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Abstract 

The 3D clothing fitting on a body model is an 
important research topic in the garment computer 
aided design (GCAD). During the fitting process, the 
match between the clothing and body models is still a 
problem for researchers. In this paper, we provide a 
3D clothing fitting method based on the feature point 
match. We firstly use a new cubic-order weighted 
fitting patch to estimate the geometric properties of 
each vertex on two mesh models. Feature points are 
then extracted from two models and a new matching 
function is constructed to match them according to 
curvature and torsion. We interactively select several 
key feature points from two limited feature point sets 
to compute the transformation matrix of the clothing 
model. Finally the second match is performed to 
achieve the precise match between the clothing and 
body models. The experimental results show that our 
3D clothing fitting method is simple and effective.  
 
1. Introduction 

With the rapid development and popularity of the 
online garment shopping, the 3D clothing fitting has 
become a hot topic in the garment CAD. During the 
online garment shopping, customers not only hope to 
see the 3D effect of the apparel, but also want to know 
whether the apparel fits them or not. An effective 
method is to provide the customer with a specific 3D 
graphical body model (called an avatar) and display the 
selected clothing on this avatar [1].  

Recently, the virtual garment fitting has gotten 
broad attention for researchers. The early method is to 
paste the 2D clothing pictures onto the 2D body model. 
This method is simple, but it fails to the interactive 
display. For the 3D clothing fitting, they usually build 
up a body model using the geometric method, and then 
map the texture of clothing to the corresponding part of 
the body model. The problem is that it lacks of the 

realistic fitting effect [2]. Some improved methods 
create more realistic clothing models based on the 
physical modeling [3], and perform the garment fitting 
according to the seaming forces attracting to pieces of 
cloth [4]. Because the physical garment modeling is 
some complicated and takes too much implementation 
time, this process sometimes influences the real-time 
effect of the virtual clothing fitting. Currently, another 
popular clothing fitting method is based on the 
interactive operation for the mesh models. They 
interactively choose feature points from the given 
garment and body models, then match them and save 
the positions of two models for the further display. This 
approach enhances the realistic display of the garment. 
The problem is that too many interactive selections 
from the point cloud data influence the efficiency of the 
clothing fitting while too fewer selections bring us the 
difficulty for the accurate match. For the match of the 
garment and body models, reducing the interaction 
operation and obtaining the precise matching algorithm 
are still the challenges for researchers.  

In this paper, we present a new 3D garment fitting 
method. We firstly search feature points on the 
clothing and body models and match them by 
constructing the matching function, and then several 
key feature points are interactively selected from the 
limited feature point sets to compute the rigid 
transformation matrix for the clothing model. Finally, we 
perform the second match to adjust the garment fitting 
on the body model.  
 
2. Related work 

The related work of our 3D garment fitting includes 
the estimation of differential geometric properties on 
the mesh models, the extraction of feature points from 
the mesh models, the feature point match between two 
mesh models and the matrix construction for the rigid 
transformation.  



The es timation of differential geometric properties 
of each vertex on the mesh model is the basic operation 
during our 3D clothing fitting process. For the normal 
vector estimation, there have been many exis ting 
methods [5]. The curvature estimation is mainly divided 
into two categories. One category is  to approximate 
curvatures by formulating a closed form for differential 
geometry operators [6]. The other category involves 
fitting a local surface [7]. Torsion is an important 
invariant value for the rigid transformation. But it seems 
to get little attention on the mesh models [8]. In this 
paper, we will introduce the principal geodesic torsion 
and apply it for the mesh model match.  

For fitting the clothing on a body model, one 
important step is the feature point extraction from two 
mesh models. Here the feature points include the ridges 
and the valleys. The feature point is normally obtained 
by the approximation of discrete principal curvature and 
the principal curvature derivative about the principal 
direction [9]. These feature points can be detected by 
constructing the local fitting surface, or by other 
numerical approximating methods [10].  

After acquiring the feature points from the clothing 
and body models, we need to obtain the match relation 
of them between two models . Besl and Mckay 
presented a classic iterative closest point (ICP) 
matching algorithm [11].  It has to know the reliable 
initial match values. Another matching method is based 
on the principal components analysis (PCA) [12]. For 
the object match with the different geometric shape and 
topological structure , above methods are hard to get 
satisfactory match results. Recently, some researchers 
constructed the local shape function or the shape 
descriptor to match objects  [13, 14].  

