
Depth of Field Postprocessing For Layered Scenes
Using Constant-Time Rectangle Spreading

Todd J. Kosloff∗

University of California, Berkeley
Computer Science Division
Berkeley, CA 94720-1776

USA

Michael W. Tao†

University of California, Berkeley
Computer Science Division
Berkeley, CA 94720-1776

USA

Brian A. Barsky‡

University of California, Berkeley
Computer Science Division and School of Optometry

Berkeley, CA 94720-1776
USA

Figure 1: Gathering vs. Spreading. Image filtering is often implemented as gathering, in which output pixels are weighted averages of input
pixels. Spreading involves distributing intensity from each input pixel to the surrounding region. For depth of field post-processing, spreading is
a better approach. Left: Gathering leads to sharp silhouettes on blurred objects. Right: Spreading correctly blurs silhouettes. This simple scene
uses two layers: one for the background, one for the foreground.

ABSTRACT

Control over what is in focus and what is not in focus in an image
is an important artistic tool. The range of depth in a 3D scene that
is imaged in sufficient focus through an optics system, such as a
camera lens, is called depth of field. Without depth of field, the
entire scene appears completely in sharp focus, leading to an un-
natural, overly crisp appearance. Current techniques for rendering
depth of field in computer graphics are either slow or suffer from
artifacts, or restrict the choice of point spread function (PSF). In
this paper, we present a new image filter based on rectangle spread-
ing which is constant time per pixel. When used in a layered depth
of field framework, our filter eliminates the intensity leakage and
depth discontinuity artifacts that occur in previous methods. We
also present several extensions to our rectangle spreading method
to allow flexibility in the appearance of the blur through control
over the PSF.

Index Terms: I.3.3 [Computer Graphics]: Picture/Image
Generation-display algorithms, bitmap and frame buffer operations,
viewing algorithms—

1 INTRODUCTION

1.1 Background

Control over what is in focus and what is not in focus in an image
is an important artistic tool. The range of depth in a 3D scene that
is imaged in sufficient focus through an optics system, such as a
camera lens, is called depth of field. This forms a swath through a

∗e-mail: koslofto@cs.berkeley.edu
†e-mail: mtao@berkeley.edu
‡e-mail: barsky@cs.berkeley.edu

3D scene that is bounded by two planes that for most cameras are
both parallel to the film/image plane of the camera.

Professional photographers or cinematographers often achieve
desired depth of field effects in the image by controlling the focus
distance, aperture size, and focal length. For example, by restrict-
ing only part of a scene to be in focus, the viewer or the audience
automatically attends primarily to that portion of the scene. Analo-
gously, pulling focus in a movie directs the viewer to look at differ-
ent places in the scene over time, following the point of focus as it
moves continuously within the scene.

Rendering algorithms in computer graphics that lack depth of
field are in fact modeling a pinhole camera. Without depth of field,
the entire scene appears in completely sharp focus, leading to an
unnatural, overly crisp appearance. Previous techniques for render-
ing depth of field in computer graphics are are either slow or suffer
from artifacts or limitations.

Distributed ray tracing [8] can render scenes by directly simu-
lating geometric optics, resulting in high quality depth of field ef-
fects. This requires many rays per pixel, leading to slow render
times. Distributed ray tracing succesfully simulates partial occlu-
sion, which is the fact that the edges of blurred objects are semi-
transparent.

Post-processing, which adds blur to an image that was rendered
with everything in perfect focus, is the alternative to distributed ray
tracing for efficiently simulating depth of field. Previous fast post-
process methods often fail to simulate partial occlusion, leading to
unnaturally sharp edges on blurred objects, which we refer to as
depth discontinuity artifacts. These previous methods also often
lead to a blurred background leaking on top of an in-focus fore-
ground, which we refer to as intensity leakage artifacts.

1.2 Goals
Ideally, our depth of field postprocess method should satisfy the
following criteria:

1. Allows the amount of blur to vary arbitrarily for each pixel,

39

Graphics Interface Conference 2009
25-27 May, Kelowna, British Columbia, Canada
Copyright held by authors. Permission granted to CHCCS/SCDHM
to publish in print form, and ACM to publish electronically.

Figure 2: A scene blurred using our rectangle spreading method.
Left: focused on wall. Right: focused on cone.

since the depth corresponding to each pixel can differ.

2. Achieves high performance, even for large amounts of blur.

3. Allows control over the nature of the blur, by allowing flexi-
bility in choice of the PSF (Point Spread Function).

4. Simulates partial occlusion.

5. Avoids depth discontinuity artifacts.

6. Avoids intensity leakage artifacts.

In this paper, we describe new image filters that simultaneously
meet all of these criteria when used on layered scenes.

