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Abstract
We analyze a moving least squares algorithm for reconstructing a
surface from point cloud data. Our algorithm defines an implicit
function I whose zero set U is the reconstructed surface. We prove
that I is a good approximation to the signed distance function
of the sampled surface F and that U is geometrically close to
and homeomorphic to F . Our proof requires sampling conditions
similar to ε-sampling, used in Delaunay reconstruction algorithms.

1 Introduction

Point sets have become a popular shape representation as
current scanning devices generate dense point sets capable
of modeling highly detailed surfaces. These point-based
representations have several advantages in modeling and
simulation, as mesh topology need not be maintained during
surface deformations. However, a continuous definition of
the surface represented by the points is needed for some
applications such as rendering and resampling. Surface
reconstruction algorithms are used to recover these smooth
surfaces from point clouds.

The input to our surface reconstruction algorithm is a set S
of sample points close to the surface F of a 3D object. Each
sample point has an approximate surface normal. The output
is an approximation of F . The approximation is represented
either implicitly as the zero surface of a scalar function or as
a surface triangulation.

Our surface reconstruction algorithm is based on a data
interpolation technique called moving least squares (MLS).
For each sample s ∈ S we define a globally smooth point
function that approximates the signed distance from F in the
local neighborhood of s. These functions are then blended
together using Gaussian weight functions, yielding a smooth
implicit function whose zero set is the reconstructed surface.

Our MLS construction is not new; it was originally
proposed by Shen, O’Brien, and Shewchuk [25] for building
manifold surfaces from polygon soup. The main contri-
bution of this paper is to introduce theoretical guarantees
for MLS algorithms. We prove that the implicit function
generated by our algorithm is a good approximation of the
signed distance function of the original surface. We also
show that the reconstructed surface is geometrically and
topologically correct.

The crust algorithm of Amenta and Bern [3] was the first
surface reconstruction algorithm that guaranteed a correct
reconstruction for sufficiently dense sample sets. The crust
is defined as a subset of the faces in the Delaunay complex of
the sample points. The sampling requirements are defined in
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terms of local feature size, which is the distance from a point
on the surface to its closest point on the medial axis. Our
sampling conditions, defined in Section 3, are also based on
the local feature size.

Unlike Delaunay-based algorithms, the MLS surface built
by our algorithm might not interpolate the sample points.
This allows us to reconstruct smooth surfaces from noisy
point clouds. Our algorithm can handle noisy data as long
as the amount of noise is small compared to the local feature
size of the sample points.

2 Related Work

There has been much work on surface reconstruction from
points clouds. A widely used technique defines the re-
constructed surface as the zero set of a three-dimensional
scalar function built from the input points. Hoppe, DeRose,
Duchamp, McDonald, and Stuetzle [16] provide one of
the earliest algorithms, which locally estimates the signed
distance function induced by the “true” surface being sam-
pled. Curless and Levoy [13] developed an algorithm that is
particularly effective for laser range data comprising billions
of point samples, like the statue of David reconstructed by
the Digital Michelangelo Project [18].

Smooth surfaces can also be built by fitting globally
supported basis functions to a point cloud. Turk and
O’Brien [26] show that a global smooth approximation can
be obtained by fitting radial basis functions. Carr et al. [12]
adapt this radial basis function-fitting algorithm to large data
sets using multipole expansions.

Instead of computing a single global approximation, mov-
ing least squares algorithms locally fit smooth functions to
each sample point and blend them together. Ohtake, Belyaev,
Alexa, Turk, and Seidel [22] use a partition-of-unity method
with a fast hierarchical evaluation scheme to compute sur-
faces from large data sets. Our MLS construction is based
on the algorithm given by Shen, O’Brien, and Shewchuk [25]
that introduced the idea of associating functions, rather than
just values, with each point to ensure that the gradient of the
implicit function matches the gradient of the signed distance
function near the sample points.

A different approach to moving least squares is the non-
linear projection method originally proposed by Levin [17].
A point-set surface is defined as the set of stationary points
of a projection operator. This surface definition was first
used by Alexa et al. [2] for point based modeling and
rendering. Since then the surface definition has been used for
progressive point-set surfaces [15] and in PointShop3D [24],
a point based modeling tool. Amenta and Kil [6] give an



Figure 1: Left, a set of points with outside normals. Center, the implicit function built by our algorithm from the points. Right,
the reconstructed curve which is the zero set of the implicit function.

explicit definition of point set surfaces as the local minima
of an energy function along the directions given by a vector
field. Adamson and Alexa [1] provide a simplified implicit
surface definition for efficient ray tracing and define sam-
pling conditions that guarantee a manifold reconstruction.
However, current definitions of point-set surfaces come with
no guarantees on the correctness of the reconstructed surface.

Following the crust algorithm of Amenta and Bern [3],
there have been many Delaunay-based algorithms for surface
reconstruction with provable guarantees. Amenta, Choi,
Dey, and Leekha [4] present the cocone algorithm, which is
much simpler than the crust and prove that the reconstructed
surface is homeomorphic to the original surface. The
powercrust algorithm of Amenta, Choi, and Kolluri [5] uses
weighted Delaunay triangulations to avoid the manifold ex-
traction step of the crust and cocone algorithms. Boissonnat
and Cazals [8] build a smooth surface by blending together
functions associated with each sample point, using natural
neighbor coordinates derived from the Voronoi diagram of
the sample points. The robust cocone algorithm of Dey and
Goswami [14] guarantees a correct reconstruction for noisy
point data. Even when the input points are noisy, surfaces
reconstructed by Delaunay algorithms interpolate (a subset
of) the sample points. As a result, the reconstructed surface
is not smooth and a mesh smoothing step is often necessary.

Smooth meshes that approximate F can by built by
contouring the zero set of the implicit function defined by
our algorithm. The marching cubes [19] algorithm is widely
used for contouring level sets of implicit functions. There
has been some recent work on contouring algorithms with
theoretical guarantees. Boissonnat and Oudot [11] give a
Delaunay-based contouring algorithm that guarantees good
quality triangles in the reconstructed surface. Boissonnat,
Cohen-Steiner and Vegter [10] present a contouring algo-
rithm with guarantees on the topology of the reconstructed
triangulation.

