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Abstract. Depth of field refers to the swath that is imaged in sharp focus through
an optics system, such as a camera lens. Control over depth of field is an im-
portant artistic tool, which can be used, for example, to emphasize the subject
of a photograph. The most efficient algorithms for simulating depth of field are
post-processing methods. Post-processing can be made more efficient by mak-
ing various approximations. We start with the assumption that the point spread
function (PSF) is Gaussian. This assumption introduces structure into the prob-
lem which we exploit to achieve speed. Two methods will be presented. In our
first approach, which we call pyramid spreading, PSFs are spread into a pyramid.
By writing larger PSFs to coarser levels of the pyramid, the performance remains
constant, independent of the size of the PSFs. After spreading all the PSFs, the
pyramid is then collapsed to yield the final blurred image. Our second approach,
called the tensor method, exploits the fact that blurring is a linear operator. The
operator is treated as a large tensor which is compressed by finding structure in
it. The compressed representation is then used to directly blur the image. Both
methods present new perspectives on the problem of efficiently blurring an im-
age.

1 Introduction

In the real world it is rare for images to be entirely in perfect focus. Photographs, films,
and even the images formed on our retinas all have limited depth of field, where some
parts of the image are in-focus, and other parts appear blurred. The term “depth of field”
technically refers to the portion of the image that is in focus. In the computer graphics
literature, the term “depth of field” is used to refer to the effect of having some objects
in focus and others blurred. Computer generated images typically lack depth of field
effects. Simulating depth of field requires significant computational resources.

Computer generated images are typically rendered based on a pinhole camera model.
A pinhole camera model assumes that all light entering the camera must pass through a
single point, or pinhole. Pinhole cameras allow only a very small amount of light to en-
ter the camera, thus they are of limited utility for real world cameras. Pinhole cameras
are efficient to simulate because they are geometrically the simplest type of camera.
However, these models lead to images where all objects are in perfect focus.



To allow more light to enter the camera an aperture of some size, instead of a pin-
hole, is used. A lens is needed to avoid the scene being highly blurred. However, a lens
has to be focused at a single depth. The light from objects located at any other distance
from the lens does not converge to a single point, but instead forms a disk on the cam-
era’s sensor or film. Since sensors and film have a finite resolution, as long as the disk
is smaller than a film grain or pixel of a sensor, the object will appear in perfect focus.
However, blur occurs when the disk is large enough to be resolved.

2 Background

Depth of field simulation was first introduced to the computer graphics community by
Potmesil and Chakravarty [13]. They used a post-processing approach based on brute
force; thus, their method was quite slow. A great deal of work has since been done on
finding faster methods of depth of field post-processing. Bertalmio and Sanchez-Crespo
[3] used a heat diffusion method to blur efficiently. Kass [8] also used a heat diffusion
approach for depth of field post-processing. Zhou [18] used a separable approxima-
tion to the blur operation in order to increase speed. Scheuermann [14] used a sparse
approximation to the blur, coupled with working at a reduced resolution for the most
blurred regions. Scofield [15] introduced the simple yet useful idea that depth of field
can be simulated by treating the scene as a set of layers, each of which can be blurred
efficiently using an FFT convolution. Kosloff [10] introduced an efficient depth of field
method based on fast rectangle spreading.

Post-processing methods cannot always achieve the highest quality, but there are
slower approaches available that produce very high quality results. One approach to
increasing quality is to improve the fidelity of the post-processing approach at the cost
of performance, e.g. Shinya’s ray distribution buffer [16]. Another approach is to accu-
rately simulate geometric optics, thus generating very high quality results. Such meth-
ods include Cook’s distributed ray tracing [4], Dippe’s stochastic ray tracing [6] and
Haeberli and Akeley’s accumulation buffer [7].

Readers interested in learning more about previous depth of field algorithms should
consult the following surveys: [1, 2, 5]

3 Spreading and Gathering

3.1 Spreading

Spreading is a type of filter implemented as follows: for each input pixel determine the
PSF and place it in the output image, centered at the location of the input pixel. The
PSFs are summed to determine the output picture.