We find it useful to classify image filters as using either gath-
ering or spreading approaches, as will be explained in Section 3.
Gathering filters generate output pixels by taking weighted aver-
ages of input pixels. Spreading involves distributing intensity from
each input pixel to the surrounding region. Existing fast blur filters
generally use gathering, which is physically incorrect, leading to
noticeable flaws in the resulting image.

In this paper, we show that spreading removes these flaws, and
can be very efficient. We describe a novel fast spreading blur filter,
for use in depth of field, for layered scenes. Our method takes inspi-
ration from the summed area table (SAT) [9], although our method
differs substantially. An SAT is fundamentally a gather method
whereas our method uses spreading. We can characterize the ap-
pearance of the blur in an image by the PSF, which describes how
a point of light in the scene would appear in the blurred image.

Our first method uses rectangles of constant intensity as the PSF.
To allow for a more flexible choice of PSFs, we describe two al-
ternative extensions to our rectangle method: one that lifts the re-
striction to rectangular shape, allowing constant-intensity PSFs of
arbitrary shape, and another that forms an algorithm based on a hy-
brid of any fast blur method with a slower, direct method that allows
PSFs of arbitrary shape and intensity distribution. In this way, we
achieve a controllable tradeoff between quality and speed.

1.3 Depth of Field Postprocessing of Layered Scenes
When blurring an image of a scene using a linear filter, blurred
background objects will incorrectly leak onto sharp foreground ob-
jects, and sharp foreground objects that overlap blurred background
objects will incorrectly exhibit sharp silhouettes. Layers are a sim-
ple, well-known method for solving this problem [1][4][5][21][29].
Each object is placed into a layer, along with an alpha matte. The

layers and alpha mattes are blurred using FFT convolution or pyra-
mids, and the blurred objects are composited using alpha blending
with the blurred alpha mattes.

We describe a novel set of image filters suitable for efficiently
extending the layered approach to nonplanar layers. As a prereq-
uisite to using a layered method, the scene must be decomposed
into layers. We assume that the decomposition has already been
performed, either manually or automatically, and describe how to
perform depth of field postprocessing using these layers.

2 PREVIOUS WORK

2.1 Classic Depth of Field Methods
The first depth of field rendering algorithm was developed by
Potmesil and Chakravarty [26]. They used a postprocess approach
that employed complex PSFs derived from physical optics. Their
direct, spatial domain filter is slow for large blurs.

Extremely high quality depth of field rendering can be achieved
by distributed ray tracing, introduced by Cook [8]. Kolb [20] later
simulated particular systems of camera lenses, including aberra-
tions and distortions, using distributed ray tracing. Methods based
on distributed ray tracing faithfully simulate geometric optics, but
due to the number of rays required, are very slow. The accumula-
tion buffer [15] uses rasterization hardware instead of tracing rays,
but also becomes very slow for large blurs, especially in complex
scenes.

2.2 Realtime Depth of Field Methods
A realtime postprocess method was developed by Scheuermann and
Tatarchuk [28], suitable for interactive applications such as video
games. However, this approach suffers from depth discontinuity ar-
tifacts, due to the use of gathering. This method selectively ignores
certain pixels during the gathering in order to reduce intensity leak-
age artifacts; however, due to the use of a reduced resolution image
that aggregates pixels from many different depths, this method does
not eliminate them completely. Their method does not allow for a
choice of point spread function; it produces an effective PSF that is
a convolution of a bilinearly resampled image with random noise.
Our methods enable a choice of PSF, and eliminate the depth dis-
continuity artifact.

A more recent realtime depth of field postprocess method was
developed by Kraus and Strengert [21], who used pyramids to per-
form fast uniform blurring. By running the pyramid algorithm mul-
tiple times at different pyramid levels, they approximate a continu-
ously varying blur. Unlike our method, their method does not pro-
vide a choice of PSFs, but rather produces a PSF that is roughly
Gaussian.

Bertalmio et al. [6] showed that depth of field can be simulated
as heat diffusion. Later, Kass et al. [19] used a GPU to solve the
diffusion equation for depth of field in real time using an implicit
method. Diffusion is notable for being a blurring process that is
neither spreading nor gathering. Diffusion, much like pyramids,
inherently leads to Gaussian PSFs.

Mulder and van Lier [23] used a fast pyramid method at the pe-
riphery, and a slower method with better PSF at the center of the
image. This is somewhat similar to our hybrid method, but we use
an image-dependent heuristic to adaptively decide where the high
quality PSF is required.

Other methods [11][22][27][31] exist that quickly render depth
of field, although we omit detailed discussion of them due to space
constraints. For a comprehensive survey of depth of field methods,
please consult Barsky et al.’s [2][3] and Demers’ [10] surveys.

2.3 Layers
Barsky et al. used layers as one element in vision realistic render-
ing [1]. To our knowledge, the first published use of layers and
alpha blending [25] for depth of field was Scofield [29]. Barsky et

40

al. showed in [4] and [5] how to use object identification to allow
objects to span layers without engendering artifacts at the seams.
The present paper also uses layers, although our image filters offer
significant advantages over the FFT method previously used.

