 0 is the rest length,
and k ≥ 0 is the spring stiffness.

The key to our reformulation is the following fact showing that
the spring potential eq. (9) is a solution to a specially designed
constrained minimization problem.

Lemma. For each p1,p2 ∈ R3 and r ≥ 0:

(||p1 − p2|| − r)2 = min
||d||=r

||(p1 − p2)− d||2

Proof. For brevity we define p12 := p1 − p2. Given the constraint
||d|| = r, we rewrite the left side of the equation:

(||p12|| − r)2 = (||p12|| − ||d||)2

By applying the reverse triangle inequality, we have:

(||p12|| − ||d||)2 ≤ ||p12 − d||2

Next, if we substitute d = r (p12/||p12||) to the right side, we
obtain:∣∣∣∣∣∣∣∣p12 − r

p12

||p12||

∣∣∣∣∣∣∣∣2 =

∣∣∣∣∣∣∣∣ p12

||p12||
(||p12|| − r)

∣∣∣∣∣∣∣∣2 = (||p12|| − r)2

Therefore, when d = r (p12/||p12||), the right hand side of the
equation produces its minimum value that equals to the left.

The reformulation of Hooke’s law into the minimization problem:

min
||d||=r

||(p1 − p2)− d||2 (10)

is reminiscent of as-rigid-as-possible methods [Sorkine and Alexa
2007; Chao et al. 2010], because d/r can be interpreted as a rotated
rest-pose spring direction. If we sum the contributions of all springs
together, after some matrix algebra we obtain:

1

2

s∑
i=1

ki||pi1 − pi2 − di||2 =
1

2
xTLx− xTJd (11)

where s is the total number of springs, i1, i2 ∈ {1, 2, . . . ,m} are
indices of spring i endpoints, and the vector x = (p1, . . . ,pm).
The matrices L ∈ R3m×3m,J ∈ R3m×3s are defined as follows:

L =

(
s∑

i=1

kiAiA
T
i

)
⊗ I3, J =

(
s∑

i=1

kiAiS
T
i

)
⊗ I3 (12)

where Ai ∈ Rm is the incidence vector of i-th spring, i.e., Ai,i1 =
1, Ai,i2 = −1, and zero otherwise. Similarly, Si ∈ Rs is the i-
th spring indicator, i.e., Si,j = δi,j . The matrix I3 ∈ R3×3 is
the identity matrix and ⊗ denotes Kronecker product. Note that
the matrix L is nothing but a stiffness-weighted Laplacian of the
mass-spring system graph.

If we denote external forces (gravity, user interaction forces, and
collision response forces) as fext ∈ R3m, we can write the potential
of our system as:

E(x) = min
d∈U

1

2
xTLx− xTJd+ xTfext (13)

where U = {(d1, . . . ,ds) ∈ R2s : ||di|| = ri} is the set of
rest-length spring directions. We plug this into the minimization
objective eq. (8), arriving at the final optimization problem:

min
x∈R3m, d∈U

1

2
xT(M+ h2L)x− h2xTJd+ xTb (14)

where we have aggregated the external forces and inertia (y in
Section 3) into vector b ∈ R3m and dropped the constant terms.
The vector x∗ ∈ R3m where the minimum in eq. (14) is attained is
an exact solution of the implicit Euler timestep.
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Object m s h Iteration Time Iteration Count Collision Time Total Frame Time Pre-factor Time
Curtain 6561 32158 33 ms 5 ms 10 - 50 ms 113 ms
Hippo 2387 13135 33 ms 1 ms 20 - 20 ms 18 ms
Frog 6834 35261 33 ms 3.1 ms 20 - 62 ms 54 ms
Dog 28390 148047 33 ms 20.3 ms 20 - 406 ms 442 ms
Dress 3505 6811 8.3 ms 0.61 ms 20 476 ms 488 ms 11 ms
Brush 1995 6405 33 ms 0.68 ms 20 0.99 ms 14.6 ms 9.8 ms

Table 1: Timings for all our examples. m is number of vertices, s is number of springs, and h is the integration timestep. Iteration Time is the
cost of one iteration of block coordinate descent, Iteration Count is number of iterations per frame, and Collision Time is collision detection
and response cost for one frame. Total Frame Time is the total time to simulate one frame, with (Total Frame Time) = (Iteration Time) *
(Iteration Count) + (Collision Time). Pre-factor Time is the time to pre-compute the sparse Cholesky factorization.