Signed distance functions of surfaces are useful in their
own right. Level set methods that have been used in surface
reconstruction [27], physical modeling of fluids, and in many
other areas rely on signed distance functions to implicitly

Figure 2: A closed curve along with its medial axis. The
local feature size of p is the distance to the closest point x on
the medial axis.

maintain moving surfaces. See the book by Osher and
Fedkiw [23] for an introduction to level set methods. Mitra
et al. [20] use approximation of signed distance functions
to align overlapping surfaces. The implicit function con-
structed by our algorithm can be used as an approximation
to the signed distance function.

3 Sampling Requirements

The local feature size (lfs) at a point p ∈ F is defined as the
distance from p to the nearest point of the medial axis of F .
A point set S is an ε-sample if the distance from any point
p ∈ F to its closest sample in S is less than εlfs(p). Amenta
and Bern [3] prove that a good approximation to F can be
obtained from the Delaunay triangulation of an ε-sample S.

Our results on the correctness of the reconstructed surface
require uniform ε-sampling. Assume that the data set has
been scaled such that the lfs of any point on F is at least 1.
A point set S is a uniform ε-sample of F if the distance from
each point p ∈ F to its closest sample is less than ε. The
amount of noise in the samples should be small compared
to the sampling density. For each sample s, the distance to
its closest surface point p should be less than ε2 as shown in
Figure 2. Moreover, the angle between the normal ~nr of a
sample r and the normal ~nq, of the closest surface point to r,
should be than ε.



Arbitrary oversampling in one region of the surface can
distort the value of the implicit function in other parts of the
surface. As this rarely happens in practice, we assume that
local changes in the sampling density are bounded. Let αp

be the number of samples inside a ball of radius ε centered
at a point p. We assume that for each point p, if αp > 0,
the number of samples inside a ball at radius 2ε at p is at
most 8α. We will use two parameters to state our geometric
results. The value of ε depends on the sampling density and
we define a second parameter, τ = 2ε. The results in this
paper hold true for values of ε ≤ 0.01.

4 Surface Definition

Given a set of sample points S near a smooth, closed surface
F , our algorithm builds an implicit function I whose zero
surface U approximates F . We assume that the outside
surface normal ~ni is approximately known for each sample
point si ∈ S as shown in Figure 1. In practice, the normal
of si is obtained by local least squares fitting of a plane to
the samples in the neighborhood around si. Mitra, Nguyen
and Guibas [21] analyze the least squares method for normal
estimation and present an algorithm for choosing an optimal
neighborhood around each sample point.

Our algorithm begins by constructing a point function for
each sample point in S. The point function Psi

for sample
point si is defined as the signed distance function from x to
the tangent plane at si, Psi

(x) = (x − si) · ~ni.

The implicit function I is a weighted average of the point
functions.

I(x) =

∑

si∈S Wi(x)((x − si) · ~ni)
∑

sj∈S Wj(x)
.

We use Gaussian functions, Wi(x) = e−‖x−si‖2/ε2/Ai in
computing the weighted average of the point functions. Here
Ai is the number of samples inside a ball of radius ε centered
at si, including si itself.

5 Geometric Properties

Amenta and Bern [3] prove the following Lipschitz condition
on the surface normal with respect to the local feature size.
As we assume that for each point p ∈ F , lfs(p) ≥ 1, we can
state the Lipschitz condition in terms of the distance between
two points.

Theorem 1. For points p, q on the surface F with d(p, q) ≤
r, for any r < 1/3, the angle between the normals at p and
q is at most r/(1 − 3r) radians.

Consider the surface inside a small ball B centered at a
point p ∈ F . As shown in Figure 3, the surface inside B has
to be outside the medial balls at p. As a result, the surface
inside B lies between two planes close to the tangent plane
of p.
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Figure 3: The surface inside a ball B of radius r has to be
outside the medial balls Bi and Bo. As a result, all samples
in B are between two planes P1 and P2 that are at a distance
of O(r2 + ε2) from p.

Observation 2. For a point p ∈ F , let B be a ball of radius
r < 0.1 centered at p. The samples inside B lie between two
planes P1, P2 parallel to the tangent plane at p. The distance

from p to P1, P2 is less than (r+ε2)2

2 + ε2.

Let Fout be the outside τ -offset surface of F that is
obtained by moving each point x on F along the normal at
x by a distance τ . Similarly, let Fin be the inside τ -offset
surface of F . The τ -neighborhood is the region bounded
by the inside and the outside offset surfaces. For any point x
inside the τ -neighborhood, |φ(x)| < τ , where φ is the signed
distance function of F .

The main result in this section is that the zero set U is
geometrically close to F . We show this by proving that U is
inside the τ -neighborhood of F (Theorem 9). We then show
that the reconstructed surface is a manifold by proving that
the gradient of I is non-zero at each point in the zero set of
I(Theorem 18).

Consider a point x shown in Figure 4, whose closest point
on the surface is p. The vector ~xp is parallel to the surface
normal of p and ‖ ~xp‖ = |φ(x)|. Let B1(x), B2(x) be two
balls centered at point x. The radius of B1(x) is |φ(x)| and
B2(x) is a slightly larger ball whose radius is |φ(x)|+ τ + ε.

Let N(x) be the weighted combination of the point func-
tions at x, N(x) =

∑

si∈S Wi(x)Psi
(x) and let D(x) be the

sum of all weight functions at x, D(x) =
∑

si∈S Wi(x)

Our geometric results are based on the observation that
samples outside B2(x) have little effect on the value of the
implicit function at x. To see this, we first separate the contri-
butions of samples inside B2(x) and samples outside B2(x).
Let Nin(x) =

∑

si∈B2(x) Wi(x)Psi
(x) and Nout(x) =

∑

si 6∈B2(x) Wi(x)Psi
(x) be the contributions to N(x) by

samples inside and outside B2(x). Similarly, let Din(x) =
∑

si∈B2(x) Wi(x) and Dout(x) =
∑

si 6∈B2(x) Wi(x) be the
contributions to D(x) by samples inside and outside B2(x).