There are other methods that do not use layers, such as Catmull’s
method for independent pixel processing [7], which is efficient for
scenes composed of a few large, untextured polygons, and Shinya’s
ray distribution buffer [30], which resolves intensity leakage in a
very direct way, but at great additional cost. We choose to use layers
due to their simplicity and efficiency.

2.4 Fast Image Filters
The method presented in this paper uses ideas similar to Crow’s
summed area table [9] originally intended for texture map anti-
aliasing. Other constant-time image filters intended for texture map
anti-aliasing methods include Fournier and Fiume [12] and Gots-
man [14]. We build our method along the lines of Crow’s, since
that is the simplest.

Although Huang’s method [18] for computing box filters is fast,
Perrault et al. [24] extended it to be even faster, improving the com-
putational cost from linear to constant with respect to kernel size.
As the window of the kernel shifts, the new pixel values of the win-
dow are added to the summation while the old values are subtracted
from the summation. By storing the summation of the columns, the
process of calculating the blurred value becomes a constant-time
computation. Unfortunately, these methods are restricted to rectan-
gular kernels of constant size.

Finally, the Fast Fourier Transform (FFT) is a traditional fast
method for blurring pictures via convolution, but can only be used
when the amount of blur is constant throughout an image. There-
fore, many FFTs are required if we want the appearance of contin-
uous blur gradations. However, when many FFTs are required, we
no longer have a fast algorithm, even if the FFTs are performed by
a highly optimized implementation such as FFTW [13]. For this
reason, we do not use FFTs in our method.

3 GATHERING VS. SPREADING

The process of convolving an image with a filter can be described
equivalently as gathering or spreading. Gathering means that each
pixel in the filtered image is a weighted average of pixels from the
input image, where the weights are determined by centering the
filter kernel at the appropriate pixel. Spreading means each pixel
in the image is expanded into a copy of the filter kernel, and all
these copies are summed together. When we allow the filter kernel
to vary from pixel to pixel, gathering and spreading are no longer
equivalent.

In any physically plausible postprocess depth of field method,
each pixel must spread out according to that pixel’s PSF. Since
each pixel can have a PSF of different size and shape, we designed
our filter to vary from pixel to pixel. Fast image filters typically
only support gathering; thus, fast depth of field postprocess meth-
ods generally use gathering, despite the fact that spreading would
produce more accurate results.

We initially considered using Crow’s summed area table (SAT)
as the image filter, in the manner of Hensley et al. [17]. SATs
are appealing because they run in constant time per pixel and allow
each pixel to have an independently chosen filter size. In any given
layer, some of the pixels will be opaque, and others will be com-
pletely transparent. To simplify the presentation, we ignore semi-
transparent pixels, although these are allowed as well. To generate
the blurred color for an opaque pixel, we look up the depth value
of the pixel, and determine a filter size using a lens model. We
then perform an SAT lookup to determine the average color of the
filter region. Unfortunately, it is not straightforward to determine
a blurred color for a transparent pixel, because that corresponds to
a region outside any object, and thus does not have a depth value.

Depth values must be extrapolated from the opaque pixels to the
transparent pixels, a process that generally only approximates the
correct result, and requires additional computation. Barring such
extrapolation, transparent pixels must be left completely transpar-
ent. Consequently, blurred pixels that are outside of, but adjacent
to, an object remain completely transparent. Visually, this results in
depth discontinuity artifacts (Figure 1, left).

A better option is to use a spreading filter. When an object is
blurred by spreading, opaque pixels near silhouettes will spill out
into the adjacent region, yielding a soft, blurred silhouette (Figure
1, right). This is a highly accurate approximation to the partial
occlusion effect seen in real depth of field. This need for spreading
filters motivates the constant-time spreading filters presented in this
paper.

4 CONSTANT TIME RECTANGLE SPREADING

We now present our depth of field postprocess approach for layered
scenes. For example, consider a scene with a foreground layer and
a background layer. Both layers are blurred, and are then compos-
ited with alpha-blending. Blurring and compositing layers for depth
of field postprocessing is well-known [1][4][5][21][29]. However,
previous methods generally use filters that limit each layer to a con-
stant amount of blur; this is accurate only for 2D objects oriented
parallel to the image plane. Our method alleviates this limitation by
using a spatially varying spreading filter.

4.1 Motivation For Examining the Summed Area Table

We draw inspiration from Crow’s summed area table (SAT). We
base our method on the SAT because of the following speed and
quality reasons.

Table-based gathering methods can be used in a setting where
the table is created offline. This means that it is acceptable for table
creation to be slow. Consequently, some of these methods do indeed
have a lengthy table creation phase, such as Fournier and Fiume
[12] and Gotsman [14]. However, the summed area table requires
very little computation to create, and thus can be used online [17].

