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Surface Reconstruction from 3D Point Clouds

Input: Point cloud Output: Surface triangulation
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i Curless—Levoy (1996)

Implicit Surfaces:

Bittar—-Tsingos—Gascuel (1995)
Carr—Beatson—Cherrie—Mitchell-Fright—et al. (2001)
Ohtake—Belyaev—-Alexa-Turk—Seidel (2003)

Delaunay:
Amenta—-Bern—Kamvysselis “Crust” (1998/1999)
Amenta—Choi—Kolluri “Powercrust” (2001)
Amenta—Choi—Dey-Leekha “Cocone” (2002)
Dey—Goswami “Tight Cocone’” (2003)




Noise, Outliers, and Undersampling

{Powercrust
reconstruction of
hand with outliers.

Tight Cocone reconstruction of »
Stanford Bunny with random
noise Iin point coordinates.



Our Approach

Add bounding box
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Our Approach A :Inside /\:Outside




Our Approach Output surface
(Boissonnat 1984) (Always watertight!)
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e Effortless watertightness & outlier removal.

e Many Delaunay algorithms are provably
correct...in the absence of noise, outliers,
undersampling.

Our Goal

e Achieve same results (in practice) as
Cocone algorithm on “clean” point
clouds; better results otherwise.



Why Use Delaunay?

e Because we can make It robust against
noise, outliers, and undersampling.



Central Idea
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Central ldea
Use spectral graph partitioning to

decide which Delaunay tetrahedra are
Inside/outside the object.

And One Little Idea

Use negative edge weights to make
the partitioner robust and fast.



The Partitioner Has a Global View
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Eigencrust reconstruction of undersampled hand.



The Partitioner Has a Global View

and can make better
sense of outliers.







Eigencrust



Some tetrahedra are easy to classify.

surface
_________________________ Obviously
Inside.
Some are ambiguous.
Could be
“»\ labeled inside
“ or outside.




Eigencrust Algorithm

Stage 1.

e [dentify non—ambiguous tetrahedra called “poles”.
e Form a graph whose vertices are the poles.

e Assign edge weights based on geometry.
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Eigencrust Algorithm

Stage 1.

e |dentify non—ambiguous tetrahedra called “poles”.
e Form a graph whose vertices are the poles.

e Assign edge weights based on geometry.

e Partition graph.

P

Stage 2:

e Form a graph whose
vertices are the
ambiguous tetrahedra
(non—poles).

e Form graph, partition. =
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Poles Poles of a sample point are likely
to be on opposite sides of surface.
(Amenta—Bern 1999.)

Original
surface



Poles Poles of a sample point are likely
to be on opposite sides of surface.
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Poles Poles of a sample point are likely
to be on opposite sides of surface.

Connect them
them with a

negative—weight -
edge.




Poles

\ A
Weight of edge Is
B e4+4 COS @



Negative weight edges




Positive weight edges
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Positive If two samples are connected by
Weight  Delaunay edge, hook their poles
Edges together with positive weights.




Positive
Weight Weight is large If the circumscribing
Edges spheres intersect deeply.
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Welight of edge Is
e4—4 COS @




Pole graph
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Graph Partitioning with
(Modified) Normalized Cuts

e Balances two criteria:
o Minimizing sum of weights of cut edges.
o Cutting graph into roughly “equal’ pieces.
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o Cutting graph into roughly “equal’ pieces.

e Pole Matrix L is weighted adjacency matrix
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Graph Partitioning with
(Modified) Normalized Cuts

e Balances two criteria:
o Minimizing sum of weights of cut edges.
o Cutting graph into roughly “equal’ pieces.

e Pole Matrix L is weighted adjacency matrix
of pole graph. Diagonal D of L is the
row sums of absolute off-diagonals.

e Compute eigenvector X of LX = A DX with
smallest eigenvalue (Lanczos iterations). E
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Graph Partitioning with
(Modified) Normalized Cuts

e Balances two criteria:
o Minimizing sum of weights of cut edges.
o Cutting graph into roughly “equal’ pieces.

e Pole Matrix L is weighted adjacency matrix
of pole graph. Diagonal D of L is the
row sums of absolute off-diagonals.

e Compute eigenvector X of LX = A DX with
smallest eigenvalue (Lanczos iterations).

e Each component of X corresponds to
a pole/tetrahedron. Positive = Inside;
negative = outside.



A : Not pole




Results



A Clean Point Cloud

327,323 Iinput points.

654,496 output triangles.
Outside 2.8 minutes triangulation.
9.3 minutes eigenvectors.

Poles (tetrahedra)



A Noisy Point Cloud
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362,272 mput pt-)lnts _
679,360 output triangles.:
1.5 minutes trlangulatlon.
17.5 minutes eigenvectors.
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Stanford Dragon

1,769,513 Input points.
2,599,114 output triangles.
197 minutes.

Poles (tetrahedra)



4010
outliers

1200
outliers

1800
outliers

Artificial
Outlier Test

Eigencrust






Undersampled Goblet

358 ] ,: i I {rlangles.
™ 63 SeCHdS

JOINTS.




Conclusion

e Spectral partitioning Is robust against noise,
outliers, and undersampling.

e Handles raw data of real range finders.

Thanks

e Nina Amenta & Tamal Dey for their
surface reconstruction programs.

e Chen Shen for rendering help.
e Stanford data repository.






