Spectral Surface Reconstruction from Noisy Point Clouds

Ravi Kolluri Jonathan Shewchuk James O'Brien

Computer Science Division University of California Berkeley, California

Surface Reconstruction from 3D Point Clouds

Input: Point cloud

Output: Surface triangulation

Previous Work

Pioneers:

Boissonnat (1984) Hoppe–DeRose–Duchamp–McDonald–Stuetzle (1992) Curless–Levoy (1996)

Implicit Surfaces:

Bittar–Tsingos–Gascuel (1995) Carr–Beatson–Cherrie–Mitchell–Fright–et al. (2001) Ohtake–Belyaev–Alexa–Turk–Seidel (2003)

Delaunay:

Amenta–Bern–Kamvysselis "Crust" (1998/1999) Amenta–Choi–Kolluri "Powercrust" (2001) Amenta–Choi–Dey–Leekha "Cocone" (2002) Dey–Goswami "Tight Cocone" (2003)

Noise, Outliers, and Undersampling

Powercrust reconstruction of hand with outliers.

Tight Cocone reconstruction of ► Stanford Bunny with random noise in point coordinates.

Our Approach

Add bounding box

Our Approach Form Delaunay triangulation

Our Approach \triangle : Inside \triangle : Outside

Our Approach (Boissonnat 1984)

Output surface (Always watertight!)

• Effortless watertightness & outlier removal.

- Effortless watertightness & outlier removal.
- Many Delaunay algorithms are provably correct.

- Effortless watertightness & outlier removal.
- Many Delaunay algorithms are provably correct...in the absence of noise, outliers, undersampling.

- Effortless watertightness & outlier removal.
- Many Delaunay algorithms are provably correct...in the absence of noise, outliers, undersampling.

Our Goal

 Achieve same results (in practice) as Cocone algorithm on "clean" point clouds; better results otherwise.

• Because we can make it robust against noise, outliers, and undersampling.

Central Idea

Use spectral graph partitioning to decide which Delaunay tetrahedra are inside/outside the object.

Central Idea

Use spectral graph partitioning to decide which Delaunay tetrahedra are inside/outside the object.

And One Little Idea

Use negative edge weights to make the partitioner robust and fast.

Inside or outside?

Eigencrust reconstruction of undersampled hand.

and can make better sense of outliers.

Tight Cocone

Eigencrust

Eigencrust

Some tetrahedra are easy to classify.

Obviously inside.

Some are ambiguous.

Could be labeled inside or outside.

Eigencrust Algorithm

Stage 1:

- Identify non-ambiguous tetrahedra called "poles".
- Form a graph whose vertices are the poles.
- Assign edge weights based on geometry.

Eigencrust Algorithm

Stage 1:

- Identify non-ambiguous tetrahedra called "poles".
- Form a graph whose vertices are the poles.
- Assign edge weights based on geometry.
- Partition graph.

Eigencrust Algorithm

Stage 1:

- Identify non-ambiguous tetrahedra called "poles".
- Form a graph whose vertices are the poles.
- Assign edge weights based on geometry.

• Partition graph.

Stage 2:

Form a graph whose vertices are the ambiguous tetrahedra (non-poles).
 Form graph, partition.

Voronoi Diagram

Ö

d m

<u>Ò-Ó</u>

О

0

ര

O

0-9-00-0

0

ŕØ

0<mark>0</mark>

20-0

Õ

5

0

Ø

O

a

Ô

Ó

Poles Poles of a sample point are likely to be on opposite sides of surface. (Amenta–Bern 1999.)

PolesPoles of a sample point are likely
to be on opposite sides of surface.

PolesPoles of a sample point are likely
to be on opposite sides of surface.

 \mathcal{V}

S

Ú

Connect them them with a negative-weight edge.

Weight of edge is $-e^{4+4\cos\phi}$

Negative weight edges

Positive weight edges

Positive Weight Edges

If two samples are connected by Delaunay edge, hook their poles together with positive weights.

Positive Weight Edges

Weight is large if the circumscribing spheres intersect deeply.

Weight of edge is $e^{4-4\cos\phi}$

Pole graph

Supernode

Balances two criteria:

 Minimizing sum of weights of cut edges.
 Cutting graph into roughly "equal" pieces.

Balances two criteria:

Minimizing sum of weights of cut edges.
Cutting graph into roughly "equal" pieces.

Pole Matrix L is weighted adjacency matrix

$$\begin{array}{cccc} a & b & c \\ L = \begin{bmatrix} -5 & 0 \\ -5 & 6 \\ 0 & 6 \end{bmatrix} \begin{array}{c} a \\ b \\ c \end{array}$$

of pole graph.

Balances two criteria:

Minimizing sum of weights of cut edges.
Cutting graph into roughly "equal" pieces.

Pole Matrix *L* is weighted adjacency matrix of pole graph. Diagonal *D* of *L* is the row sums of absolute off-diagonals.

a b c

$$L = \begin{bmatrix} 5 & -5 & 0 \\ -5 & 11 & 6 \\ 0 & 6 & 6 \end{bmatrix} c$$

- Balances two criteria:
 - Minimizing sum of weights of cut edges.
 Cutting graph into roughly "equal" pieces.
- Pole Matrix *L* is weighted adjacency matrix of pole graph. Diagonal *D* of *L* is the row sums of absolute off-diagonals.
- Compute eigenvector x of $Lx = \lambda Dx$ with smallest eigenvalue (Lanczos iterations).

5

-6

$$L = \begin{bmatrix} 5 & -5 & 0 \\ -5 & 11 & 6 \\ 0 & 6 & 6 \end{bmatrix} \qquad x = \begin{bmatrix} 3 \\ 2 \\ -4 \end{bmatrix}$$

• Balances two criteria:

- Minimizing sum of weights of cut edges.
 Cutting graph into roughly "equal" pieces.
- Pole Matrix *L* is weighted adjacency matrix of pole graph. Diagonal *D* of *L* is the row sums of absolute off-diagonals.
- Compute eigenvector x of $Lx = \lambda Dx$ with smallest eigenvalue (Lanczos iterations).

3

 $\widehat{\mathbf{2}}$

 Each component of x corresponds to a pole/tetrahedron. Positive = inside; negative = outside.

End of Stage 1 \triangle : Inside \triangle : Outside

Results

A Clean Point Cloud

Poles (tetrahedra)

327,323 input points.654,496 output triangles.2.8 minutes triangulation.9.3 minutes eigenvectors.

A Noisy Point Cloud

Poles (tetrahedra)

362,272 input points.679,360 output triangles.1.5 minutes triangulation.17.5 minutes eigenvectors.

Stanford Dragon

1,769,513 input points. 2,599,114 output triangles. 197 minutes.

Poles (tetrahedra)

200 outliers

1200

1800

Eigencrust

Artificial Noise Test

Tight Cocone

Powercrust

Undersampled Goblet

Conclusion

 Spectral partitioning is robust against noise, outliers, and undersampling.

• Handles raw data of real range finders.

Thanks

- Nina Amenta & Tamal Dey for their surface reconstruction programs.
- Chen Shen for rendering help.
- Stanford data repository.