Numerical solution. The minimization problem eq. (14) can be
solved using block coordinate descent [Sorkine and Alexa 2007]
(also known as alternating optimization). Starting with an initial
guess for x (we use y), we first fix x and compute the optimal d
(local step). Second, we fix d and compute the optimal x (global
step), repeating this process until a maximal number of iterations
is reached. In contrast to previous as-rigid-as-possible methods,
our local step does not require Singular Value Decompositions, but
only vector normalizations (reciprocal square roots). It can also be
interpreted as projecting the springs to their rest lengths, but unlike
with Position Based Dynamics, spring stiffness are correctly taken
into account (they are built into L and J). In the global step (fixed d),
we need to solve a convex quadratic minimization problem. Indeed,
because L is symmetric and positive semi-definite, the system matrix
M+ h2L is symmetric positive definite. Most importantly, as long
as the timestep, particle masses, spring stiffness, and connectivity
remain unchanged, the system matrix is constant. Therefore, we
pre-compute its sparse Cholesky factorization (guaranteed to exist),
which makes the linear system solve very fast. We would like to
emphasize that this is not an ad-hoc approximation—our method
converges to the exact solution of the implicit Euler method with
standard Hookean springs.

4.1 Damping and Collisions

A simple method to introduce viscous damping into our formulation
is as follows. Recall that the term y from eq. (8) is simply the
result of inertia (Newton’s first law) when all forces are ignored,
i.e., y = qn + hvn. Damping can be achieved simply by setting
y to qn + hṽn, where we replaced vn as defined in eq. (3) with a
damped velocity ṽn. We use only a very simple damping model—
ether drag [Su et al. 2013], which sets ṽn := αvn, where α ∈ [0, 1]
is a parameter, typically very close to 1. However, any damping
model can be used with our method, such as the rigid-body modes
preserving drag [Müller et al. 2007] or truly material-only stiffness-
proportional damping [Nealen et al. 2005].

Conceptually, collision forces are part of the external force vec-
tor fext. Instead of calculating the collision forces explicitly, we
note that in the global step fext enters the right-hand-side term, and
because M+ h2L has full rank, any translation of x can be accom-
plished by appropriately chosen fext. Therefore, we can short-circuit
this process and instead of computing fext, we directly move x to
the desired collision-free state, computed by collision response rou-
tines. Our method can be coupled with many collision detection
and response techniques. For our real-time examples, we use fast
approximate collision detection based on spatial subdivision [Müller
et al. 2007]. For off-line simulation of character clothing, we rely on
accurate ARCSim collision handling routines [Narain et al. 2012].
Specifically, collisions are detected using a bounding volume hier-
archy [Tang et al. 2010] and collision response is computed using
non-rigid impact zones [Harmon et al. 2008].

5 Results
In real-time simulation, it is desirable to use a constant timestep h
chosen according to the target framerate. We compare our method
to classical semi-implicit methods [Baraff and Witkin 1998], em-
ploying only one iteration of Newton’s method; please see the ac-
companying video. While semi-implicit methods work well for
h = 1/120s or h = 1/60s, with h = 1/30s we obtain indefinite
system matrices. To avoid this issue, Baraff and Witkin [1998]
recommend adaptive step size control. Unfortunately, doing so is
impractical due to variable run-time cost, and also inconsistent be-
cause the amount of artificial damping inherent to implicit Euler
depends on the step size. Our method works robustly with fixed
timestep even if only a few iterations of the local/global solver are
enabled. In most of our examples we use h = 1/30s and compare
our technique to a robust numerical implementation of Newton’s
method that employs a line search scheme and diagonal Hessian
correction in the case of indefinite matrices [Martin et al. 2011].
Note that our method does not require any such precautions—both
the local and global steps find the exact minimum in their subsets of
variables, so no line search is necessary.