Spreading filters are appropriate for depth of field and motion blur, due to the image
formation process. In the case of depth of field, each pixel in the input image can be
roughly thought of as corresponding to a point in the input scene. Each point in the
input image emits or reflects light, and that light spreads out in all directions. Some of
that light enters the lens and is focused towards the film. This light forms the shape of a
cone. If the point is in perfect focus, the apex of the cone will hit the image plane (film,



retina, sensor, etc). When the apex of the cone hits the image plane, the scene point is
imaged in perfect focus. When a different part of the cone hits the sensor, the point will
image as a disk of some kind, i.e. a PSF. The image formation process suggests that
spreading is the correct way to model depth of field. The pyramid spreading filter was
motivated by the need for depth of field post-processing.

A bright point of light ought to image as a PSF with size and shape determined by
that point. In a post-processing method, it is easy to simply spread each input pixel and
get the desired effect. For a gather filter to handle PSFs correctly, it would have to con-
sider that potentially any pixel in the input image could contribute to any output pixel,
each with a different PSF. The effective filter kernel for this high quality gather method
would have a complicated shape that would depend on the scene. This complicated
shape prevents acceleration methods from being effective.

3.2 Gathering

Gathering is a type of filter that is implemented as follows: the color of each output pixel
is determined by taking a linear combination of input pixels, typically from the region
surrounding the location of the desired output pixel. The input pixels are weighted ac-
cording to an application-dependent filter kernel.

Gathering is the appropriate type of filter for texture map anti-aliasing, as will be
clear when we examine how anti-aliasing works. Texture map anti-aliasing works as fol-
lows: when a textured object is viewed from a distance, the texture will appear relatively
small on the screen. Several, or even many, texels will appear under each pixel in the
rendered image. Since the texture mapping is many to one, the appropriate thing to do
is to average all the texels that fall under a pixel. The averaging should use appropriate
weights; generally weights that fall off with distance. Clearly, texture map anti-aliasing
is a gathering process, because each output pixel is found by averaging several input
pixels. Gathering can be used to blur images, but the results will suffer from artifacts.
Our tensor method will use gathering as an internal component, but it also uses spread-
ing a component. This helps to mitigate the artifacts that otherwise would be caused by
gathering.

4 Overview

This paper describes two new depth of field post-processing methods that operate un-
der two completely different principles. The first method, which we call the pyramid
method is related to Potmesil and Chakavarty’s method which spreads a highly realistic
PSF for each pixel. We achieve speed by making an approximation; rather than using
realistic PSFs, we use Gaussians. Because Gaussian PSFs are band-limited, they can be
represented accurately at low resolution as long as appropriate reconstruction is later
used. This means that filtering by spreading Gaussians is more efficient, even for large
Gaussians.

The second method, which we call the tensor method, is based on a tensor analysis
of the blur operation, and is not particularly related to any previous method. Intuitively,
we can figure that blur is a “smooth” process. Clearly, the output will be smooth because



it is blurred, but beyond this, it is important to realize that the blur operator itself is
smooth. This concept of the blur operator will be explained in more detail in section
5. The important consequence of a smooth blur operator is that the smoothness can be
exploited to speed things up. Essentially, smooth regions are “boring”, so, relatively
little effort needs to be expended, compared to non-smooth regions.

5 Pyramid Spreading

5.1 Algorithm

Our first fast spreading method is based on pyramids, and can be viewed as running
mipmapping in reverse. The pyramid has its final level set to the resolution of the im-
age. First, the pyramid is initialized to all zeros. Next, each pixel in the input image is
spread by selecting a level of the pyramid, and writing a PSF to that level (see Program
1). Larger PSFs are written to coarser levels, thereby keeping the cost approximately
constant with respect to the PSF size. It is straightforward to outfit this method with
a speed/quality tradeoff; although writing to finer levels enables more control over the
PSF appearance, writing to coarser levels is faster. The final step is to upsample the
coarse levels through the pyramid, collapsing the pyramid into a final, blurred image
(see Program 2). Care must be taken to use upsampling filters that are sufficiently wide,
otherwise block artifacts can appear. See Figure 2 for an example of a pyramid and the
resulting blurred output.