With an SAT, we can compute the average color of any rectangu-
lar region. Both the size and location of the region can be specified
with pixel-level precision. Other methods, such as [12][14], give
less precise control.

Although summed area tables have beneficial qualities, they can
only be used for gathering, necessitating the development of a new
method that can be used for spreading. Furthermore, SATs have
precision requirements that grow with increased image size. Our
rectangle spreading method does not inherit these precision prob-
lems because the signal being integrated includes alternating posi-
tive and negative values.

4.2 Our Rectangle-Spreading Method

First, we must create an array of the same dimensions as the image,
using a floating point data type. We will refer to this as table. After
initializing the array to zero, we enter Phase I of our method (Figure
4). Phase I involves iterating over each pixel in the input image,
consulting a depth map and camera model to determine the size of
the circle of confusion, and accumulating signed intensity markers
in the array, at the corners of each rectangle that we wish to spread.
Thus, we tabulate a collection of rectangles that are to be summed
together to create the blurred image.

At this point, the array contains enough information to construct
the blurred image, but the array itself is not the blurred image, since
only the corners of each rectangle have been touched.

To create the blurred image from the array, we need Phase II of
our method (Figure 5). Phase II is similar to creating a summed
area table from an image. However, the input to Phase II is a ta-
ble of accumulated signed intensities located at rectangle corners,

41

Figure 3: For every image input, there are two input buffers (A)- the image channel as an input and the normalization channel, which is the size
of the image and contains pixels of intensity 1.0. In Phase I (B), for each pixel, we read the value of the pixel and spread the positive and negative
markers accordingly on to the table with paddings added around the buffers (c). In Phase II (D), there is an accumulator (shown in orange) that
scans through the entries of the tables from left to right, top to bottom. The accumulated buffer (E) stores the current state of the accumulator
with the paddings removed. Phase II is equivalent to building a summed area table of the table (c). In phase III (F), for each entry at i and j, we
divide the images accumulated buffer by the normalization channels accumulated buffer to obtain the output of the image (G).

Figure A
We will be blurring

this simplified image.

Third Pixel

Figure B
Spreads pixels into rectangles
by marking the corners.

+-

-+

+-

-+

+-

-+

First Pixel Second Pixel

+-

-+

+-

-+

+-

-+

+-

-+

+-

-+

+-

-+

Figure 4: Phase I: Accumulating

Figure E
The blurred image.

Figure D
Midway through Phase II.

+-
+-

+-

Figure 5: Phase II: Filling In

whereas the input to a summed area table creation routine is an im-
age. Furthermore, the output of Phase II is a blurred image, whereas
the output of a summed area table creation routine is a table meant
to be queried later.

A summary of the entire blur process is illustrated in Figure 3.

//This code is for a single color channel,
//for simplicity.
//In a real implementation, R,G,B and A channels
//must all be blurred by this same process.
//Fast rectangle spreading: Phase I.
float table[width][height];
//zero out table (code omitted)
//S is the input image (S stands for sharp)
for(int i=0; i<width; i++)
for(int j=0; j<height;j++)
{

int radius = get_blur_radius(i,j);
float area = (radius*2+1)*(radius*2+1);

table[i-radius][j-radius]+= S[i][j] / area;
table[i+radius][j-radius]-= S[i][j] / area;
table[i-radius][j+radius]-= S[i][j] / area;
table[i+radius][j+radius]+= S[i][j] / area;

}

//Fast rectangle spreading: Phase II.
float accum;
float I[width][height]; //I is the blurred image
for(int y=1; y<height;y++)
{

accum = 0;
for(int x=0; x<width; x++)
{
accum += table[x][y];
I[x][y] = accum + I[x][y-1];
}

}

42

4.3 Normalization
Each output pixel is the sum of a variable number of rectangles. The
result of executing the above code listing is that the pixels receiving
more rectangles will appear too bright, whereas the pixels receiving
fewer rectangles will appear too dim. We fix this by adding a fourth
channel, which we will use for normalization. We spread rectan-
gles of unit intensity into the normalization channel, and divide
through by the normalization channel at the end. Note that over-
lapping PSFs of disparate sizes will have appropriate relative con-
tributions to the final image, since intensities were divided through
by area during the initial spreading phase. The alpha channel is not
normalized, to preserve semi-transparent silhouettes (partial occlu-
sion). In place of normalization, the alpha channel is biased slightly
to prevent dimming, and clamped at 1.0 to avoid brightening.

4.4 Non-Integer Blur Sizes
In scenes with continuously varying depth levels, there will often
be pixels whose blur values are not integers. If we were to sim-
ply use rectangles whose radius is the closest integer to the desired
blur value, visible discontinuities would appear in the blurred im-
age. Fortunately, we can easily approximate fractional blur sizes by
spreading two integer sized rectangles, one slightly larger than the
other, with weights dependent on the size of the desired rectangle.