After getting the match relation of feature points on 
two mesh models, we can use the least squares method, 
ICP or other registration methods to obtain the rigid 
transformation matrix.  

 
3. 3D clothing fitting on the body model 
 

    
Fig 1. A woman mesh model and a clothing mesh model 

 
The main idea of our clothing fitting algorithm is 

that we firstly construct the local fitting patch to 
estimate curvature and torsion of each vertex on body 
and clothing models which are shown in Fig 1. 
Secondly we use the feature extraction method to 
obtain the feature points. Thirdly we build up a 
matching function based on curvature and torsion to 
match similar feature points and interactively acquire 
several key feature points from both models. Finally, we 
calculate the transformation matrix according to pairs of 
key feature points. 
 
3.1 Geometric property estimation of each 
vertex on both models 

Before extracting feature points from the garment 
and body models, we need to estimate curvature of 
each vertex on both models , which may influence the 
final matching precision.  

Recently, Razdan and Bae [7] presented a curvature 
estimation method based on the weighted bi-quadratic 
Bézier patch. As we know, curvature is related to the 
second-order derivatives and the third-order surface is 
a better fit to the shape of a local area. Here we 
construct a new weighted bicubic Bézier patch to 
estimate the geometric properties of each vertex. A 
bicubic Bézier surface is written as 
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where Bi,3 (u), Bj,3 (v) are the Bernstein basis functions 
and b ij are the Bézier control points which form the 
Bézier control net. 

We should compute the parameters (ui,vi) of vertex 
pi and other fitting points at first. Here we take the 
vertex p i and the vertices in its  2-ring neighborhoods as 
the fitting point. For p i, its  approximate normal vector N 
is computed by the arithmetic average of all the normal 
vectors of its neighboring triangles. We create a 
tangent plane which is vertical to N and set p i as the 
origin of its coordinate system. Then we construct a 
local Cartesian coordinates in this plane. The direction 
from one projected point to the vertex p i is set as the x-
axis and one vertical direction as the y-axis. All fitting 
points are projected in this plane and the coordinates of 
all projected points are enclosed by a min-max box. This 
min-max box is finally scaled to [0,1]2. The coordinates 
of projected points in this range are regarded as the 
corresponding parameters of fitting points. If some 
projected points of vertices in the tangent plane 
coincident or some lines connected by two adjacent 
projected points are self-intersecting, we change 



another fitting point as the origin of the coordinate 
system to calculate a new tangent plane or replace 
fitting vertices in the 2-ring neighborhood by vertices 
in the 1-ring neighborhood to avoid these situations. 

After obtaining the corresponding parameters (u i,vi) 
of vertex p i and other fitting points, we build a linear 
equation system Ax=B, where 
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From this system of equations, the vector x is 
solved by the least squares method to determine the 
control points bij. However, the fitting surface 
sometimes does not reflect the local shape of each 
vertex. In order to describe the local shape more 
accurately, we add the adjusting matrix and factor to 
modify the system as follows 
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where A, x, B are defined above, the matrix S is added 
to make the control point distribution of the bicubic 
Bézier surface as uniform as possible. We find the 
following matrix is a good solution which means to 
minimize the second differences of the boundaries in 
the control net [15] 
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The factor a is in [0,1] and is adjusted according to 

the mesh noise density. When noise is dense, a is set 
lower, whereas, a is set higher. Normally it is set as 0.8. 

 

  
(a). Mean curvature models of a woman model and a 
clothing model.  

 
(b). Gaussian curvature models of a woman model and a 
clothing model.  
Fig 2. Curvature models. (Red: high values; Blue: 
medium values; Green: low values) 
 

For the modified system of equations, we also use 
the least squares method to solve the control points  b ij. 
For each pi, its geometric property estimation is 
obtained by the corresponding point B(u i,vi) on the 
local fitting surface S(u,v). The mean curvature and 
Gaussian curvature on the point can be computed from 
the differential geometry formulas. Fig 2 is  the mean 
curvature and Gaussian curvature models of the woman 
and clothing models. 