Since the number of levels that a pyramid has is finite, it is challenging to represent
PSF sizes that lie between two pyramid levels. We considered two possible solutions
to this difficulty. The first approach is to write to both of those two levels, each at an
intensity proportional to where the continuous value truly lies. The second solution
is to write to the finer level, using a slightly larger PSF to compensate for being at
too fine a level. Both of these methods increase quality, but incur additional cost. In
practice, the first method was found to produce superior results insofar as interpolating
between two smooth PSFs of different size happens to produce the appearance of an
intermediate sized PSF. Although writing a slightly larger PSF to a slightly finer level
does indeed lead to a PSF of the correct intermediate size, this PSF will undergo a
visible discontinuity if its size is increased or decreased such that it lands in a different
level. Even though the size is correct, PSFs at different levels appear different, due to
different rasterizations at different levels.

It is worth delving into the details of how to properly spread PSFs to a given level,
and how to upsample the pyramid. Although these operations could be implemented in
various ways, great care must be taken to produce the smoothest possible images, free
of grid artifacts.

During spreading, we want to place a PSF located at a position dictated by the lo-
cation of a pixel in the input image. However, since the PSF is being spread to a coarse
pyramid level, the PSF must be rendered with subpixel accuracy. Issues of how to prop-
erly anti-alias the PSF can be simplified if we restrict ourselves to Gaussian PSFs, with
Gaussian anti-aliasing filters. A Gaussian convolved with another Gaussian is simply a
larger Gaussian, and thus our filtered PSF is simply a Gaussian of slightly larger size.



Fig. 1. When computing a subpixel Gaussian, the continuous distance between Gaussian center
and pixel center is taken. It is critical that the Gaussian center is not snapped to a pixel location.

(a) Finest pyramid level. (b) Middle pyra-
mid level.

(c)
Coarsest
pyramid
level.

(d) Output of upsampling this
pyramid.

Fig. 2. The pyramid method spreads PSFs to various pyramid levels, then upsamples the levels
through the pyramid to yield a final, blurred image.

The analytical nature of Gaussians makes them straightforward to render with subpixel
precision (see Figure 1). For each pixel within the support of the Gaussian, determine
the distance from the floating-point-valued center to the integer-valued pixel center.
This distance provides the distance within the Gaussian, with subpixel accuracy.



During upsampling, the pixels from the coarse layer should blend together in the
finer layer such that no grid artifacts are introduced. This is done by calculating each
pixel in the finer layer as a weighted average of pixels in the coarser level. The weighted
average is performed using a subpixel Gaussian in a manner very similar to the spread-
ing step.

5.2 Performance

The cost of spreading a Gaussian depends on the resolution of Gaussian that we choose
to use. However, larger Gaussians can get written to coarser levels of the pyramid, so
all Gaussians have approximately the same resolution, hence the same cost.

We found that at least 7x7 Gaussian is necessary to produce sufficiently smooth
results. The effect of intermediate sizes are achieved by writing to two different levels.
This means that 7*7*2, or 98 writes, are required per pixel. This means that the pyramid
method is an expensive method. This is necessary if we wish our PSFs to be effectively
perfect Gaussians.

The cost of upsampling the pyramid must also be taken into account. For each level
of the pyramid except for the coarsest, upsampling from the next coarsest level must
occur.

Since the entire pyramid can fit into a space somewhat less than twice as big as the
finest level, we bound the cost by calculating the cost of upsampling 2∗N pixels. Each
pixel that must be upsampled requires spreading 7x7 pixels, to achieve high quality.
Therefore, we bound the cost of upsampling by 98∗N writes.

6 Tensor Filter

6.1 Algorithm

The second method is known as the tensor method, because it is derived from an anal-
ysis of the blur tensor. To build intuition, we will develop the algorithm for the case of
applying a 2D matrix to a 1D image vector. Then the full version of this method has a
similar derivation, but for applying a 4D tensor to a 2D image. Fortunately, it will not
be necessary to work in 4D. The full algorithm will be clear once the simplified version
has been elucidated.

The tensor method works by exploiting structure in the matrix. We need to find a
way to simplify the matrix such that the matrix vector multiplication is more efficient. A
simple type of matrix is one that is separable, meaning it can be factored into the outer
product of two vectors. Given the factorization, the matrix vector multiplication can be
applied simply by multiplying the input vector by the factors. Although blur matrices
are not separable, we can still exploit this idea of separable matrices to our advantage.