4.5 Borders
As is typical in blur algorithms, our methods require special consid-
eration near the borders of the image. When a pixel near the border
is spread into a PSF, the PSF may extend beyond the borders of the
image. We handle this case by padding the image by a large enough
amount to ensure that the PSFs never extend beyond the borders of
the padded image. The padding is cropped away before the image
is displayed.

4.6 GPU Implementation
We have developed a DirectX 10 implementation of fast rectangle
spreading to achieve real-time performance. The implementation is
straightforward.

1. Phase I
To accumulate corners, each corner is rendered as a point
primitive. To avoid transferring large amounts of geometry,
the points are generated without the use of vertex buffers, via
the vertex ID feature of DirectX 10. A vertex shader maps
the vertex id to pixel coordinates and appropriate signed in-
tensities. To cause the signed intensities to accumulate rather
than overwrite one another, alpha blending hardware is used,
configured to act as additive blending.

2. Phase II
Any GPU implementation of SAT generation could be used
for the integration step. Currently we are using the recursive
doubling approach [17].

Our GPU implementation achieves 45 frames per second with
two layers at 800x600 on an ATI HD4870. Numerous low-level
optimizations should raise performance even higher. Currently, our
method is about twice as expensive as an SAT. We suspect this is
due to the serialization that inherently must occur inside the al-
pha blending units when multiple pixels spread corners to the same
point. As future work, we plan to mitigate the serialization problem
by reordering the spreading to reduce contention.

Figure 7 demonstrates our GPU implementation. This example
also shows that spreading works relatively well even in the absence
of layers, whereas gathering leads to particularly severe artifacts,
as can be seen in Figure 6. Our method is therefore applicable,
if imperfect, for complex scenes that cannot be decomposed into
layers.

Figure 6: A complex scene, without layers, blurred using a summed
area table. Depth discontinuity artifacts are severe. (This 3D model
is provided by the Microsoft DirectX 10 SDK.)

Figure 7: A complex scene, without layers, blurred using rectangle
spreading. Depth discontinuity artifacts are reduced. (This 3D model
is provided by the Microsoft DirectX 10 SDK.)

5 ARBITRARILY SHAPED CONSTANT INTENSITY PSFS

Although our rectangle spreading method is fast and simple, we
require a different method for applications that mandate circular or
hexagonal PSFs, which are necessary to mimic the PSFs commonly
found in real photographs.

There is a simple modification to our rectangle method that lifts
the rectangular limitation, enabling arbitrarily shaped PSFs with
constant intensity. We modify Phase I such that, for each scan-
line, we write markers wherever the PSF boundary intersects the
scanline. In Phase II, each scanline is integrated in a one dimen-
sional fashion. These changes are very simple to implement, but the
enhanced generality comes at a cost: blurring now has a cost pro-
portional to the perimeter of the PSF, whereas our rectangle method
had a fixed cost for any size PSF. Note that direct blurring has a cost
related to the area of the PSF, so a cost related to the perimeter is a
significant improvement. Also note that a cost proportional to the
perimeter is optimal for PSFs that have arbitrary, per-pixel shapes.

6 HYBRIDIZING WITH ARBITRARY PSFS

6.1 Contrast-Controlled Hybrid Method Concept
In the previous section, we lifted the restriction of rectangular
shape to allow arbitrarily shaped PSFs of constant intensity. In
this section, we further lift the restriction on contant intensity, to
allow PSFs with arbitrary intensity distribution. PSFs that are de-
rived from physical rather than geometric optics can have complex
diffraction fringes, and are not well approximated as having con-
stant intensity. Highly complex PSFs are best dealt with directly.

43

Figure 8: This example demonstrates continuously varying blur, and
the hybrid method. Left: Hybrid method. Right: Rectangle spreading.
Observe that the hybrid method significantly improves image quality,
especially at high contrast edges.

Figure 9: Top: image with high and low contrast regions. 2nd from
top: image blurred via rectangle spreading. 2nd from bottom: image
blurred with a smooth PSF. Bottom: The image blurred with our hy-
brid method. Notice that the hybrid image looks similar to the high
quality PSF image, but took much less time to blur.

Although this is extremely expensive, accurate PSFs are not nec-
essary at every pixel, but only in the high contrast regions of the
image. Thus, we can develop a hybrid method that blurs the low
contrast portions of the image with our fast rectangle spreading
method while using accurate PSFs in the high contrast regions; this
will produce an image without significant artifacts. See Figures 8
and 9 for examples.