Consider the space outside B2(x) divided into spherical
shells of width ε as shown in Figure 4. Let Hw be the
region between balls of radius w and w + ε. We bound the
contributions of all samples outside B2(x) by summing over
the contributions of all samples in each shell.
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Figure 4: For a point x, p is the closest point to x on the
surface. The space outside the ball B2(x) is divided into
spherical shells of width ε. Hw is the shell bounded by
spheres of radius w and w + ε.

We begin by proving an upper bound on the number of
samples inside each shell normalized by their oversampling
factors.

Lemma 3. For a ball Bε of radius ε
2 ,

∑

si∈Bε

1
Ai

≤ 1.

Proof. If Bε is empty we are done; assume that Bε contains
α > 0 samples. Let si be a sample inside Bε. As all samples
inside Bε are inside a ball of radius ε centered at si, Ai ≥ α.
Hence the contribution of all samples inside Bε is given by
∑

si∈Bε

1
Ai

≤ α 1
α ≤ 1.

Lemma 4. For samples si in spherical shell Hw centered at
point x,

∑

si∈Hw

1

Ai
<

200

ε2
(w2 + wε + ε2).

Proof. Let C be the smallest number of spheres of radius ε
2

that cover Hw. Consider a covering of Hw with axis-parallel
cubes of size ε√

3
. Any cube that intersects Hw is inside a

slightly larger shell bounded by spheres of radius w+2ε and
w−ε centered at x. So the number of cubes that cover Hw is
less than 36

√
3πε(w2+wε+ε2)

ε3 . Any cube in this grid is covered
by a sphere of radius ε

2 . Applying Lemma 3 to each sphere,
∑

si∈Hw

1
Ai

≤ C ≤ 36
√

3πε(w2+wε+ε2)
ε3 < 200

ε2 (w2 + wε +

ε2).

5.1 Offset Regions. In this section we obtain bounds on
the difference between I(x) and the signed distance function
φ(x) for points x outside the τ -neighborhood and use these
bounds to show that the implicit function is non-zero outside
the τ -neighborhood.

We begin with a result about the point functions of sam-
ples inside B2(x). We prove that for any sample s ∈ B2(x),
Ps(x) is close to φ(x). In order to state this result for points
in the inside and outside offset regions, it is convenient to
define µ(x) = φ(x)

|φ(x)| to be the sign function of F . For x

outside Fout, µ(x) = 1 and for x inside Fin, µ(x) = −1.

Lemma 5. Let x be a point outside the τ -neighborhood. Let
Ps(x) be the point function of sample s ∈ B2(x), evaluated
at x. Then,

µ(x)Ps(x) ≤ µ(x)φ(x) + 3ε,

and,
µ(x)Ps(x) ≥ µ(x)φ(x)(1− 6ε) − 12ε2.

Proof. Let p be the closest point to x on the surface. Then,
d(x, p) = µ(x)φ(x). Recall that τ = 2ε. As s ∈ B2(x),

µ(x)Ps(x) ≤ d(x, s)

≤ d(x, p) + τ + ε

< µ(x)φ(x) + 3ε.

Let p′ be the closest point to s on the surface F as shown
in Figure 5. Let Bm be the medial ball touching p′ on the
side of F opposite x and let l be the radius of Bm. Let θ
be the angle between xp′ and the normal at p′. The distance
between x and the center of Bm is given by,

d2(x, q) = (d(x, p′) cos θ + l)2 + d2(x, p′) sin2 θ.

The medial ball Bm cannot intersect B1(x) which is con-
tained in a medial ball on the opposite side of the surface.
Hence the sum of their radii should be less than the distance
between their centers.

(l + d(x, p))2 ≤ (d(x, p′) cos θ + l)2

+ d2(x, p′) sin2 θ.

cos θ ≥ 2ld(x, p) − (d2(x, p′) − d2(x, p))

2ld(x, p′)
.

From the sampling conditions, d(x, s) ≥ d(x, p′) − ε2 and
the angle between the normal at s and the surface normal at
p′ is less than ε. As d(x, p′) ≥ τ , the angle between xs and
xp′ is less than arcsin( ε2

τ ) < 2ε2

τ . So the angle between xs

and the normal at s is at most θ + 2ε2

τ + ε. Using standard

trigonometric formulae, it is easy to show that, cos(θ+ 2ε2

τ +

ε) ≥ cos θ − 2ε2

τ − ε.

µ(x)Ps(x) ≥ d(x, s) cos(θ +
2ε2

τ
+ ε)

≥ (d(x, p′) − ε2) ·
(

2ld(x, p) − (d2(x, p′) − d2(x, p))

2ld(x, p′)

−2ε2

τ
− ε

)

.

From the local feature size assumption, l ≥ 1. Substituting
the value of τ = 2ε we have,

µ(x)Ps(x) ≥ µ(x)φ(x)(1− 6ε) − 12ε2.
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Figure 5: Sample s is inside B2(x) and p′ is the point closest
to s on F . Bm is a medial ball touching p′ on the side of F
opposite x.

Using the result of Lemma 5, it is easy to show that for
each sample s ∈ B2(x), Ps(x) and φ(x) are either both
positive or both negative.

Corollary 6. Let x be a point outside the τ -neighbor-
hood. For a sample s ∈ B2(x), let Ps(x) be the point
function of s evaluated at x. For values of ε ≤ 0.08,
φ(x)Ps(x) > 0.

Proof. For a point x outside Fout, φ(x) ≥ τ ≥ 2ε. Applying
the lower bound on PS(x) from Lemma 5, we can write

φ(x)Ps(x) ≥ 2ε(2ε(1 − 6ε) − 12ε2).

It is now easy to check that for ε ≤ 0.08, 2ε(1 − 6ε) −
12ε2 > 0. A similar argument proves the result for points
inside Fin.