The first idea was to decompose the matrix into blocks, and then approximate each
block as being separable, but this turned out not to be an accurate approximation, thus
we tried using the singular value decomposition (SVD) to achieve a better approxima-
tion. The SVD can be used to find the best low-rank approximation to a matrix, for
any given rank. A matrix of rank N can be efficiently multiplied (if N is sufficiently



Fig. 3. Using the SVD to find the best separable approximation of blocks within the matrix. From
left right, the blocks are of increasingly small size.

small), because it is the sum of N separable matrices. We used the SVD to find the
best low-rank approximation for each of the blocks (see Figure 3). Although this SVD
method does work, it does not lead to the same level of performance gains that our
tensor method achieves. Furthermore, the blur matrices for reasonable sized images are
so large that computing the SVD would be prohibitively expensive. Finally, all these
problems notwithstanding, the SVD would have to be taken ahead of time, offline, as a
preprocess, making this method useless for dynamic scenes.

(a) A radially symmetric Gaussian can factored into two vectors. Multiplying by these two vec-
tors is much more efficient than multiplying by the original matrix.

Fig. 4. A radially symmetric Gaussian can be factored into the outer product of two one dimen-
sional Gaussians.



A better idea is to directly exploit the smoothness of the matrix by downsampling it.
A matrix can be understood as smooth if we view it as a grayscale image, and that image
appears smooth. The larger the magnitude of the blur we are applying, the smoother the
matrix is; this enables coarser samplings without losing any detail. Given the coarse
matrix, we then need a way to apply that matrix to the full-resolution vector. This is
done by observing that we could reconstruct the original matrix by using reconstruction
kernels. Reconstruction kernels restore the original matrix by spreading a Gaussian for
each sample. However, we do not in actuality want to reconstruct the original matrix,
but merely want to calculate the effect of its multiplication. Fortunately, our Gaussian
reconstruction kernels are separable (see Figure 4), so we can apply them to the vector
directly from their factorization as the outer product of two vectors. We have effectively
represented our matrix as overlapping separable matrices. The overlapping nature of
our sub-matrices is a critical difference compared to the SVD method. The massive
preprocessing of the SVD method is also avoided, since the subsampled matrix can be
computed much more easily than the SVD.

Fig. 5. A blur matrix can be adequately reconstructed by Gaussians placed down the diagonal. For
illustrative purposes, this example is for 1D blurring, i.e. we are only blurring horizontally. Left:
the blur matrix constructed out of Gaussians down the diagonal. Center: Every other Gaussian
removed, to make the remaining Gaussians more visible. Right: The result of blurring an image
with the matrix on the left.

Fortunately it is unnecessary to sample the matrix on a full 2D grid. Rather, samples
can be placed only down the diagonal (see Figure 5). This is because the blur matrix
happens to have all of its energy (nonzero values) centered around the diagonal. The
band of energy has varying size, depending on how much blur is required. To handle
this varying size, the reconstruction kernels must also have varying size. Substantial
time is saved by only sampling on the diagonal compared to sampling on a full grid.

The application of a separable Gaussian matrix has a direct interpretation in terms
of spreading and gathering. First, we multiply by the row vector. Multiplication by the
row vector is a gathering operation, computing a weighted average of the elements
of the input vector. The filter kernel for this gathering operation is itself a Gaussian.
Second, this scalar weighted average is multiplied by the column vector to determine
the output. Since our separable matrices are overlapping, we sum them to get the blurred



image, because our tensor is constructed as the sum of separable blocks. This means that
application of the column vector involves summing Gaussians, a spreading operation.
Therefore each separable matrix involves a gather, followed by a spread.

Given this interpretation, it is straightforward to extend the method from 1D images
to 2D images. Simply select a number of sites (locations) in the image, and specify a
Gaussian size for each site. The locations and size of the sites will need to be determined
by consulting the blur map. For each site, perform a gather followed by a spread. It is
clear that this works just as well in 2D as it did in 1D.

