Spectral Surface Reconstructlon

from Noisy
Point Clouds

Ravi Kolluri
Jonathan Shewchuk
James O’Brien

Computer Science Division
University of California
Berkeley, California

Surface Reconstruction from 3D Point Clouds

Input: Point cloud Output: Surface triangulation

Previous Work

Pioneers:
Boissonnat (1984)

Hoppe—-DeRose-Duchamp—-McDonald—-Stuetzle (1992)
i Curless—Levoy (1996)

Implicit Surfaces:

Bittar—-Tsingos—Gascuel (1995)
Carr—Beatson—Cherrie—Mitchell-Fright—et al. (2001)
Ohtake—Belyaev—-Alexa-Turk—Seidel (2003)

Delaunay:
Amenta—-Bern—Kamvysselis “Crust” (1998/1999)
Amenta—Choi—Kolluri “Powercrust” (2001)
Amenta—Choi—Dey-Leekha “Cocone” (2002)
Dey—Goswami “Tight Cocone’” (2003)

Noise, Outliers, and Undersampling

{Powercrust
reconstruction of
hand with outliers.

Tight Cocone reconstruction of »
Stanford Bunny with random
noise Iin point coordinates.

Our Approach

Add bounding box

elau a ation

=
[

\

Our Approach A :Inside /\:Outside

Our Approach Output surface
(Boissonnat 1984) (Always watertight!)

Why Use Delaunay?

Why Use Delaunay?

e Effortless watertightness & outlier removal.

Why Use Delaunay?

e Effortless watertightness & outlier removal.

e Many Delaunay algorithms are provably
correct.

Why Use Delaunay?

e Effortless watertightness & outlier removal.

e Many Delaunay algorithms are provably
correct...in the absence of noise, outliers,
undersampling.

Why Use Delaunay?

e Effortless watertightness & outlier removal.

e Many Delaunay algorithms are provably
correct...in the absence of noise, outliers,
undersampling.

Our Goal

e Achieve same results (in practice) as
Cocone algorithm on “clean” point
clouds; better results otherwise.

Why Use Delaunay?

e Because we can make It robust against
noise, outliers, and undersampling.

Central Idea

Use spectral graph partitioning to
decide which Delaunay tetrahedra are
Inside/outside the object.

Central ldea
Use spectral graph partitioning to

decide which Delaunay tetrahedra are
Inside/outside the object.

And One Little Idea

Use negative edge weights to make
the partitioner robust and fast.

The Partitioner Has a Global View

S

&N\,
i

N N Y M

Inside or outside?

lew

Has a Global V

laoner

The Part

Eigencrust reconstruction of undersampled hand.

The Partitioner Has a Global View

and can make better
sense of outliers.

Eigencrust

Some tetrahedra are easy to classify.

surface
_________________________ Obviously
Inside.
Some are ambiguous.
Could be
“»\ labeled inside
“ or outside.

Eigencrust Algorithm

Stage 1.

e [dentify non—ambiguous tetrahedra called “poles”.
e Form a graph whose vertices are the poles.

e Assign edge weights based on geometry.

Eigencrust Algorithm

Stage 1.
e [dentify non—ambiguous tetrahedra called “poles”.
e Form a graph whose vertices are the poles.
e Assign edge weights based on geometry.

e Partition graph.

Eigencrust Algorithm

Stage 1.

e |dentify non—ambiguous tetrahedra called “poles”.
e Form a graph whose vertices are the poles.

e Assign edge weights based on geometry.

e Partition graph.

P

Stage 2:

e Form a graph whose
vertices are the
ambiguous tetrahedra
(non—poles).

e Form graph, partition. =

yasvinaim)

T/ ////Je\\\\\ \\ / // \g;//
\O(\/ / \ / // h / 4
\ \ﬁ A \/
Y, / /

vopocel /|

Poles Poles of a sample point are likely
to be on opposite sides of surface.
(Amenta—Bern 1999.)

Original
surface

Poles Poles of a sample point are likely
to be on opposite sides of surface.

¢

P N

-y

\4\/‘
als

/

Original
surface

Poles Poles of a sample point are likely
to be on opposite sides of surface.

Connect them
them with a

negative—weight -
edge.

Poles

\ A
Weight of edge Is
B e4+4 COS @

Negative weight edges

Positive weight edges

®
o
[.%. ——0—g
®
® ® ® ..
® 0@ o— @
— ® ®
® @
® (]
)
g
o ? ®
[) \
° 9 P !
/.\
®

Positive If two samples are connected by
Weight Delaunay edge, hook their poles
Edges together with positive weights.

