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We present a novel parameterization-independent exposition of the third-order geometric
behavior of a surface point. Unlike existing algebraic expositions, our work produces an
intuitive explanation of third-order shape, analogous to the principal curvatures and direc-
tions that describe second-order shape. We extract four parameters that provide a quick
and concise understanding of the third-order surface behavior at any given point. Our
shape parameters are useful for easily characterizing different third-order surface shapes
without having to use tensor algebra. Our approach generalizes to higher orders, allow-
ing us to extract similarly intuitive parameters that fully describe fourth- and higher-order
surface behavior.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Surface analysis (also known as shape interrogation) is a useful tool for understanding the geometric behavior of a
surface near a given point. In the general case of a smooth surface, one can analyze its geometry up to a given order
by performing a Taylor expansion of the surface. As an example, the 0th-order surface analysis near a given point yields
the position of that point. The first-order analysis adds the tangent plane, the second-order the curvature tensor, and the
third-order a rank-3 tensor that describes the derivatives of curvature. The higher the order of surface analysis, the more
information about the shape is extracted.

Surface analysis using Taylor expansion produces shape information that is compactly stored in tensors. To extract this
information from the tensors, we must formulate an input query in the tensor’s coordinate system. For instance, consider
the second-order curvature tensor. The curvature tensor is a rank-2 tensor, which means it takes two vectors as input
and produces the normal curvature in the direction specified by the vectors. To compute the normal curvature in a given
direction at a surface point, we first express the direction as a vector in the point’s tangent plane, provide the same vector
as both inputs to the curvature tensor, and re-scale the result by the area metric (multiply by the inverse of the first
fundamental form). We perform a similarly complicated sequence of operations to extract derivatives of surface curvature;
we need to provide three directions to the rank-3 tensor that encapsulates the curvature derivative information. Extracting
precise shape information at a surface point thus requires us to understand how to query the shape tensors at that point.

However, most people, especially novices to linear algebra, are more apt to extract shape information from simple ge-
ometric primitives. For instance, up to second order we can easily classify a surface point as flat, elliptic, hyperbolic, or
parabolic (Fig. 1). We can extract the principal curvatures κ1 and κ2 (maximum and minimum values of the normal cur-
vatures at the surface point) from the curvature tensor, and use just those two scalar values to intuitively classify the
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Fig. 1. Up to second order, we can intuitively classify a surface point as (a) flat, (b) parabolic, (c) hyperbolic, and (d) elliptic.

Fig. 2. The above figures show the parameters that fully describe the second-order (left) and third-order (right) shape behavior. All vectors are in the tangent
plane of the point of analysis and are unit vectors. Left: Second-order frame comprised of principal directions and their associated principal curvatures.
The angle φ indicates the rotation of the frame from the user provided x-axis in the tangent plane. The entire second-order behavior is described by three
numbers: κ1, κ2 and φ. Right: Third-order frame comprised of four directions: one indicating the peak of the first Fourier component and the other three
indicating equally spaced peaks of the third Fourier component. Angle α indicates the rotation of the frame from the user provided x-axis, and angle β

indicates the rotation of the third Fourier component from the first Fourier component. The entire third-order behavior is described by four numbers: F1,
F3, α and β . The cubic surface in pink (with the grid) is superimposed on the original quadratic surface in blue (without the grid) to show the undulatory
third-order behavior. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

second-order behavior of a surface point. When the product κ1κ2, also known as the Gaussian curvature, is positive, nega-
tive, or zero, the surface is elliptic, hyperbolic, or parabolic, respectively. In the special case where κ1 and κ2 are equal, the
surface point is umbilic. Of course, when both κ1 and κ2 are zero, the surface is flat. Euler’s theorem tells us that the prin-
cipal directions (e1 and e2) corresponding to the principal curvatures (κ1 and κ2 respectively) are mutually orthogonal. In
fact, we can completely describe the second-order shape of a surface point by three intuitive parameters: the two principal
curvatures, κ1 and κ2, and the angle φ made by the e1 principal direction with an arbitrary direction in the tangent plane
(Fig. 2). At an umbilic point, all normal curvatures are equal, therefore, we cannot differentiate two specific directions and
associated curvatures as principal directions and principal curvatures. κ1, κ2, and φ represent exactly the same information
as that in the curvature tensor, but are more accessible to novices and to visual and geometrical thinkers. We believe that
this geometrical analysis results in a more intuitive and widespread understanding of second-order shape behavior.

For many geometric tasks, analysis only up to second order is not sufficient because it ignores too much shape behavior.
Therefore, we need to study and understand higher-order shape behavior. We start with third-order shape analysis. We have
not been able to find an intuitive description for third-order surface behavior in the differential geometry literature — all the
third-order surface analysis we have seen so far uses the algebra of rank-3 tensors. As a result, a thorough understanding of
third-order surface behavior is typically limited to those people who are comfortable with tensor algebra.