The remaining challenge is figuring out how many Gaussians to place and where
to place them. If we place too many, performance will be slow. But if we place too
few, there will be gaps in the blurred image. If we don’t place them with just the right
spacing, the blurred image will contain artifacts. To simplify, first consider how the
placement should work for the case where the blur amount is the same throughout the
image. This simplification enables constant spacing and a constant size for all the sites.
We can control the amount of blur by varying the spacing between sites, close together
for less blur, or farther apart for more blur. The Gaussians must be large enough to
cause them to overlap without leaving gaps, but the Gaussians should not be too large,
however, or else performance will degrade and excessive blur will occur.

We could consider storing the results of the gathering phase, and viewing each of
these values as a pixels in an image. Although not actually necessary, it is useful for
building intuition. The resulting image would be a lower resolution version of the input
image. The Gaussians in the row vectors would be the downsampling filters. Later, ap-
plying the column vectors recreates a full resolution image, effectively upsampling with
a Gaussian reconstruction kernel. When viewed in this manner, the tensor filter algo-
rithm is simply a new way of viewing the tried-and-true blur method of downsampling
followed by upsampling (see Figure 6). The blur is caused because the low resolution
image is incapable of representing fine details.

Fig. 6. The tensor method for uniform blur is equivalent to downsampling followed by upsam-
pling.



To extend this method to the general case of an arbitrarily varying blur map, we need
a way to place sites with a density that varies according to the blur map. This is similar to
the importance sampling problem in rendering, which places more samples in important
areas to gather light more effectively. Our problem is also similar to stippling from non-
photorealistic rendering, where points are placed to indicate variations in shading. We
considered borrowing a couple of methods from the importance sampling and stippling
literature, but we eventually settled on something far simpler.

For each pixel, consider the possibility of inserting a site. We will not place a site at
every pixel, but we will rather skip a number of pixels based on the desired amount of
blur. We calculate a variable called skip level, which is simply a scaled version of the
blur map value for that pixel. The scale factor was determined by trial and error. Next,
the decision about whether or not to insert a site is made by modding the pixel location
with skip level. This very simple method has the effect of placing points with exactly
the right density, in a spatially varying way. The simplicity means that the method is
fast and easy to implement (see Program 3).

This very simple method of placing points has a limitation: there is no way of being
sure that any sites at all will be placed on small but very blurred objects. In fact, such
objects can be missed completely. To really make this method useful in the general case,
a more sophisticated site placement method is needed, one that can make sure that no
objects are missed. We find this method useful, not as a tool to be used in practice, but
rather as a new and interesting way of thinking about the structure of the blur operator.

One solution to this problem is to use a more sophisticated method for placing the
sites. A useful way to think of this problem is to consider that we are compressing the
blur map. Since the sites are sparsely placed, there are relatively few degrees of freedom
for controlling the amount of blur. A useful fact from study of human perception is that
the more blur there is, the more difficult it is to perceive differences in the amount
of blur. Therefore, in regions with a lot of blur, we can get by with fewer sites. The
quadtree method exploits this structure by representing blurred regions of the blur map
with large nodes (see Figure 7). This is the standard method for compressing an image
with a quadtree. We then place a site at the center of each leaf node. The quadtree
building process ensures that no detail is lost, because sites are always placed where
needed.

Each application of a site involves a gather followed by a spread. This means that
it is possible to accelerate the tensor filter by using fast gathering and spreading tech-
niques. Any gathering method that enables Gaussian filter kernels can be used, and any
spreading method that enables Gaussian PSFs can be used. In practice Heckbert’s re-
peated integration technique is the fastest choice for gathering, and the pyramid method
is the fastest choice for spreading. The reason to use the tensor filter is simplicity, since it
is the easiest to implement of all the fast blur methods, and gives a high quality Gaussian
blur. If fast gather and spread methods were added, this would defeat the simplicity by
adding complexity. Therefore, we suggest using the tensor method in its original form,
rather than in accelerated form.



(a) A blur map. (b) Sites selected via a quadtree
that compresses the blur map.

(c) Output of using the ten-
sor method with sites located at
the center of the quadtree leaf
nodes.

Fig. 7. Illustration of the tensor method with a quadtree used to layout the sites.