Positive
Weight Weight is large If the circumscribing
Edges spheres intersect deeply.

O
L

Welight of edge Is
e4—4 COS @

Pole graph

® (J
o [.%. o——©0 o
[) . o
"\ ®
o ® o2
[) [) (2 ® ¢
® —~ ® ®
o
o=@
® (S,
®
— o
o ® » ¥ .‘ @
o ® o
() [)
®
/.\
®

Graph Partitioning with
(Modified) Normalized Cuts

e Balances two criteria:
o Minimizing sum of weights of cut edges.
o Cutting graph into roughly “equal’ pieces.

Graph Partitioning with
(Modified) Normalized Cuts

e Balances two criteria:
o Minimizing sum of weights of cut edges.
o Cutting graph into roughly “equal’ pieces.

e Pole Matrix L is weighted adjacency matrix
of pole graph.

a
5
a b c b
i -5 0| a -6
L =|-5 6| b C
0 6 1 C

Graph Partitioning with
(Modified) Normalized Cuts

e Balances two criteria:
o Minimizing sum of weights of cut edges.
o Cutting graph into roughly “equal’ pieces.

e Pole Matrix L is weighted adjacency matrix
of pole graph. Diagonal D of L is the
row sums of absolute off-diagonals.

a

5

a b c b

5 -5 0] a -6

L=|-5 11 6| b C
0 6 61cC

Graph Partitioning with
(Modified) Normalized Cuts

e Balances two criteria:
o Minimizing sum of weights of cut edges.
o Cutting graph into roughly “equal’ pieces.

e Pole Matrix L is weighted adjacency matrix
of pole graph. Diagonal D of L is the
row sums of absolute off-diagonals.

e Compute eigenvector X of LX = A DX with
smallest eigenvalue (Lanczos iterations). E

5 -5 0 3 -6
L=|-5 11 6 x=| 2
0 6 6 -4

Graph Partitioning with
(Modified) Normalized Cuts

e Balances two criteria:
o Minimizing sum of weights of cut edges.
o Cutting graph into roughly “equal’ pieces.

e Pole Matrix L is weighted adjacency matrix
of pole graph. Diagonal D of L is the
row sums of absolute off-diagonals.

e Compute eigenvector X of LX = A DX with
smallest eigenvalue (Lanczos iterations).

e Each component of X corresponds to
a pole/tetrahedron. Positive = Inside;
negative = outside.

A : Not pole

Results

A Clean Point Cloud

327,323 Iinput points.

654,496 output triangles.
Outside 2.8 minutes triangulation.
9.3 minutes eigenvectors.

Poles (tetrahedra)

A Noisy Point Cloud

i"' -
.-\.:‘ =
-

g

i L
'_’1‘:“-"4ﬁ.:"l
- - -l.‘ g
o LY
A
[} - --"'-
et ¥
A e =i
5 A e " g gl .
W g ——y T e -
o0 Lt O3 S
i 2L g
- -z : #‘ .- _._;.."'
g 23~ T FA e
S P R 7T A
- = Lt L=y -| '_;q 4 = a =
s u ol - M i , B
e B - Ay
: T W o
: N APt (R
| A rr:f".s,r,' = 3 ey A
i > - ' - - e e,
i, yi S] o Ty
\ AR SRS ST
ik e — e LTS " =y
‘E" - b ;?T_:-- - r“l‘ E i --,_.‘:
e TN R S
Iz L IR P A TR
‘:lnl'_: e T . i
e TS SRyt Syl TRl e
1#-_ e -."'—."‘, Ty .
: *._, .
L Tk

362,272 mput pt-)lnts _
679,360 output triangles.:
1.5 minutes trlangulatlon.
17.5 minutes eigenvectors.

- Te—

Stanford Dragon

1,769,513 Input points.
2,599,114 output triangles.
197 minutes.

Poles (tetrahedra)

4010
outliers

1200
outliers

1800
outliers

Artificial
Outlier Test

Eigencrust

Undersampled Goblet

358] ,: i I {rlangles.
™ 63 SeCHdS

JOINTS.

Conclusion

e Spectral partitioning Is robust against noise,
outliers, and undersampling.

e Handles raw data of real range finders.

Thanks

e Nina Amenta & Tamal Dey for their
surface reconstruction programs.

e Chen Shen for rendering help.
e Stanford data repository.