1.1. Contribution

In this paper, we provide an intuitive, geometric description of third-order surface behavior. Our description is similar in
its intuitive nature to the readily accessible second-order description using principal curvatures and directions. We extract
four shape parameters that completely describe the third-order shape behavior at a surface point. Our shape parameters are
independent of any coordinate system and are obtained by decomposing the third-order shape function into its Fourier com-
ponents. We also show how our approach of extracting shape parameters based on Fourier components easily generalizes
to fourth- and higher-order surface analysis.

2. Previous studies of third-order surface behavior

While not as commonly studied as second-order surface behavior, third-order surface behavior has been studied for
selected applications. In computer graphics, the most common application is to convey shape information via line drawings
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such as suggestive contours (DeCarlo et al., 2003) or other salient features such as perceptually-based curvature extrema
(Watanabe and Belyaev, 2001). Rusinkiewicz (2004) describes how the construction of the rank-3 tensor can be used to
interrogate the derivatives of normal curvature in arbitrary directions. These curvature derivatives provide shape information
that is perceptually important to the human visual system. While the rank-3 tensor yields precise curvature derivative
information, it is not easy to understand.

In computer-aided geometric design, third-order surface energies are optimized to produce smooth surfaces. Moreton
and Séquin (1992) introduced the “Minimum Variation Surface” (MVS) energy that minimizes the derivatives of principal
curvatures along the respective principal directions, and Joshi and Séquin (2007) enhanced the original MVS formulation
by adding cross derivative terms. Mehlum and Tarrou (1998) formulated a more complete energy by measuring inline
normal curvature variation over all directions at a surface point; Gravesen and Ungstrup (2001) further enhanced the work
of Mehlum and Tarrou by considering curvature variation for all surface curves (not just normal section curves). Gravesen
(2004) further extended the exposition of algebra of third-order behavior by listing all the third-order invariants of a surface.
Xu and Zhang (2007) minimize the variation of mean curvature of a surface by solving the corresponding (sixth-order)
Euler–Lagrange equation.

Formulating such energies typically requires understanding some aspect of third-order surface behavior. For instance,
Mehlum and Tarrou (1998) formulate an expression that provides the arc-length derivative of the normal curvature in a
given direction. They introduce four third-order shape parameters, P , Q , S , T . These terms essentially encode the nor-
mal components of parametric surface derivatives. While useful for computing the energy values, these parameters do not
easily provide a qualitative description of the third-order shape at a given point because they depend on the particular
parameterization used at that point.

Third-order analysis is used to identify and characterize lines of singularities of principal curvatures on a surface. For
example, Bruce et al. (1996) describe special curves called ridges (a set of points along a principal curve where the cor-
responding principal curvature reaches extremal values), crests (ridges where the magnitude of the extremal principal
curvature is greater than that of the other principal curvature) and sub-parabolic lines (a set of points along one prin-
cipal curve where the other principal curvature reaches extremal value). Sub-parabolic lines received special treatment in
the paper by Morris (1997). Cazals et al. (2008) show how to calculate and approximate ridges and umbilic points on
smooth surfaces. Ridges, crests and sub-parabolic lines are typically used to characterize a given surface by a sparse set
of curves on that surface (see Bruce et al., 1996 for applications). However, these lines cannot be used to understand the
“complete” third-order behavior of any given surface point; the analysis is restricted for special points on the surface where
the principal curvature fields have singularities.

Similarly, umbilic points (surface points with equal principal curvatures) have received a lot of third-order analysis.
Understanding the behavior of a surface near umbilics is useful for manufacturing thin shell parts (Maekawa et al., 1996) and
studying geometrical optics (Berry and Hannay, 1977). As a result, numerous researchers have explored the exact geometric
nature of umbilic points. A common method of characterizing an umbilic point is Darboux’s classification according to the
pattern of lines of curvature near the point (star, monstar, and lemon — see Berry and Hannay, 1977 for a visual description
and Porteous, 2001 for a detailed description). Both Bruce et al. (1996) and Morris (1997) also provide a detailed description
of the surface behavior near umbilic points in terms of ridges, crests and sub-parabolic lines. Maekawa et al. (1996) analyze
the local surface geometry near an umbilic point to compute curvature lines that pass through that point. In most previous
papers, the initial setup for the surface analysis near the umbilic point is similar to ours, but further analysis focuses on the
umbilic classification and lacks the intuitive, qualitative description we seek.

In a nutshell, previously, researchers have extensively studied specific aspects of third-order surface behavior corre-
sponding to particular applications, but an intuitive, purely geometric description is missing. Informally speaking, the “algebra
of third-order behavior” has been studied sufficiently; the “geometry of third-order behavior” needs to be raised to a corre-
sponding level of understanding. We hope that the following exposition serves as a significant step towards that goal.