6.2 Performance

It is easiest to analyze performance if we restrict to the case of uniform blur. For each
site, there is a gather and a spread. The uniform case is easy because the size of the
gathers and spreads are constant. The number of sites is inversely proportional to the
size of the blur, but the cost of each site is directly proportional to the size of the blur.
Therefore, the total cost of the tensor filter is constant, since the added cost of blurring
larger Gaussians is offset by the fact that fewer Gaussians are required.

6.3 Results

We have run the pyramid method on several different images, both low dynamic range
(LDR) and high dynamic range (HDR). The LDR comparisons are shown in Figures
8 and 9, while Figures 10 and 11 provide the HDR comparisons. An example of the
tensor method is given in Figure 12.

We have also included a couple of competing algorithms, for comparison purposes.
This includes the square spreading method and the naive spreading method.

We can see that the pyramid method produces quality as high as the naive method,
but in a fraction of the time. The speed of the pyramid method is not as fast as the
rectangle method, but quality is substantially improved.

We configured the tensor method two different ways. First, using naive gathering
and spreading, and second using the pyramid method, both in a gathering and in a
spreading formulation.

7 Conclusion

We introduced two new methods for depth of field post-processing with a Gaussian
PSF. The first approach is based on a pyramidal formulation in which small Gaussian



PSFs are spread to images of various size. The second method treats the blur operation
as a large four-dimensional tensor.

The key idea that underlies both methods is that Gaussian blur is a special operation
that possesses a great deal of structure. Direct methods, such as spatial-domain convo-
lution, completely ignore the structure, thus they lead to very long render times. Using
FFT convolution is faster because it exploits the case where the PSF is the same size
throughout an image. Our pyramid method takes advantage of the band-limited nature
of Gaussians. A large Gaussian can be represented at a low resolution without any loss
of detail. Of course, an upsampling step is required to smooth the low resolution image
into the full resolution image. The tensor method exploits the fact that the blur tensor
for Gaussian blur can be represented as the sum of overlapping 4D Gaussians. This
representation is particularly advantageous because Gaussian matrices are separable,
which enables them to be applied efficiently via a row and column factorization.

The pyramid method is simpler in concept than the tensor method which involves
four dimensional tensors. Although the tensor method is complicated to explain, it is
straightforward to implement, whereas the pyramid method is difficult to implement
correctly, despite its simplicity. The pyramid method requires that the subpixel Gaus-
sians be precisely calibrated so as to prevent the occurrence of blocky artifacts. The
pyramid method is a spreading method, and the tensor method is a combination of
spreading and gathering. Therefore the pyramid method may lead to higher quality im-
ages in some cases.
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(a) Square (0.4693 seconds) (b) Pyramid (10.4064 seconds) (c) Naive (126.399 seconds)

Fig. 8. Various blur methods used on a low dynamic range image. Observe that each method
produce similar result to the others.



(a) Square (0.4383 seconds) (b) Pyramid (11.7141 seconds) (c) Naive (99.7249)

Fig. 9. Various blur methods used on a low dynamic range image. Observe that each method
produce similar result to the others.

(a) Square (0.4496 seconds) (b) Pyramid (10.0052 seconds) (c) Naive (32.8386 seconds)

Fig. 10. Various blur methods used on a high dynamic range image. Observe that the methods
produce significantly different results.

(a) Square (0.5008 seconds) (b) Pyramid (6.5418 seconds) (c) Naive (9.98269)

Fig. 11. Various blur methods used on a high dynamic range image. Observe that the methods
produce significantly different results.



Program 1 Pseudocode implementing spreading to the pyramid.
//Initialize pyramid

//pyramid[i] is a 2ˆi x 2ˆi image

//Therefore the levels have resolutions as follows.
//The following entries fill the pyramid_widths table:
//pyramid_widths[i] = 2ˆi x 2ˆi

//X and Y are initially at the full resolution of the output image.
//Scale them so that we are within the coordinate system of the current pyramid level.
X = (X/width)*pyramid_widths[i];
Y = (Y/width)*pyramid_widths[i];

int radius = 3;

float_type U;
float_type V;

//Spread a 7x7 Gaussian
for(int u = -3; u <= 3; u++)
for(int v = -3; v <= 3; v++)
{