The complexity of our testing models and the performance of our
method is summarized in Table 1. In Figure 2, we study the conver-
gence speed on one typical frame of our cloth-swinging animation.
The relative error reported in Figure 2 is defined as:

g(xi)− g(x∗)
g(x0)− g(x∗)

(15)

where x0 is the initial guess, xi is the current iterate, and x∗ is the fi-
nal solution. Our method exhibits a linear convergence rate, whereas
Newton’s method quickly enters its quadratic convergence phase
[Boyd and Vandenberghe 2004]. However, Figure 2 (top) ignores
the fact that one iteration of Newton’s method is computationally
substantially more expensive than one iteration of our method. In
Figure 2 (bottom), we therefore plot the relative error with respect
to time. We see that Preconditioned Conjugate Gradients runs much
faster in this case than a sparse direct solver. For both methods, as
well as with our technique, we use the Eigen library [Guennebaud
et al. 2013], running on a single core of Intel i7-3720QM CPU at
2.60GHz.

While block coordinate descent cannot compete with the quadrat-
ically convergent stage of Newton’s method, we notice that our
approach outperforms Newton’s method in its first (damped) phase.
In other words, Newton’s method becomes more effective only when
the current iterate xi is already close to the solution x∗. If an exact
solution is desired, our technique can be useful for quickly calculat-
ing a good starting point for Newton’s method.

The main practical benefit of our method stems from the fact that
exact solution is rarely required in physics-based animation. Indeed,
previous methods [Baraff and Witkin 1998] limit the number of
iterations of Newton’s method to one. To experimentally evaluate
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Iteration Count Time Relative Error
(a) 1 5.4ms 3.61× 10−1

(b) 10 50.6ms 1.96× 10−1

(c) 100 501ms 4.02× 10−2

(d) 1000 5.05s 2.98× 10−4

Figure 2: Comparison of relative error vs. iteration count (top) does
not reflect the cost of each iteration. Below we plot the relative error
vs. computation time. In both graphs we focus on one time step of
our curtain-swinging animation at the depicted frame.

the effect of approximate solutions, we tested our method on a
simple animation sequence simulated with our method using 1, 10,
100, and 1000 iterations of the local/global solver. One iteration
produces a stable and plausible simulation, but the wrinkles look a
bit inflexible (Figure 4, and the accompanying video). Ten iterations
seem to offer the best trade-off between speed and quality. In our
example frame (Figure 2), ten iterations of our method achieve
better relative error than one iteration of Newton’s method (0.196,
vs. 0.2496 for Newton) as well as faster run-time (50.6ms, vs. 181ms
for one iteration of Newton with PCG). With a hundred or a thousand
iterations it is difficult to tell the difference from an exact solution.

Quick approximate simulation can be achieved also using Position
Based Dynamics (PBD) [Müller et al. 2007]. One problem with PBD
is that its stiffness parameters are not compatible with the standard
Hookean model. We tried to carefully tune the PBD parameters
to get behavior as close as possible to our settings. Unfortunately,
even though the PBD solver adjusts its parameters according to
the number of iterations, increasing the number of iterations still
increases the effective stiffness of the system. Our method does not
suffer from this problem and converges to the exact implicit Euler
solution, as shown in the accompanying video.

We designed the following experiments to analyze the convergence
of our method. In the first experiment, we test how spring stiffness
affects the convergence, using our curtain model with 441 vertices.
Figure 3 reports the relative error from eq. (15) averaged over 50
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Figure 3: Convergence of our method for varying spring stiffness
coefficients (top) and varying spatial resolution (bottom).

simulation frames. As expected, higher stiffness leads to slower
convergence. In the next experiment, we study the effect of varying
spatial resolution using a curtain model with fixed dimension (1m
× 1m) and mass (1kg). To achieve resolution independent material
behavior, the spring stiffness is proportional to the resolution, i.e.,
when we double the resolution, we divide the spring lengths by two
and multiply their stiffness by two. In all experiments we observe
that while our method proceeds very quickly early on, subsequent
iterations are less effective in reducing the error. Therefore, if exact
results are desired, we do not advise iterating our method until
convergence but instead recommend switching to Newton’s method.