We now prove two results showing that the points outside
B2(x) have little effect on the value of I(x). In Lemma 7 we
prove that Dout(x) � Din(x) and in Lemma 8 we prove that
|Nout(x)| � |Nin(x)|. We will use two constants c1 = 0.05
and c2 = 0.01c1 to state our geometric results.

Lemma 7. Let x be a point outside the τ -neighborhood. Let
Dout(x) and Din(x) be the total weights of samples inside
B2(x) and outside B2(x) at x, respectively. Then, Dout(x)

Din(x) <
c1.

Proof. Consider the division of space outside B2(x) into
spherical shells of width ε starting with B2(x) whose radius
is w0 = |φ(x)| + τ + ε, as shown in Figure 4. The value
of the Gaussian function associated with each sample inside
shell Hw at x is at most e−w2/ε2 . Using the bound on the
weight of samples in Hw from Lemma 4,

Dout(x) ≤ 200

ε2

∞
∑

i=0

(w2
i + εwi + ε2)e−w2

i /ε2

≤ 200

ε2

∞
∑

i=0

(w2
i + εwi + ε2)e−(w0wi)/ε2 . (1)

Here wi=w0+iε is the radius of the smaller sphere bounding
the ith shell. The dominant term in Equation 1 is a
geometric series with a common ratio e−w0/ε < 0.01. The
summation has a closed form solution easily obtained using
Mathematica. An upper bound is given by

Dout(x) ≤ 400

ε2
(w2

0 + εw0 + ε2)e−w2

0
/ε2 .

We now obtain a lower bound on the contribution of samples
inside B2(x). Let Bε be a ball of radius ε centered at p. From
the sampling conditions, we know that Bε contains α ≥ 1
samples. In our sampling requirements, we also assumed
that the rate of change in sampling density is bounded. Since
a ball of radius ε centered at p contains α ≥ 1 samples, a ball
of radius 2ε centered at p contains at most 8α samples. So
the normalizing factor associated with si ∈ Bε, 1

Ai
≥ 1

8α .
We now have a lower bound on the weight of samples inside
Bε:

Din(x) ≥
∑

si∈Bε

1

Ai
e−(|φ(x)|+ε)2/ε2

≥ α

8α
e−(|φ(x)|+ε)2/ε2

=
1

8
e−(|φ(x)|+ε)2/ε2 . (2)

An upper bound on the ratio of the inside and the outside
weights is given by,

Dout(x)

Din(x)
≤ 3200

ε2
(w2

0 + εw0 + ε2)e−(w2

0
−(|φ(x)|+ε)2)/ε2 (3)

=
3200

ε2
(w2

0 + εw0 + ε2)e−τ(2|φ(x)|+τ+2ε)/ε2 .

For |φ(x)| ≥ τ , Dout(x)
Din(x) is a monotonically decreasing

function of |φ(x)|. The maximum value is obtained for
|φ(x)| = τ and w0 = 2τ + ε = 5ε.

Dout(x)

Din(x)
≤ 3200

ε2
(31ε2)e−16 < c1.

Using the proof technique of Lemma 7 we now prove that
|Nout(x)|
|Nin(x)| is very small.

Lemma 8. Let x be a point outside the τ -neighborhood.
Let Nout(x) and Nin(x) be the contributions of samples
inside B2(x) and outside B2(x) to N(x), respectively. Then,
|Nout|
|Nin| < c1.

Proof. To compute an upper bound for Nout(x), again
consider the space outside B2(x) divided into shells of
radius ε as shown in Figure 4. For w ≥ τ , the value of
we−w2/ε2 decreases as w increases. Hence for a sample

si inside the shell Hw, |Psi
(x)|Wi(x) ≤ we−w2/ε2

Ai
. Let

w0 = |φ(x)|+ τ + ε and wi = w0 + iε. Using the bound on



the weight of samples in Hw from Lemma 4,

|Nout(x)| ≤ 200

ε2

∞
∑

i=0

(w2
i + εwi + ε2)wie

−w2

i /ε2

≤ 200

ε2

∞
∑

i=0

(w2
i + εwi + ε2)wie

−(w0wi)/ε2 .

Like the summation in Equation 1, the above summation has
a closed form solution easily obtained using Mathematica.

|Nout(x)| <
400

ε2
w0(w

2
0 + εw0 + ε2)e−w2

0
/ε2 .

From Corollary 6, the point functions of all samples inside
B2(x) have the same sign at x. Hence a lower bound on the
contribution of the sample points inside B2(x) to |Nin(x)|
is given by summing over the contributions of all samples
inside a ball Bε of radius ε around p.

|Nin(x)| ≥ min
si∈Bε(x)

{|Psi
(x)|}Din(x).

From Theorem 1, the angle between the normal of each
sample si ∈ Bε(x) and the normal of p is at most 2ε.
As x is outside the τ -neighborhood, |Psi

(x)| ≥ τ cos 2ε.
Substituting the lower bound of Din(x) from Equation 2,

|Nin(x)| >
τ

10
e−(|φ(x)|+ε)2/ε2 .

|Nout(x)|
|Nin(x)| ≤ 4000

ε2τ
w0(w

2
0 + εw0 + ε2)e−(w2

0
−(|φ(x)|+ε)2)/ε2

≤ 4000

ε2τ
w0(w

2
0 + εw0 + ε2)e−τ(2|φ(x)|+τ+2ε)/ε2 .

The value of Nout(x)
Nin(x) is smallest for |φ(x)|=τ . Substituting

the value of τ = 2ε,

|Nout(x)|
|Nin(x)| ≤ 4000

2ε3
(135ε3)e−16 < c1.

Lemma 8 proves that I(x) is mostly determined by the
point functions of the samples inside the ball B2(x). We can
derive bounds for I(x) in terms of φ(x) by combining the
results in Lemma 8 and Lemma 5.

µ(x)I(x) ≤ (µ(x)φ(x) + 3ε)(1 + c1). (4)

We can also derive a similar lower bound on I(x).