6.2 Details of the Contrast-Controlled Hybrid Method
The first step is to determine the contrast of each pixel. Our con-
trast measure is the absolute difference between a pixel’s intensity
and the average intensity of that pixel’s neighborhood. The size
of the neighborhood is the size of the PSF for that pixel. We use
a summed area table to efficiently compute the average intensity
over the neighborhood. This contrast measure is simple and works
reasonably well; however, we emphasize that our hybrid approach
could be used with other contrast measures, as well as frequency
measures, if this were found to produce better results. Having de-
termined the contrast, we apply a threshold to determine whether
to use a full-quality PSF, or whether to use a fast rectangle instead.
The threshold is a user-definable parameter that trades off quality
for speed.

A key contribution of this hybrid method is that the speed/quality

Figure 10: Our constant-time rectangle spreading filter compares
competitively with other fast box filters while improving the quality
for depth of field. Tests are done on a 1680 x 1050 image, Intel Core
2 Quad Q9450 processor, 4 GB RAM.

tradeoff can be finely tuned. When the contrast threshold is very
high, this method degenerates into our fast rectangle approach.
When the contrast threshold is very low, this method becomes a
direct filter that uses precisely the true PSF. The threshold can be
set anywhere along this continuum, making this method useful for
a range of applications. We find that we can raise the threshold un-
til our method takes only 30 percent the time of the direct method,
before significant quality loss occurs.

7 PERFORMANCE COMPARISON

Our rectangle spreading method has O(1) cost per pixel, and the
arbitrary shape spreading variant has O(p) cost per pixel, where p
is the perimeter of the PSF. However, it is still important to consider
experimental timings to determine if the proportionality constants
are reasonable in comparison to other methods.

Our fast rectangle method uses constant-intensity rectangular
PSFs, so we compare against other methods that use constant-
intensity rectangular PSFs, including O(N2) spatial-domain con-
volution, SATs, and Huang’s methods, both basic [18] and ex-
tended [24]. See Figure 10. For completeness, we also compare
against fast convolution via FFT. These comparisons are for soft-
ware implementations, as we do not yet have complete GPU im-
plementations for some of these methods. Our method performs
the same as SATs, much faster than direct convolution, much faster
than Huang’s linear-time method, significantly faster than the FFT
method, and about 20 percent slower than Huang’s constant time
filter. Note that Huang’s method as well as FFT convolution re-
quire the kernel to be the same at all pixels, but ours allows the
kernel to vary.

Spatially uniform blurring methods can be used in the nonuni-
form case by repeated application with each different filter required.
This increases cost, but it is conceivable that the simplicity of uni-
form blurring outweighs this added cost. We show this not to be the
case in Figure 11.

Our arbitrary-outline method has a cost proportional to the
perimeter of the PSF. We compare the performance of this method
with other methods in Figure 12.

Finally, we compare the performance of our hybrid method with
the fast rectangle blur, and with the slow detailed PSF method in
Figure 13.

8 LIMITATIONS AND FUTURE WORK

Some scenes cannot be decomposed into layers since objects can
span many depth levels. Our simple treatment of layers only ap-

44

Figure 11: Our constant-time rectangle spreading filter compares
competitively with the summed area table algorithm. To perform a
spatially varying blur with a spatially uniform method, on the other
hand, requires multiple executions, once for each kernel size. This
leads to performance hits proportional to the number of different ker-
nel sizes. Our spreading algorithm remains constant time as the
number of kernel sizes increases because the algorithm requires
only one execution. The first kernel radius starts with radius 5 and
each kernel after the first the radius increments by 2. Tests are done
on a 1680 x 1050 image, Intel Core 2 Quad Q9450 processor, 4 GB
RAM.

Figure 12: In this example, a constant intensity circle shape was
used. The arbitrary shape spreading is linear to the circumference
of the circle. Although the timings are significantly different at higher
kernel radii, the method competes competitively with the Huang’s lin-
ear convolution. Tests are done on a 1680 x 1050 image, Intel Core
2 Quad Q9450 processor, 4 GB RAM.

plies to scenes where objects do not straddle layers. This precludes
self-occluding objects. The method of Kraus and Strengert [21]
allows objects to straddle layers by applying a careful weighting
to the hide the seam at layer boundaries. We believe that our fast
spreading filter could be used with Kraus and Strengert’s layering
framework, to allow our method to work with arbitrarily complex
scenes. This method would often need fewer layers than Kraus and
Strengert’s method, because we need additional layers only when
there is additional depth complexity, whereas they need additional
layers whenever there are additional amounts of blur, whether or
not there is any depth complexity.

Our GPU implementation is real time at 45 frames per second
with two layers, but it would be useful to have more layers. Further
low-level optimizations of our GPU implementations remain, such
as carefully ordering the spreading to avoid contention in the alpha
blending hardware.

