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Overview

In this sketch we present an algorithm for automatically estimating
a subject’s skeletal structure from optical motion capture data with-
out using anya priori skeletal model. Our algorithm consists of a
series of four steps that cluster markers into groups approximating
rigid bodies, determine the topological connectivity between those
groups, locate the positions of the connecting joints, and project
those joint positions onto a rigid skeleton. These steps make use
of a combination of spectral clustering and nonlinear optimization.
Because it does not depend on prior rotation estimates, our algo-
rithm can work reliably even when only one or two markers are
attached to each body part, and our results do not suffer from error
introduced by inaccurate rotation estimates. Furthermore, for appli-
cations where skeletal rotations are required, the skeleton computed
by our algorithm actually provides an accurate and reliable means
for computing them. We have tested an implementation of this al-
gorithm with both passive and active motion capture data and found
it to work well. Its computed skeletal estimates closely match mea-
sured values, and the algorithm behaves robustly even in the pres-
ence of noise, marker occlusion, and other errors typical of motion
capture data.

Methods

The first step of our method is to cluster markers into groups that
represent rigid bodies. In an ideal rigid body, the points on the
body do not move with respect to each other through time, i.e. the
standard deviation in distance between points on the body is zero.
Therefore, to determine rigid bodies our method clusters based on
the standard deviation in distance between all pairs of markers. Us-
ing all frames to compute the standard deviation in distance be-
tween two markers can be expensive and sensitive to errors induced
by noisy frames, so the method calculates this quantity only over
a jittered uniform sampling of frames. Markers in the sampled
set of frames are segmented using spectral clustering. To correct
for errors due to sampling, the algorithm employs a random sam-
ple consensus (RANSAC) based procedure. Rather than using one
sampling of frames, the method uses several different samplings,
each of which produce a possible clustering of markers. The opti-
mal clustering has the smallest average standard deviation between
markers in a group over all samplings.

Our method determines skeleton topology by testing for possi-
ble joints between all rigid body pairs. For each pair, our method
attempts to solve a nonlinear optimization problem for a point that
remains fixed with respect to the markers on those bodies. More
specifically, this point minimizes the average variance in distance
between itself and each marker. Unfortunately, the trivial solution
to this optimization is a point infinitely far away. To prevent the pro-
cedure from finding the trivial solution, a small cost proportional to
the average distance between markers and the point is added to the
function. Optimization residuals provide a metric for the likelihood
that a pair of rigid bodies should be connected. The optimal skele-
ton minimizes the sum of these residuals. By treating rigid body
groups as nodes in a fully connected graph, and using the resid-
uals as edge weights in that graph, the optimal skeleton is found
by computing the minimum spanning tree. At this stage, the algo-
rithm is only trying to determine if rigid bodies are connected. As
such, the method speeds computation by subsampling frames. This
approach is similar to [O’Brien et al. 2000]. However, they used
magnetic motion capture data, which includes rotation information
and allows the problem to be expressed in linear form.

Once the topology of the skeleton is identified, the method pro-
ceeds with finding joint positions. For this, the method repeats the
minimization procedure in the previous stage, however all frames
are used. Additionally, the length term in the optimization is
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dropped. This term is eliminated because the correct joints are
known, so the method no longer needs to protect against joints far
from the skeleton.

The final step of our algorithm is to project the joint and marker
positions onto a rigid body skeleton. This procedure is done one
rigid body at a time. For each rigid body, the only frames used are
the ones in which all the markers on that body appear. Within this
set, a single frame is picked at random to serve as the target. For
every other frame, the method computes the affine transformation
that best transforms the marker and joint positions to equal those of
the target frame. If all the frames are lined up using their respective
transformations, several small clouds of points appear, representing
each of the markers and joints connected to the rigid body. For each
cloud of points the average position is used as the true offset of the
marker or joint.

If the rotation at each joint is desired, it can be found using in-
verse kinematics (IK). Since the rigid body skeleton and the offset
of each marker from a bone is known, IK is used to find the rotations
that minimize the distance from the marker positions on a bone and
the input data. Estimating joint rotations using skeleton informa-
tion is considerably better than just using marker data. Knowledge
about relative joint position removes ambiguity in the estimation
procedure, which results in more accurate rotation estimates, even
if there is only one marker on a body segment.

Results

We tested this method on human data gathered from a PhaseSpace
active motion capture system and a Vicon passive motion capture
system. When using calibration motion capture sequences as input
we were able to accurately reconstruct visually plausible human
skeletons, as seen in Figure 1. To provide further validation, we
constructed a three-link chain of aluminum rods connected by uni-
versal joints. We motion captured this mechanical device using a
PhaseSpace active marker system and were able to reconstruct the
length of the middle rod within less than a centimeter, which is
within the accuracy limits of the motion capture system.
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