µ(x)I(x)≥ (µ(x)φ(x)(1 − 6ε) − 12ε2)
1 − c1

1 + c1
. (5)

Equation 4 and Equation 5 show that the implicit function
is close to the signed distance function for points outside the
τ -neighborhood. We now have all the tools required to prove
our main geometric result: the implicit function I(x) is non-
zero outside the τ -neighborhood.
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Figure 6: For x in the τ -neighborhood, the samples inside
balls B1(x) and B2(x) are inside a ball of radius 6ε centered
at p.

Theorem 9. Let ε ≤ 0.08. For each point x outside Fout,
I(x) > 0 and for each point y inside Fin, I(y) < 0.

Proof. This proof is exactly like the proof of Corollary 6. It
is easier to get the result directly from Equation 5. Consider
a point x outside Fout. From Equation 5,

I(x) ≥ (µ(x)φ(x)(1− 6ε) − 12ε2)
1 − c1

1 + c1

≥ (2ε(1 − 6ε) − 12ε2)
1 − c1

1 + c1
.

For ε ≤ 0.08, it is easy to check that 2ε(1−6ε)−12ε2 > 0. A
similar argument proves that the implicit function is negative
at any point inside Fin.

Theorem 9 proves that the implicit function I does not
have any spurious zero crossings far away from the sample
points. We now have an upper bound of τ on the Hausdorff
distance between F and U .

Theorem 10. For a point x ∈ U , let p be the closest point
in F . Then d(x, p) ≤ τ .

Proof. From Theorem 9, the implicit function has a non-
zero value outside the τ -neighborhood. Hence, the point
x is constrained to lie inside the τ -neighborhood of F and
d(x, p) ≤ τ .

Theorem 11. For a point p ∈ F , let x be the closest point
in U . Then, d(x, p) ≤ τ .

Proof. If I(p) = 0 we are done; assume without loss of
generality that I(p) < 0. Let q be the closest point to p on
the outside offset surface Fout. From Theorem 9, I(q) > 0.
As the implicit function I is continuous, there is a point y on
pq at which I(y) = 0 and d(y, p) ≤ τ . Since x is the closest
point to p in U , d(x, p) ≤ d(y, p) ≤ τ .

5.2 The τ -neighborhood. To guarantee that U is a man-
ifold, we have to prove that the gradient of I is non-zero at
each point in U . We know from the results in Section 5.1
that U is inside the τ -neighborhood of F . In this section
we will study the properties of ∇I(x) for points x inside the
τ -neighborhood.



For a point x inside the τ -neighborhood, B2(x) is defined
as a ball of radius

√

(|φ(x)| + ε)2 + 25ε2 centered at x.
With this new definition of B2(x), it is easy to show that the
samples inside B2(x) are contained in a small ball centered
at the point closest to x in F .

Observation 12. Let x be a point that is inside the τ -
neighborhood as shown in Figure 6. Let p be the closest
point to x in F . All samples inside B2(x) are contained in a
ball of radius 6ε centered at p.

Because of the Lipschitz condition on the surface normals
of F , the difference between the point functions of the
samples inside a small ball at a point on the surface is
bounded.

Lemma 13. Consider a point x whose closest point on the
surface F is p. Let ~n be the surface normal at p and let
B be a ball of radius 6ε at p. For each sample si ∈ B,
Psi

(x) = φ(x) + ζi where |ζi| ≤ 56ε2 + 36|φ(x)|ε2.

Proof. Let pi be the closest point to si on the surface. As
d(p, pi) ≤ 6ε + ε2, the angle between the normal at pi and ~n

is less than 6ε+ε2

1−3(6ε+ε2) from Theorem 1. Let ~ni be the normal
associated with si. From the sampling conditions the angle
between the normal of pi and ~ni is at most ε. So the angle
between ~ni and ~n is given by, θ < 6ε+ε2

1−3(6ε+ε2) + ε. We can

now write ~ni = ~n + ~δi, where ‖~δi‖ ≤ θ√
2

.

(x − si) · ~ni = ((x − p) + (p − si)) · ~ni

= (x − p) · ~ni + (p − si) · (~n + ~δi)

= (x − p) · ~n − (x − p) · (~n − ~ni)

+(p − si) · (~n + ~δi).

Because p is the closest point to x on the surface, (x−p)·~n =
φ(x) and (x − p) is parallel to ~n. Since the angle between ~n
and ~ni is less than θ,

|(x − p) · (~n − ~ni)| ≤ |φ(x)|(1 − cos θ) ≤ |φ(x)|θ2

2
.

Since sample si is inside B,

|(p − si) · ~δi| ≤ (6ε)
θ√
2

< 36ε2.

From Observation 2, the distance from each sample inside

B to the tangent plane at p is at most (6ε+ε2)2

2 + ε2 < 20ε2.
Hence (p − si) · ~n < 20ε2. We can now write Psi

(x) =
φ(x) + ζi, where |ζi| ≤ 56ε2 + 36|φ(x)|ε2.

We now show that the value of I(x) is mostly deter-
mined by the points inside B2(x) by proving results similar
to Lemma 7 and Lemma 8 for a point x inside the τ -
neighborhood.

Lemma 14. For a point x in the τ -neighborhood,

Dout(x)

Din(x)
< c2.

Proof. For a point x inside the τ -neighborhood,
w0 =

√

(|φ(x)| + ε)2 + 25ε2. Substituting this into
Equation 3,

Dout(x)

Din(x)
≤ 3200

ε2
(w2

0 + εw0 + ε2)e−25.

Dout(x)
Din(x) has the largest value when φ(x)=τ and wo =√
34ε < 6ε. So

Dout(x)

Din(x)
<

3200

ε2
(43ε2)e−25 < c2.

Lemma 8 is not true for x inside the τ -neighborhood, as
|Nin(x)| might be zero. However, we can prove an upper
bound on Nout(x)

D(x) . The proof of this Lemma is exactly like
the proof of Lemma 14.

Lemma 15. For a point x inside the τ -neighborhood,
|Nout(x)|

D(x) < c2ε.