We can also estimate the torsion property from this 
local fitting surface. Torsion, like curvature, is an 
important geometric property of the object’s rigid 
transformation. For the point on the continuous surface, 
the torsion is normally measured by the geodesic 
torsion. Because the curve passing the given point on 
the surface is not determined, we generally compute the 
geodesic torsion according to some specific curves 
passing through the given point on the surface. One 
curve is the curvature line, but we know the geodesic 
torsion along the curvature line is zero from the 
differential geometry knowledge. Another curve is the 
torsion line, namely, the direction along the angle 
bisector of two principal directions. We know the 
geodesic torsion attains the maximum along the torsion 
line on the given point. Here we define it as the 
principal geodesic torsion. For the discrete mesh model, 



there is the similar torsion property. In this paper, we 
introduce the principal geodesic torsion and use it for 
our feature point matching. For the principal geodesic 
torsion computation, we have the following theorem. 
Theorem. For the principal geodesic torsion maxτ on 

the point of the surface, it s value can be calculated by 
the mean curvature H and Gaussian curvature K, i.e., 

KH −= 2
maxτ . 

The detailed proof is in Ref [15]. 
 
3.2 Feature point extraction from both 
models 

We extract the feature points from the clothing and 
body models according to the curvature property. Here 
the feature points include the ridge and valley points. 
The feature point judgment is related to the calculation 
of curvature values and their derivatives [9]. For 
discrete triangular mesh models, we cannot explicitly 
calculate these derivatives on each vertex. Several 
estimation methods have been proposed to obtain the 
ridge point and the valley point. Here we use 
Stylianou’s method [10] to detect these feature points.  
 
3.3 The match acquisition of feature points 
from two models 

For the 3D clothing fitting on a body model, the 
important operation is to match two models  
appropriately. Because the clothing and body models  
have the different geometric shape and topological 
structure, current ICP matching algorithms cannot get 
satisfactory results.  

Recently, Gal and Cohen-Or [14] presented a new 
algorithm for the match of two similar objects or the 
local part match of objects. They constructed a 
matching function about curvature property and it 
considers not only curvatures of each vertex and its 
neighborhoods, but also uses the curvature variance in 
the neighborhood as the reference, they got a better 
match result for the local parts of an object or similar 
objects .  

As we know, torsion is another intrinsic geometric 
property on the surface, but it has not gotten enough 
attention for the mesh processing. In this paper, we 
construct a new matching function based on not only 
curvature but also torsion 

∑
−∈

+=
ringp

iii
i

pTorspCurvpAreaWS
1

22
1 ])()()[(  

)()()()( 32 iiii pVarTpNTWpVarCpNCW ++ , 

where Area(p i) is the sum of triangle areas of the 1-ring 
neighborhood of vertex p i, Curv(p i) and Tors(p i) denote 

the curvature and the principal geodesic torsion on 
vertex p i, NC(p i) and NT(pi) are the number of 
minimum(s) or maximum(s) curvatures and principal 
geodesic torsions in the 1-ring neighborhood, VarC(pi) 
and VarT(pi) are the curvature variance and the 
principal geodesic torsion variance in the 1-ring 
neighborhood, W1, W2 and W3 are threshold values, here 
we set them to 0.33 respectively. 

In the new matching function, we  add the torsion 
property to get the reliable matching result from feature 
points between the clothing and body models, as 
shown in Fig 3. In the whole matching process, we also 
need to do some preliminary operations in advance. For 
example, in order to reduce the wrong match, we get rid 
of feature points on the head, hand and foot parts of 
the body model and exclude feature points on the edge 
of the clothing model. For the body model, we compute 
its centroids position, then judge whether the feature 
point needs to be matched by the distance between the 
centroids and the feature point. For the clothing model, 
the edge of the clothing model is judged by the number 
that the edge belongs to the triangle in the mesh model.  

 
Fig 3. The feature point matching using the curvature 
and torsion property 
  

Using the new matching function can get rid of 
redundant feature points between the clothing and 
body models. However, because of the shape 
complexity of the clothing and body models, the match 
relations of feature points are not always correct. We 
also know too many match relations of feature points 
will also influence the computation speed of the 
following transformation matrix. A compromising 
method is to interactively select several key feature 
points before the next rigid transformation matrix 
construction, as shown in Fig 4. Because the feature 
point relation is chosen only from the limited feature 
points sets instead of the huge cloud of vertices, the 
process is convenient. 



