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This way please.



Surface Reconstruction from 3D Point Clouds

Input:  Point cloud Output:  Surface triangulation



Previous Work

Delaunay:

Pioneers:
Boissonnat (1984)

Hoppe−DeRose−Duchamp−McDonald−Stuetzle (1992)

Ohtake−Belyaev−Alexa−Turk−Seidel (2003)
Carr−Beatson−Cherrie−Mitchell−Fright−et al. (2001)
Bittar−Tsingos−Gascuel (1995)

Implicit Surfaces:

Amenta−Choi−Dey−Leekha ‘‘Cocone’’ (2002)
Amenta−Choi−Kolluri ‘‘Powercrust’’ (2001)

Dey−Goswami ‘‘Tight Cocone’’ (2003)

Amenta−Bern−Kamvysselis ‘‘Crust’’ (1998/1999)

Curless−Levoy (1996)



Noise, Outliers, and Undersampling

Powercrust

hand with outliers.
reconstruction of

Tight Cocone reconstruction of
Stanford Bunny with random

noise in point coordinates.



Our Approach Add bounding box



Our Approach Form Delaunay triangulation



Our Approach : Inside : Outside



Our Approach
(Boissonnat 1984)

Output surface
(Always watertight!)
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Why Use Delaunay?

Many Delaunay algorithms are provably

undersampling.
correct...in the absence of noise, outliers,

Achieve same results (in practice) as
Cocone algorithm on ‘‘clean’’ point
clouds; better results otherwise.

Effortless watertightness & outlier removal.

Our Goal



Why Use Delaunay?

Because we can make it robust against
noise, outliers, and undersampling.
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Use
decide which Delaunay tetrahedra are

spectral graph partitioning to

Use negative edge weights
the partitioner robust and fast.

to make

And One Little Idea

inside/outside the object.

Central Idea



The Partitioner Has a Global View

Inside or outside?



The Partitioner Has a Global View

Eigencrust reconstruction of undersampled hand.



The Partitioner Has a Global View

Eigencrust

Powercrust

and can make better
sense of outliers.



Tight Cocone

Eigencrust

The Partitioner Has a Global View



Eigencrust



Some tetrahedra are easy to classify.

Some are ambiguous.

or outside.
labeled inside

Obviously
inside.

Could be

surface



Identify non−ambiguous tetrahedra called ‘‘poles’’.
Form a graph whose vertices are the poles.
Assign edge weights based on geometry.

Stage 1:

Eigencrust Algorithm
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Partition graph.



Identify non−ambiguous tetrahedra called ‘‘poles’’.
Form a graph whose vertices are the poles.
Assign edge weights based on geometry.

Stage 1:

Stage 2:

Eigencrust Algorithm

vertices are the

(non−poles).
ambiguous tetrahedra

Form a graph whose

Form graph, partition.

Partition graph.



Voronoi Diagram



Voronoi Cell



Original
surface

Poles

s
Voronoi cell
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to be on opposite sides of surface.
Poles of a sample point are likely

(Amenta−Bern 1999.)
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Poles

s

v

u

to be on opposite sides of surface.
Poles of a sample point are likely

Connect them
them with a
negative−weight
edge.



4+4 cose φ
Weight of edge is

Poles
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Negative weight edges



Positive weight edges



Positive
Weight
Edges

If two samples are connected by
Delaunay edge, hook their poles
together with positive weights.

v u



e φ4−4 cos

Positive
Weight
Edges

uv

v u

φ

Weight of edge is

Weight is large if the circumscribing
spheres intersect deeply.



Pole graph



Supernode



Balances two criteria:
Minimizing sum of weights of cut edges.
Cutting graph into roughly ‘‘equal’’ pieces.

(Modified) Normalized Cuts
Graph Partitioning with



Balances two criteria:
Minimizing sum of weights of cut edges.
Cutting graph into roughly ‘‘equal’’ pieces.

Pole Matrix is weighted adjacency matrixL

(Modified) Normalized Cuts
Graph Partitioning with

−6

5
cb

c

a
b

a

b

c

a
0−5

6
6L =

0
−5

of pole graph.



Balances two criteria:
Minimizing sum of weights of cut edges.
Cutting graph into roughly ‘‘equal’’ pieces.

Pole Matrix is weighted adjacency matrixL
of pole graph.  Diagonal D of

(Modified) Normalized Cuts
Graph Partitioning with

L is the
row sums of absolute off−diagonals.
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5

0
−5L =

Balances two criteria:
Minimizing sum of weights of cut edges.
Cutting graph into roughly ‘‘equal’’ pieces.

Pole Matrix is weighted adjacency matrixL
of pole graph.  Diagonal D of

Compute eigenvector

(Modified) Normalized Cuts
Graph Partitioning with

L is the
row sums of absolute off−diagonals.

x of Lx =λ Dx with
smallest eigenvalue (Lanczos iterations).
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Balances two criteria:
Minimizing sum of weights of cut edges.
Cutting graph into roughly ‘‘equal’’ pieces.

Pole Matrix is weighted adjacency matrixL
of pole graph.  Diagonal D of

Compute eigenvector

Each component of x

negative = outside.

(Modified) Normalized Cuts
Graph Partitioning with

L is the
row sums of absolute off−diagonals.

x of Lx =λ Dx

corresponds to
a pole/tetrahedron.  Positive = inside;

with
smallest eigenvalue (Lanczos iterations).
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: Not pole

: Inside : OutsideEnd of Stage 1



Results



Outside

+

−
327,323 input points.
654,496 output triangles.
2.8 minutes triangulation.
9.3 minutes eigenvectors.

Poles (tetrahedra)

Inside

A Clean Point Cloud



362,272 input points.
679,360 output triangles.

17.5  minutes eigenvectors.
1.5 minutes triangulation.

+

−

Poles (tetrahedra)

Inside

Outside

A Noisy Point Cloud



+

−

Poles (tetrahedra)

1,769,513 input points.
2,599,114 output triangles.
197 minutes.

Outside

Inside

Stanford Dragon



outliers

200
outliers

1800

Tight CoconePowercrust

Eigencrust
Outlier Test

Artificial

outliers
1200



Artificial Noise Test

Powercrust

Tight Cocone

Eigencrust



Undersampled Goblet

+

− 2,714 input points.
36,538 output triangles.
1.63 seconds.

Inside

Outside



Thanks

Chen Shen for rendering help.
Stanford data repository.

Nina Amenta & Tamal Dey for their
surface reconstruction programs.

Spectral partitioning is robust against noise,
outliers, and undersampling.
Handles raw data of real range finders.

Conclusion



This way please.