We begin by splitting the contributions to ∇I(x) in the
following way: ∇I(x) = ∇Iin(x) + ∇Iout(x). Here,

∇Iin(x) =
Din(x)∇Nin(x) − Nin(x)∇Din(x)

D2(x)
, (6)

and

∇Iout(x) =
Dout(x)∇Nin(x)

D2(x)
+

∇Nout(x)

D(x)

−Nout(x)∇Din(x)

D2(x)
− Nin(x)∇Dout(x)

D2(x)

−Nout(x)∇Dout(x)

D2(x)
. (7)

To show that the gradient of I is never zero inside the τ -
neighborhood, we will prove a stronger result. For a point
x in the τ -neighborhood, we show that ∇I(x) · ~n > 0
where ~n is the normal of the point closest to x on the
surface. In Section 6 we will use this result to show that
U is homeomorphic to F .

The norm of the gradient of Gaussian weight functions
decreases exponentially with distance. Using the proof
technique of Lemma 8, we can obtain an upper bound on
‖∇Nout‖ and ‖∇Dout‖. Observation 16 summarizes the
results.

Observation 16. For a point x in the τ -neighborhood.

1.
∥

∥

∥

∇Dout(x)
D(x)

∥

∥

∥
< c2

ε , and

2.
∥

∥

∥

∇Nout(x)
D(x)

∥

∥

∥
< c2.



We now show that points outside B2(x) have little effect
on ∇I(x) by proving an upper bound on ‖∇Iout(x)‖.

Lemma 17. For a point x in the τ -neighborhood,
‖∇Iout(x)‖ < c1.

Proof. We will compute the norm of each term in the
expression for ∇Iout(x) given by Equation 7.

•
∥

∥

∥

Dout(x)∇Nin(x)
D2(x)

∥

∥

∥
.

We can write ∇Nin(x)
D(x) as

∇Nin(x)

D(x)
=

∑

si∈B2(x) Wsi
(x)(ni − 2Psi

(x)

ε2 (x − si))
∑

si
Wsi

(x)
.

Clearly,
∥

∥

∥

∥

∇Nin(x)

D(x)

∥

∥

∥

∥

≤ max
i

{‖ni‖ +
|2Psi

(x)|
ε2

‖(x − si)‖}.

As x is inside the τ -neighborhood and si is inside
B2(x), the point function |Psi

(x)| ≤ ‖(x − si)‖ < 6ε.

So
∥

∥

∥

∇Nin(x)
D(x)

∥

∥

∥
< 73. From Lemma 14, Dout(x)

D(x) < c2.

∥

∥

∥

∥

Dout(x)∇Nin(x)

D2(x)

∥

∥

∥

∥

< 73c2. (8)

•
∥

∥

∥

∇Nout(x)
D(x)

∥

∥

∥

From Observation 16,
∥

∥

∥

∥

∇Nout(x)

D(x)

∥

∥

∥

∥

< c2. (9)

•
∥

∥

∥

Nout(x)∇Din(x)
D2(x)

∥

∥

∥

∇Din(x)
D(x) can be written as

∇Din(x)

D(x)
=

∑

si∈B2(x) Wi(x)(− 2
ε2 (x − si))

∑

si
e−‖x−si‖2/ε2

.

As ‖x − si‖ ≤ 6ε, ‖∇Din(x)
D(x) ‖ ≤ 12

ε . From Lemma 15,
Nout(x)

D(x) < c2ε.

∥

∥

∥

∥

Nout(x)∇Din(x)

D2(x)

∥

∥

∥

∥

< 12c2. (10)

•
∥

∥

∥

Nin(x)∇Dout(x)
D2(x)

∥

∥

∥

For any point x inside the τ -neighborhood, |Nin(x)
D(x) | ≤

max{Psi
(x)|si ∈ B2(x)} ≤ 6ε. From Observation 16,

∥

∥

∥

∇Dout(x)
D(x)

∥

∥

∥
< c2

ε .

∥

∥

∥

∥

Nin(x)∇Dout(x)

D2(x)

∥

∥

∥

∥

< 6c2. (11)

•
∥

∥

∥

Nout(x)∇Dout(x)
D2(x)

∥

∥

∥

From Observation 16,
∥

∥

∥

∇Dout(x)
D(x)

∥

∥

∥
< c2

ε . Combining

this with the bound in Lemma 15,
∥

∥

∥

∥

Nout(x)∇Dout(x)

D2(x)

∥

∥

∥

∥

<
c2

ε
(c2ε) < c2

2. (12)

Adding the norms of each term in the expression for
∇Iout(x) we get

‖∇Iout(x)‖ < 93c2 < c1.

Theorem 18. Let x be a point in the τ -neighborhood of F
and let p be the point on F closest to x. Let ~n be the normal
of p. Then for values of ε ≤ 0.01, ~n · ∇I(x) > 0.

Proof. From Lemma 17,

~n · ∇Iout(x) ≤ ‖∇Iout(x)‖ < c1.

We now consider the expression for ∇Iin(x).

∇Iin(x) =
1

D2(x)

∑

si

∑

sj

Wi(x)Wj(x){~ni

+
2Psi

(x)

ε2
(si − sj)}.

The summation is over all samples si, sj ∈ B2(x). From
Observation 12, all samples in B2(x) are contained inside
a ball of radius 6ε centered at p. So we can bound the
difference between the point functions of samples inside
B2(x) using Lemma 13.

The point function of each sample si ∈ B2(x) can be
written as Psi

(x) = φ(x) + ζi where |ζi| < 56ε2 + 36τε2 <
60ε2. Let Cij(x) = Wi(x)Wj(x).

∇Iin(x) =
1

D2(x)

∑

si

∑

sj

Cij(x)(~ni +
2|φ(x)|

ε2
(si − sj)

+
2ζi

ε2
(si − sj))

=
1

D2(x)

∑

si

∑

sj

Cij(x)(~ni +
2ζi

ε2
(si − sj)).

From the above equation,

~n · ∇Iin(x)≥
∑

si

∑

sj
Cij(x)

D2(x)
min

ij
{~n · (~ni +

2ζi

ε2
(si − sj))}.