3. Third-order parameters for a polynomial height field

To introduce the intuition behind the necessary mathematical concepts, we will restrict our attention to a smooth surface
patch centered at a given point. Assume that the surface near the point is fully described by a third-order height field above
the tangent plane at that point. The height field is a function of the two independent variables x and y such that the x–y
coordinate frame forms a parameterization of the surface near the point. The height is defined by

z(x, y) = C0x3 + C1 y3 + C2x2 y + C3xy2 + Q 0x2 + Q 1 y2 + Q 2xy + L0x + L1 y + K . (1)

We assume that the directions corresponding to x and y are mutually orthogonal and that the first-order (L0, L1) and
constant parameters (K ) are zero. This assumption is an over-simplification and is not always valid for a surface patch.
However, we found it easier to first develop an intuition for the third-order parameters using this restricted analysis of the
patch. In Section 6 we describe how to extract the third-order shape parameters for a general surface patch.

As a first step, we convert the cubic height function z(x, y) into polar coordinates z(r, θ), where r = √
x2 + y2 and

θ = tan−1(y/x). We then separate the height field function (Eq. (1)) into two equations that describe only the second-order
(quadratic) and third-order (cubic) behavior:
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zq(r, θ) = r2[Q 0 cos2 θ + Q 1 sin2 θ + Q 2 cos θ sin θ
]
, (2)

zc(r, θ) = r3[C0 cos3 θ + C1 sin3 θ + C2 cos2 θ sin θ + C3 cos θ sin2 θ
]
. (3)

Previous work follows a similar setup up to this step. At this point, people solve for the extremal values of θ by solving
the quadratic equation ∂zq(r,θ)

∂θ
= 0 and cubic equation ∂zc(r,θ)

∂θ
= 0 (e.g. see Mehlum and Tarrou, 1998; Maekawa et al., 1996).

The roots of the quadratic equation yield the principal curvature directions. The number of real roots of the cubic equation
(1) or (3) and their distribution with respect to each other is used to classify umbilic points or to study maxima of curvature
variation. We have obtained a more intuitive understanding of the third-order behavior by decomposing the functions zq

and zc into their Fourier components.

4. Fourier analysis of quadratic height function

As an introductory exercise, we analyze the Fourier components of the quadratic height function and show how the
amplitudes and phase shifts of the Fourier components yield the well-known second-order shape parameters. The Fourier
components of the functions that comprise zq(r, θ) can easily be extracted:

cos2 θ = 1

2
+ 1

2
cos 2θ, (4)

sin2 θ = 1

2
− 1

2
cos 2θ, (5)

cos θ sin θ = 1

2
sin 2θ. (6)

Therefore, zq can be expressed as a constant term plus a linear combination of the Fourier components cos 2θ and sin 2θ ,
which can be further simplified as an equation using a single phase-shifted cosine function. That is,

zq(r, θ) = r2[F0 + F2 cos
(
2(θ + φ)

)]
, (7)

where F0 represents the mean value of zq , and F2 represents the amplitude of the cosine component that gets added to the
mean. The cosine term is a symmetric function that produces four equally spaced extremal values in the range [0,2π). The
maxima and minima correspond to the well-known principal curvatures and the mutually orthogonal principal directions.
The angle φ is the phase shift that is measured with respect to an arbitrary, user-provided direction (usually the x-axis or
the u-direction). Therefore, the entire second-order shape information can be compactly described in a parameterization-
independent manner by three terms (F0, F2 and φ). Since our analysis requires an orientable surface patch, the signs of F0
and F2 depend on the reference normal. By computing κ1 = F0 + F2 and κ2 = F0 − F2 we get the three familiar terms: κ1,
κ2, φ. The mean curvature is F0 + F2, while the Gaussian curvature is F 2

0 − F 2
2 . At an umbilic point, the F2 component is

zero and φ can be any arbitrary angle.

5. Fourier analysis of cubic height function

Similar to the quadratic height function, we extract the Fourier components of the functions that make up zc(r, θ):

cos3 θ = 3

4
cos θ + 1

4
cos 3θ, (8)

sin3 θ = 3

4
sin θ − 3

4
sin 3θ, (9)

cos2 θ sin θ = 3

4
sin θ + 3

4
sin 3θ, (10)

cos θ sin2 θ = 3

4
cos θ − 3

4
cos 3θ. (11)

The cubic shape function zc can then be expressed as a linear combination of two Fourier components, cos θ and cos 3θ

by the function

zc(r, θ) = r3[F1 cos(θ + α) + F3 cos 3(θ + δ)
]
, (12)

where F1 and F3 are the amplitudes of the Fourier components, and α and δ are the phase shifts from the x-axis. Instead of
the x-axis, we could pick an arbitrary, user-provided direction to measure the phase shifts. Similar to F0 and F2, the signs
of F1 and F3 depend on the surface normal. Fig. 3 illustrates this linear combination for a fixed value of r. Fig. 4 illustrates
the combination of these Fourier components to form the cubic surface.