//Find the floating point pixel location of where we are spreading to
U = X + u;
V = Y + v;

//Round U and V to the integer pixel grid, add .5 to get the pixel center,
//and subtract from X and Y, the floating point center of the Gaussian
//This yields du and dv are the floating point offset from the Gaussian
//center to the pixel center
float_type du = (int)U - (X-.5);
float_type dv = (int)V - (Y-.5);

//Compute the length of the offset
float_type dist = sqrt( du*du + dv*dv);

//The standard deviation was chosen by trial and error to be 1/3.
float_type stddev = 1/3.0;

//Evaluate the Gaussian
float_type G = exp(-(dist*dist)/(2*stddev*stddev));

//Divide through by the volume under the Gaussian, for normalization purposes.
float_type weight = 1/(2.5*stddev*sqrt(2*3.14159));

//Cast the pixel location to an integer so we can write to the image
int iU, iV;
iU = U;
iV = V;

pixel_red(pyramid[i], iU,iV) += r*weight*G;
pixel_green(pyramid[i],iU,iV) += g*weight*G;
pixel_blue(pyramid[i],iU,iV) += b*weight*G;
pixel_fourth(pyramid[i],iU,iV) += 1.0*weight*G;

}



Program 2 Pseudocode that implements pyramid upsampling.
//Upsample

//Assuming that the pyramid level is of unit width, calculate the width of one pixel
float_type one_pixel = 1.0/pyramid_widths[i];

//Iterate over the pyramid levels that we will upsample
for(int i = 0; i <= 8; i++)
{

//Iterate over each of the pixels in the level that we are upsampling to
for(int x = 0; x < pyramid_widths[i+1]; x++)
for(int y = 0; y < pyramid_widths[i+1]; y++)
{
int X = x;
int Y = y;

int radius = 3;
int U;
int V;

//Calculate the size of one pixel, assuming the pyramid level is of unit width.
float_type one_pixel = 1.0/pyramid_widths[i];

//Iterate over all the pixels within the support of the filter kernel.
for(int u = -radius; u <= radius; u++)
for(int v = -radius; v <= radius; v++)
{

//Scale the pixel location to match the coarser level, and shift
//to the location within the support of the filter kernel.

U = X/2.0+u+.5;
V = Y/2.0+v+.5;

//Compute the floating point offset based on where
//we are sampling the filter kernel.

float_type du, dv;
du = (X-.5) - U*2;
dv = (Y-.5) - V*2;

//Evaluate the magnitude of that offset.
float_type dist = sqrt((float_type) (du)*(du) + (dv)*(dv));

//Evaluate the Gaussian filter kernel.
float_type stddev = radius*one_pixel;
stddev = radius/3.0;
float_type G = exp(-(dist*dist)/(2*stddev*stddev));
G /= (stddev*sqrt(2*3.14159));

//Write the weighted value to the next pyramid level.
pixel_red(pyramid[i+1],X,Y) += pixel_red(pyramid[i],U,V)*G;

pixel_green(pyramid[i+1],X,Y) += pixel_green(pyramid[i],U,V)*G;
pixel_blue(pyramid[i+1],X,Y) += pixel_blue(pyramid[i],U,V)*G;
pixel_fourth(pyramid[i+1],X,Y) += pixel_fourth(pyramid[i],U,V)*G;

}
}



Program 3 Psuedocode implementing the tensor method.

for(int x = 0; x < width; x++)
for(int y = 0; y < height; y++)
{

int skip_level = .8*pixel_red(blur_map,x,y,width*3,3)/4.0;

if ( (skip_level < 1) || (x % skip_level == 0 && y % skip_level == 0))
{
float_type radius = .8*pixel_red(blur_map,x,y,width*3,3);

gather(x,y,radius,r,g,b,a);
spread(x,y,radius,r,g,b,a);
}
}

(a) Tensor blurring with naive
gathering and spreading.
(7.4686 seconds)

(b) Tensor blurring with pyra-
mid gathering and spreading.
(6.9167 seconds)

(c) For comparison, naive
spreading without the tensor
method. (37.8613 seconds)

Fig. 12. Various configurations of the tensor method.