As we are summing over over all samples inside B2(x),
∑

i

∑

j Cij(x) = D2
in(x). From Lemma 14, D2

in
(x)

D2(x) ≥
(1 − c1)

2. Note that the samples inside B2(x) are in a ball
of radius 6ε centered at p. Hence we can use Theorem 1 and
Observation 2 to obtain an upper bound on the terms that
appear in the above equation.
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Figure 7: Points r, t are the closest points to p on the offset
surfaces. The line segment rt intersects the zero set U at a
unique point u.

From Theorem 1, the angle between ~n and ~ni is less
than 10ε. Hence ~n · ~ni > cos 10ε. From Observation 2,
the distance from all samples inside B2(x) to the tangent

plane at p is at most (6ε+ε2)2

2 + ε2. Hence ~n · (si − sj) ≤
2( (6ε+ε2)2

2 + ε2) < 40ε2.

~n · ∇I(x)≥ ~n · ∇Iin(x) − ‖∇Iout(x)‖
≥ (1 − c1)

2(cos(10ε) −

max{2ζi

ε2
|~n · (si − sj)|}) − c1

≥ (1 − c1)
2(cos(10ε) − 4800ε2) − c1.

It is easy to verify that ~n · ∇I(x) > 0 for values of ε ≤
0.01.

Theorem 18 also proves that the gradient can never be zero
inside the τ -neighborhood. From Theorem 9, the zero set of
I is inside the τ -neighborhood of F . Hence from the implicit
function theorem [7], zero is a regular value of I and the zero
set U is a compact, two-dimensional manifold.

The normal of the reconstructed surface at a point u ∈ U
is determined by the gradient of the implicit function at u,
~nu = ∇I(u)

‖∇I(u)‖ . Using Theorem 18, we can bound the angle
between ~nu and the normal of the point closest to u in F .

Theorem 19. Let u be a point on the reconstructed surface
U whose closest point on F is p. Let ~nu be the normal of U
at point u and let ~n be the normal of F at point p. An upper
bound on the angle θ between ~nu and ~n is given by,

cos θ ≥ (1 − c1)
2(cos(10ε) − 4800ε2) − c1

1 + 2400ε + c1
.

6 Topological Properties

We now use the results in Section 5 to define a homeomor-
phism between F and U . As F and U are compact, a one-
to-one, onto, and continuous function from U to F defines a
homeomorphism.
Definition: Let Γ : IR3 → F map each point q ∈ IR3 to the
closest point of F .

Theorem 20. The restriction of Γ to U is a homeomorphism
from U to F .

Proof. The discontinuities of Γ are the points on the me-
dial axis of F . As U is constrained to be inside the τ -
neighborhood of F , the restriction of Γ to U is continuous.

Now we show that Γ is one-to-one. Let p be a point on F
and let ~n be the normal at p as shown in Figure 7. Consider
the line segment parallel to ~n from r to t. At each point y ∈
rt, ∇I(y) · ~n > 0 from Theorem 18. So the function I(x)
is monotonically decreasing from r to t and there is a unique
point u on rt where I(u) = 0. Assume there is another point
v ∈ U for which Γ(v) = x. The point v has to be outside the
segment rt and the distance from v to its closest point on F
is greater than τ . This contradicts Theorem 10.

Finally we need to show that Γ is onto. As Γ maps
closed components of U onto closed components of F in
a continuous manner, Γ(U) should consist of a set of closed
connected components. Consider the point p in Figure 7.
Assume that q = Γ(u) is not in the same component of
F as p. Let Bu be the ball of radius τ centered at u
that intersects two components of F , one containing point
p and one containing point q. Boissonnat and Cazals [9]
(Proposition 12) show that any ball whose intersection with
F is not a topological disc contains a point of the medial
axis of F . Since point p is inside the ball Bu that contains
a point of the medial axis, lfs(p) ≤ 2τ . Recall that τ = 2ε
and that our sampling conditions require ε ≤ 0.01. Hence,
lfs(p) ≤ 2τ ≤ 0.04. This violates our assumption that
lfs(p) ≥ 1.

7 Discussion

One disadvantage of our algorithm is that it requires sample
normals. However, approximate sample normals can be
easily obtained for laser range data by triangulating the range
images. Each sample normal can be oriented using the
location of the range scanner. When oriented normals are
unavailable, the absolute distance to the tangent plane at each
sample can be used instead of the signed distance as a point
function to define a new function Iu(x). The zero set of
this function is hard to analyze as its gradient is not smooth
near the sample points. However, the results in this paper
can be easily extended to show that the τ -level set of Iu(x)
consists of two components on each side of the surface, each
homeomorphic to F .

Our sampling requirements are determined by the smallest
local feature size of a point on F . Recall that the width
of the Gaussian functions used in our algorithm depends
on the smallest local feature size. When sampling density
is proportional to the local feature size, the width of the
Gaussian weight functions might be much smaller than the
spacing between sample points in areas of the surface with
large local feature size. As a result, the reconstructed surface
will be noisy and might have the wrong topology. One so-
lution is to make the width of the Gaussian weight functions



proportional to the spacing between sample points. We are
currently working on extending the MLS construction and
our proofs to deal with adaptively sampled surfaces.

The implicit surface we construct in this paper only passes
near the sample points, but we can construct a surface that
interpolates the sample points with weight functions such as

Ws(x) = e−‖x−s‖2

‖x−s‖2 , that are infinite at the sample points. We
can prove that the zero set is restricted to the τ -neighborhood
when this weight function is used, but, we could not prove
results about the gradient approximations.

Acknowledgments

I would like to thank Nina Amenta, James O’Brien and my
advisor Jonathan Shewchuk for helpful comments. I would
also like to thank François Labelle for reading the proofs and
for pointing out an error in an earlier version of the paper.

References
[1] A. ADAMSON AND M. ALEXA, Approximating and Inter-

secting Surfaces from Points, in Proceedings of the Euro-
graphics Symposium on Geometry Processing, Eurographics
Association, 2003, pp. 230–239.