Figure 13: In this example, the hybrid used 1,761,271 fast rectan-
gular PSFs and 127,747 slow detailed PSFs. As we can see, the
hybrid method takes only 49 percent more time than the spreading
algorithm while the using all PSF on the same image takes nearly
487 percent more time than the spreading algorithm. Through the
image comparisons in figure 9, we can see that the image quality
does not have a noticeable degradation. Tests are done on a 1680 x
1050 image, Intel Core 2 Quad Q9450 processor, 4 GB RAM.

Just as Crow’s SATs can be extended to use arbitrary-order poly-
nomial kernels via Heckbert’s repeated integration scheme [16], our
rectangle spreading method can also be extended in a similar way.
In Phase I, the weights developed for Heckbert’s scheme are ac-
cumulated, much as rectangle corners are accumulated in our rect-
angle spreading method. In Phase II, N integration steps are per-
formed, for polynomials of order N. We will describe the extension
to polynomial kernels in future work.

Finally, the contrast measure in our hybrid method is a heuristic
that seems to work well. Further work is required to determine more
precisely when simple PSFs are sufficient, and when more complex
PSFs are required.

9 CONCLUSION

This paper provides a method for artifact-free depth of field ren-
dering in real time. We achieve this through the following specific
contributions:

1. We show that spreading filters, unlike gathering filters, elimi-
nate depth discontinuity artifacts by simulating partial occlu-
sion.

2. We show that Crow’s summed area table, fundamentally a
gathering method, can be transformed into a rectangle spread-
ing method.

3. We describe a GPU implementation of our rectangle spread-
ing method that runs at 45 frames per second on current
GPUs.

4. We extend the SAT-like method to handle constant-intensity
PSFs of arbitrary shape, at modest additional cost.

5. We show how to forms an algorithm based on a hybrid of
any fast spreading filter with arbitrary PSFs according to a
controllable cost/quality tradeoff.

In this paper, we have shown that the well-known method of
convolving and compositing 2D image-plane parallel layers (e.g.
[1][4][5][21][29]) can be extended to non-planar layers with great
efficiency, using constant-time spreading filters. Unlike previous
depth of field methods of comparable speed, our methods provide
choice of PSF, accurately simulate partial occlusion, and are free of
depth discontinuity and intensity leakage artifacts.

45

We have presented three distinct algorithms, each of which is
useful for a different application domain. Our rectangle spreading
method runs at 45 frames per second on GPUs, enabling artifact-
free depth of field rendering for interactive applications such as
video games. Our arbitrarily shaped constant-intensity PSF method
enables higher quality blur, although performance is not interactive.
Our contrast-controlled hybrid method combines our fast rectangle
spreading method with a direct spreading method that enables PSFs
of arbitrary complexity, both in shape and intensity distribution.
By varying the contrast threshold parameter, the user can configure
the hybrid method to behave precisely like the rectangle spreading
method, or precisely like the high quality direct method, as well as
anywhere in between. This parameter can be configured, for exam-
ple, to provide maximum quality for a given computational budget.
If this budget is later increased due to using a faster computer, the
contrast threshold parameter can be adjusted to exploit this compu-
tational power to achieve accordingly higher quality.

REFERENCES

[1] B. A. Barsky. Vision-realistic rendering: simulation of the scanned
foveal image from wavefront data of human subjects. In APGV ’04:
Proceedings of the 1st Symposium on Applied perception in graphics
and visualization, pages 73–81, New York, NY, USA, August 2004.
ACM.

[2] B. A. Barsky, D. R. Horn, S. A. Klein, J. A. Pang, and M. Yu. Camera
models and optical systems used in computer graphics: Part i, object-
based techniques. In Proceedings of the 2003 International Con-
ference on Computational Science and its Applications (ICCSA’03),
pages 246–255, May 2003.

[3] B. A. Barsky, D. R. Horn, S. A. Klein, J. A. Pang, and M. Yu. Camera
models and optical systems used in computer graphics: Part ii, image-
based techniques. In Proceedings of the 2003 International Con-
ference on Computational Science and its Applications (ICCSA’03),
pages 256–265, May 2003.

[4] B. A. Barsky, M. J. Tobias, D. Chu, and D. R. Horn. Elimination
of artifacts due to occlusion and discretization problems in image
space blurring techniques. Graphical Models 67(6), pages 584–599,
November 2005.

[5] B. A. Barsky, M. J. Tobias, D. R. Horn, and D. Chu. Investigat-
ing occlusion and discretization problems in image space blurring
techniques. In First International Conference on Vision, Video, and
Graphics, pages 97–102, July 2003.

[6] M. Bertalmio, P. Fort, and D. Sanchez-Crespo. Real-time, accurate
depth of field using anisotropic diffusion and programmable graphics
cards. In Proceedings of the 2nd International Symposium on 3D Data
Processing, Visualization and Transmission 3DPVT 2004, pages 767–
773, 6–9 Sept. 2004.