Collision handling is an important aspect of physics-based animation.
We designed two experiments to test the behavior of our method in
scenarios rich in contact and collisions. The first test involves a brush
model, where individual strands collide not only with a static rigid
object, but also with each other (self-collisions), see Figure 5. Our
second example is a dancing clothed character (Figure 6), leveraging
the publicly available models and code from ARCSim [Narain et al.
2012]. In the clothing example, 20 iterations of our method take a
total time of 12.2ms. ARCSim’s collision detection and response,
executed once per frame, takes 476ms and therefore presents the
bottleneck. We conclude that our method is best suited for real-time
applications where approximate collision handling is sufficient. Note
that adaptive remeshing would have invalidated our pre-factored
system matrices, so we disable the adaptive remeshing functions of
ARCSim.

6 Limitations and Future Work

We note that using a fixed number of iterations of our local/global
solver produces only approximate results. In some settings, e.g.,
when strong impact forces are generated by a collision event, we
observe lack of detail (Figure 7). The problem is that the limited
number of iterations taken by our method does not allow propagation
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Our Method 
1 iteration, 5 ms 

Our Method 
10 iterations, 50 ms 

Our Method 
100 iterations, 500 ms 

Our Method 
1000 iterations, 5 s 

Exact Solution 
Newton’s Method, 13 s 

Figure 4: One example frame from our cloth animation simulated using our method with 1, 10, 100, and 1000 iterations of our local/global
solver. Exact solution computed using Newton’s method is shown for comparison.

Figure 5: Bristles of a brush colliding with a rigid object and each
other.

Figure 6: Character clothing with continuous collision detection,
including both cloth-body and cloth-cloth collisions.

of the shockwave quickly enough, resulting in artificial damping.
This issue does not occur with slower collisions and weaker impact
forces, as shown in Figure 8. A trade-off inherent to our method is
that changing the mass-spring system parameters (masses or stiff-
ness) or the spring connectivity requires re-computing the Cholesky
factorization. This may be an issue if effects such as tearing are re-
quired, and one possible solution would be to employ fast Cholesky
updates [Hecht et al. 2012].

We only consider mass-spring systems in this paper and currently
support only classical linear (Hookean) springs. In the future, we are
planning to include more general spring models, e.g., bending and/or
area springs, and generalize our approach to thin shells, where the
rest-length spring directions in eq. (10) would be replaced by 2× 2
SVD, which can be still computed in a closed form. We believe
it will also be very fruitful to experiment with different types of
numerical techniques, such as nonlinear conjugate gradients and
quasi-Newton methods. We also intend to generalize our method to

Our Method 
10 iteration, 50 ms 

Exact Solution 
Newton’s Method, 13 s 

Figure 7: In challenging situations such as strong impact on colli-
sion our approximate solution results in loss of detailed wrinkles.

Our Method 
10 iteration, 50 ms 

Exact Solution 
Newton’s Method, 13 s 

Figure 8: Our method produces results comparable to the exact
solution when only moderate impact forces are involved.

symplectic time integration approaches. Finally, we are interested
in the perceptual aspects of time integration and we would like to
more formally address the question of how much error is noticeable
by the average observer.

7 Conclusions
We presented a novel numerical method for implicit Euler time step-
ping of mass-spring system dynamics. Our technique is based on
block coordinate descent, which gives it different properties than
the traditional Newton’s method. Our method can approximate
the solution in a limited amount of computational time, making it
particularly attractive for real-time applications—we demonstrate
real-time cloth with quality similar to the exact solution. The pro-
posed algorithm can also be useful for quick simulation preview and
for bootstrapping Newton’s method. We hope that our method will
encourage further investigation of time integration techniques and
the underlying nonlinear numerical problems.
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