[2] M. ALEXA, J. BEHR, D. COHEN-OR, S. FLEISHMAN,
D. LEVIN, AND C. T. SILVA, Computing and Rendering
Point Set Surfaces, IEEE Transactions on Visualization and
Computer Graphics, 9 (2003), pp. 3–15.

[3] N. AMENTA AND M. BERN, Surface Reconstruction by
Voronoi Filtering, Discrete & Computational Geometry, 22
(1999), pp. 481–504.

[4] N. AMENTA, S. CHOI, T. K. DEY, AND N. LEEKHA, A
Simple Algorithm for Homeomorphic Surface Reconstruction,
International Journal of Computational Geometry and Appli-
cations, 12 (2002), pp. 125–141.

[5] N. AMENTA, S. CHOI, AND R. KOLLURI, The Power Crust,
in Proceedings of the Sixth Symposium on Solid Modeling,
Association for Computing Machinery, 2001, pp. 249–260.

[6] N. AMENTA AND Y. KIL, Defining Point-Set Surfaces, ACM
Transactions on Graphics, 23 (2004), pp. 264–270.

[7] J. BLOOMENTHAL, ed., Introduction to Implicit Surfaces,
Morgan Kaufman, 1997.

[8] J.-D. BOISSONNAT AND F. CAZALS, Smooth Surface Re-
construction via Natural Neighbour Interpolation of Distance
Functions, in Proceedings of the Sixteenth Annual Sympo-
sium on Computational geometry, ACM, 2000, pp. 223–232.

[9] , Natural Neighbor Coordinates of Points on a Sur-
face, Computational Geometry Theory and Applications, 19
(2001), pp. 155–173.

[10] J.-D. BOISSONNAT, D. COHEN-STEINER, AND G. VEG-
TER, Isotopic Implicit Surface Meshing, in Proceedings of
the Thirty-Sixth Annual ACM Symposium on Theory of
Computing, 2004, pp. 301–309.

[11] J. D. BOISSONNAT AND S. OUDOT, Provably Good Surface
Sampling and Approximation, in Proceedings of the Euro-
graphics Symposium on Geometry Processing, Eurographics
Association, 2003, pp. 9–18.

[12] J. C. CARR, R. K. BEATSON, J. B. CHERRIE, T. J.
MITCHELL, W. R. FRIGHT, B. C. MCCALLUM, AND T. R.
EVANS, Reconstruction and Representation of 3D Objects
with Radial Basis Functions, in Computer Graphics (SIG-
GRAPH 2001 Proceedings), Aug. 2001, pp. 67–76.

[13] B. CURLESS AND M. LEVOY, A Volumetric Method for
Building Complex Models from Range Images, in Computer
Graphics (SIGGRAPH ’96 Proceedings), 1996, pp. 303–312.

[14] T. K. DEY AND S. GOSWAMI, Provable Surface Reconstruc-
tion from Noisy Samples, in Proceedings of the Twentieth
Annual Symposium on Computational Geometry, Brooklyn,
New York, June 2004, Association for Computing Machinery.

[15] S. FLEISHMAN, M. ALEXA, D. COHEN-OR, AND C. T.
SILVA, Progressive Point Set Surfaces, ACM Transactions on
Computer Graphics, 22 (2003).

[16] H. HOPPE, T. DEROSE, T. DUCHAMP, J. MCDONALD, AND

W. STUETZLE, Surface Reconstruction from Unorganized
Points, in Computer Graphics (SIGGRAPH ’92 Proceedings),
1992, pp. 71–78.

[17] D. LEVIN, Mesh-Independent Surface Interpolation, in Ge-
ometric Modeling for Scientific Visualization, G. Brunett,
B. Hamann, K. Mueller, and L. Linsen, eds., Springer-Verlag,
2003.

[18] M. LEVOY, K. PULLI, B. CURLESS, S. RUSINKIEWICZ,
D. KOLLER, L. PEREIRA, M. GINZTON, S. ANDERSON,
J. DAVIS, J. GINSBERG, J. SHADE, AND D. FULK, The Dig-
ital Michelangelo Project: 3D Scanning of Large Statues, in
Computer Graphics (SIGGRAPH 2000 Proceedings), 2000,
pp. 131–144.

[19] W. E. LORENSEN AND H. E. CLINE, Marching Cubes: A
High Resolution 3D Surface Construction Algorithm, in Com-
puter Graphics (SIGGRAPH ’87 Proceedings), July 1987,
pp. 163–170.

[20] N. J. MITRA, N. GELFAND, H. POTTMANN, AND

L. GUIBAS, Registration of Point Cloud Data from a Geo-
metric Optimization Perspective, in Symposium on Geometry
Processing, 2004.

[21] N. J. MITRA, A. NGUYEN, AND L. GUIBAS, Estimating
Surface Normals in Noisy Point Cloud Data, International
Journal of Computational Geometry and Applications, 14
(2004), pp. 261–276.

[22] Y. OHTAKE, A. BELYAEV, M. ALEXA, G. TURK, AND H.-
P. SEIDEL, Multi-Level Partition of Unity Implicits, ACM
Transactions on Graphics, 22 (2003), pp. 463–470.

[23] S. OSHER AND R. FEDKIW, The Level Set Method and
Dynamic Implicit Surfaces, Springer-Verlag, New York, 2003.

[24] M. PAULY, R. KEISER, L. P. KOBBELT, AND M. GROSS,
Shape Modeling with Point-Sampled Geometry, ACM Trans.
Graph., 22 (2003), pp. 641–650.

[25] C. SHEN, J. F. O’BRIEN, AND J. R. SHEWCHUK, Interpolat-
ing and Approximating Implicit Surfaces from Polygon Soup,
ACM Transactions on Graphics, 23 (2004), pp. 896–904.

[26] G. TURK AND J. O’BRIEN, Shape Transformation Using
Variational Implicit Functions, in Computer Graphics (SIG-
GRAPH ’99 Proceedings), 1999, pp. 335–342.

[27] H.-K. ZHAO, S. OSHER, AND R. FEDKIW, Fast Surface
Reconstruction Using the Level Set Method, in First IEEE
Workshop on Variational and Level Set Methods, 2001,
pp. 194–202.