[7] E. Catmull. An analytic visible surface algorithm for independent
pixel processing. In SIGGRAPH 1984 Conference Proceedings, pages
109–115. ACM Press, 1984.

[8] R. Cook, T. Porter, and L. Carpenter. Distributed ray tracing. In ACM
SIGGRAPH 1984 Conference Proceedings, pages 137–145, 1984.

[9] F. C. Crow. Summed-area tables for texture mapping. In SIGGRAPH
’84: Proceedings of the 11th annual conference on Computer graph-
ics and interactive techniques, pages 207–212, New York, NY, USA,
1984. ACM Press.

[10] J. Demers. Depth of field: A survey of techniques. GPU Gems, pages
375–390, 2004.

[11] P. Fearing. Importance ordering for real-time depth of field. In Pro-
ceedings of the Third International Computer Science Conference on
Image Analysis Applications and Computer Graphics, volume 1024,
pages 372–380. Springer-Verlag Lecture Notes in Computer Science,
1995.

[12] A. Fournier and E. Fiume. Constant-time filtering with space-variant
kernels. In SIGGRAPH ’88: Proceedings of the 15th annual confer-
ence on Computer graphics and interactive techniques, pages 229–
238, New York, NY, USA, 1988. ACM.

[13] M. Frigo and S. G. Johnson. The design and implementation of fftw3.
Proceedings of the IEEE 93 (2) Special Issue on Program Generation,

Optimization, and Platform Adaptation, 93(2):216–231, Feb. 2005.
[14] C. Gotsman. Constant-time filtering by singular value decomposition.

Computer Graphics Forum, pages 153–163, 1994.
[15] P. Haeberli and K. Akeley. The accumulation buffer: hardware support

for high-quality rendering. In SIGGRAPH ’90: Proceedings of the
17th annual conference on Computer graphics and interactive tech-
niques, pages 309–318, New York, NY, USA, 1990. ACM.

[16] P. S. Heckbert. Filtering by repeated integration. In SIGGRAPH ’86:
Proceedings of the 13th annual conference on Computer graphics and
interactive techniques, pages 315–321, New York, NY, USA, 1986.
ACM Press.

[17] J. Hensley, T. Scheuermann, G. Coombe, M. Singh, and A. Lastra.
Fast summed-area table generation and its applications. In Eurograph-
ics 2005, 2005.

[18] T. Huang, G. Yang, and G. Yang. A fast two-dimensional median fil-
tering algorithm. IEEE Transactions on Acoustics, Speech, and Signal
Processing v. 27, pages 13–18, 1979.

[19] M. Kass, A. Lefohn, and J. Owens. Interactive depth of field. Pixar
Technical Memo 06-01, 2006.

[20] C. Kolb, D. Mitchell, and P. Hanrahan. A realistic camera model
for computer graphics. In SIGGRAPH ’95: Proceedings of the 22nd
annual conference on Computer graphics and interactive techniques,
pages 317–324, New York, NY, USA, 1995. ACM.

[21] M. Kraus and M. Strengert. Depth of field rendering by pyramidal
image processing. Computer Graphics Forum 26(3), 2007.

[22] J. Krivanek, J. Zara, and K. Bouatouch. Fast depth of field render-
ing with surface splatting. In Computer Graphics International 2003,
2003.

[23] J. Mulder and R. van Lier. Fast perception-based depth of field render-
ing. In Proceedings of the ACM symposium on Virtual reality software
and technology, pages 129–133, 2000.

[24] S. Perreault and P. Hebert. Median filtering in constant time. IEEE
Transactions on Image Processing 16(9), pages 2389–2394, 2007.

[25] T. Porter and T. Duff. Compositing digital images. In ACM SIG-
GRAPH 1984 Conference Proceedings, pages 253–259, New York,
NY, USA, 1984. ACM.

[26] M. Potmesil and I. Chakravarty. Synthetic image generation with a
lens and aperture camera model. ACM Transactions on Graphics 1(2),
pages 85–108, 1982.

[27] P. Rokita. Generating depth-of-field effects in virtual reality applica-
tions. IEEE Computer Graphics and Applications 16(2), pages 18–21,
1996.

[28] T. Scheuermann and N. Tatarchuk. Advanced depth of field rendering.
In ShaderX3: Advanced Rendering with DirectX and OpenGL, 2004.

[29] C. Scofield. 2 1/2-d depth of field simulation for computer animation.
In Graphics Gems III. Morgan Kaufmann, 1994.

[30] M. Shinya. Post-filtering for depth of field simulation with ray distri-
bution buffer. In Proceedings of Graphics Interface ’94, pages 59–66.
Canadian Information Processing Society, 1994.

[31] T. Zhou, J. X. Chen, and M. Pullen. Accurate depth of field simulation
in real time. Computer Graphics Forum 26(1), pages 15–23, 2007.

46