 

Fig 4.  Key feature point acquisition from each model 
 
3.4 The transformation matrix construction 
for the clothing model 

Let Bi and Gi be the coordinate vector of the feature 
point on the body model and the corresponding feature 
point on the clothing model. After getting the match 
relations of key feature points between two models, all 
coordinate vectors  from both models  should satisfy the 
following coordinate transformation equation  

T

G

G
G

R

B

B
B

n

zyx

n

+



















×=



















MM
2

1

2

1

),,( θθθ , 

where n is the number of key feature points, 
),,( zyxR θθθ  is a rotation matrix, T  is a translation 

vector. 
We apply these key feature points of two models 

for the above equation and minimize the following 
function  
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For this equation, we use the singular-value 
decomposition (SVD) method to calculate the matrix R 
and T which realize the rough match between the 
clothing and body models.  
      If there is  the size difference between the clothing 
and body models, we perform the scaling operation 
before the rough match. The scaling value is calculated 
by comparing the difference between the 
corresponding feature point and each model’s 
centroids. After the rough match, we also align the 
clothing model by the scaling operation until the 
clothing model covers the corresponding part of the 
body model appropriately.  

In order to get the precise clothing match on the 
body model, we can do the second matching process. 
Namely, after obtaining the matrix R and T by the rough 

match, we calculate the new position of key feature 
points on the clothing model, then use above matching 
method to compute new R and T again.  
 
4. Experimental results 

We use VC++6.0 and OpenGL to implement our 3D 
virtual clothing fitting algorithm. Different body and 
clothing models are used to test the efficiency and 
robustness of our method. Fig 5(a) is the initial 
positions of a woman model and a short-sleeved gown 
model respectively. For two models which are in 
different coordinate systems and have no prescient 
relations, we use our algorithm to achieve the fitting 
effect of the clothing on the body model. Fig 5(b) is a 
woman model and a tight short skirt model. Fig 5(c) is a 
man model and a suit model. Fig 5(d) is  a young man 
model and a T-shirt model. These clothing fitting 
results are realized by our feature matching method as 
shown in Fig 5. Table 1 lists the relevant data of the 
transformation matrix that makes the correct match of 
the clothing and body models during our experiment. 

We compare our 3D clothing fitting algorithm to 
other existing methods. Popular method displays the 
clothing on the body model by the complicated 
interaction in advance while our algorithm uses fewer 
interactions from the limited feature point sets which is 
convenient and is suitable for different clothing and 
human models. Compared with the virtual clothing 
showing based on the physical clothing modeling and 
the seamed cloth fitting process, our feature matching 
method is faster and can be used in the real-time online 
clothing display. Compared to the traditional clothing 
display by pasting 2D pictures on the avatar, our 
garment fitting system permits the interactive and 
dynamic clothing display, which is suitable for the 
customers. Fig 6 is a set of clothing fitting on a woman 
model with different walking gestures.  

       
(a). The short-sleeved gown fitting on a woman model 

             



(b). The tight skirt fitting on a woman model 

   
(c). The business suit fitting on a man model 

     
(d). The T-shirt fitting on a young man model 
Fig 5. The clothing fitting result of different models 

         
Fig 6. The clothing fitting on a woman model with 
different walking gestures 
 
Table 1. The experimental data for matching the 
clothing model and the body model 

Experiment 
result  

Rotation  
vector 

Translation 
vector 

Scaling 
vector 

Fig 5(a) (-0.1,   
-28.3,  22.1) 

(-0.83,  
-1.53, -2.38) 

(0.83,  
0.82,  
0.93) 

Fig 5(b) (0.4, 
 -24.7 ,  
23.9) 

(0.69,  
-1.27, -1.98) 

(0.89, 
 0.88, 
0.89) 

Fig 5(c) (0.2, 
 -20.3 ,  
22.8) 

(-0.10,  
-0.18, -0.28) 

(0.81, 
0.77, 0.83) 

Fig 5(d) (0.2,  
-20.1, 19.9) 

(0.14,  
-0.26, -0.40) 

(0.85,  
0.72, 0.86) 

Fig 6  (0.3,  
-24.9,  33.5) 

(0.33,  
-0.39, -0.69) 

(0.73, 
 0.78, 
0.75) 

 
5. Conclusion and future work 

A 3D virtual fitting algorithm based on the feature 
matching is proposed in this paper. Our approach uses 
curvature and torsion to match feature points on the 
clothing and body models. Only few interactive 
selecting operations are needed to compute the rigid 

transformation matrix. The second match for the 
clothing model helps us achieve the satisfactory 
clothing fitting effect.  

Currently, we still need a couple of interactive 
operations to select  key feature points. How to achieve 
a completely automatic 3D clothing fitting will be our 
future work. Our current clothing fitting cannot deal 
with the deformable model and the animation state. 
How to combine our feature analysis with other 
modeling methods such as the physics-based method 
or the skeleton-based method to create a more realistic 
fitting performance is also the subject of our future 
work. 
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