We can consider the two phase shifts α and δ independently of each other. However, we find it more instructive to
consider the direction corresponding to the (single) maximum of F1 cos(θ + α) as a “third-order principal direction”. Then,
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Fig. 3. Third-order height function from Eq. 3 (thick black) is a sum of two cubic sinusoidal height functions: cos θ (solid red) and cos 3θ (dashed blue).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. The third-order surface is a combination of two sinusoidal functions (cos θ and cos 3θ ) which are the Fourier components of the third-order shape
function. We show (a) the original cubic surface, (b) only the first Fourier component, (c) only the third Fourier component, and (d) the original cubic
surface sandwiched between constituent Fourier components with twice their original amplitudes. Clearly, the cubic surface is the average of twice the
Fourier components, 0.5(2F1 + 2F3) and therefore is equal to the sum of the Fourier components.

the phase shift δ can be expressed as α + β , where β is the phase shift with respect to the third-order principal direction.
Therefore, we get our final equation for describing the cubic behavior of the surface,

zc(r, θ) = r3[F1 cos(θ + α) + F3 cos 3(θ + α + β)
]
. (13)

We use the amplitudes and phase shifts of the Fourier components from Eq. (13) as our four parameterization-independent,
geometrically intuitive shape parameters (illustrated in Fig. 2). These parameters can be extracted from the original third-
order parameters C0, C1, C2, C3 (Eq. (3)) of the polynomial height field:

F1 =
√

(3C0 + C3)2 + (3C1 + C2)2

4
, (14)

F3 =
√

(C0 − C3)2 + (C2 − C1)2

4
, (15)

α = tan−1
(

3C1 + C2

3C0 + C3

)
, (16)

β = 1

3
tan−1

(
C2 − C1

C0 − C3

)
− α. (17)

Similarly, given our third-order parameters F1, F3, α and β , we can extract the parameterization-dependent third-order
parameters for the idealized height field above the tangent plane:

C0 = F1 cosα + F3 cosβ, (18)

C1 = F1 sinα − F3 sinβ, (19)

C2 = F1 sinα + 3F3 sinβ, (20)

C3 = F1 cosα − 3F3 cosβ. (21)
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6. Computing Fourier components for a general surface patch

In this section we describe how to compute the third-order shape parameters for a point on a general surface patch.
Unlike the approach taken in Section 3, we can no longer ignore the effect of lower-order shape parameters (namely,
first- and second-order parameters) on the third-order shape parameters. Therefore, we cannot extract parameterization-
independent shape parameters simply by analyzing a height function. Instead, we need to perform a Fourier analysis of the
function that denotes the arc-length derivative of normal curvature. The Fourier coefficients can then be combined as before
to yield the required shape parameters.

Consider that we have a bi-variate tensor product surface patch (e.g. a bi-cubic B-spline patch) parameterized by u, v .
Given a point (u, v) in parameter space, let S(u, v) denote the 3D position of the point, n denote the unit normal, and
Su(u, v), Sv(u, v), Suu(u, v), etc., denote the 3D parametric surface derivatives with respect to u and v . Our task is to
efficiently and exactly compute the F1, F3, α and β parameters for any point (u, v) on the patch.

First, compute the parameterization-dependent third order shape parameters P , Q , S , and T introduced by Mehlum and
Tarrou (1998):

P = Suuu · n + 3Suu · nu, (22)

Q = Suuv · n + 2Suv · nu + Suu · nv , (23)

S = Suv v · n + 2Suv · nv + Sv v · nu, (24)

T = Sv v v · n + 3Sv v · nv . (25)

Then, use the formula from Mehlum and Tarrou (1998) that expresses the arc-length derivative of normal curvature as a
function of the angle θ from any given reference direction

κ ′
n(θ) = 1

σ 3

[
P G3/2 sin3 θ + 3Q G E1/2 sin2 θ cos(θ + ψ)

+ 3S EG1/2 sin θ cos2(θ + ψ) + T E3/2 cos3(θ + ψ)
]
, (26)

where θ is measured from the u direction, E , F and G are coefficients of the first fundamental form (the metric tensor),
and σ = √

F 2 − EG is the area element at the point of analysis. We maintain the label κ ′
n(θ) for the arc-length derivative of

normal curvature κn(θ) as was done by Mehlum and Tarrou (1998). ψ denotes the complement to the angle between the u
and v directions and is given by tan(ψ) = F/

√
EG . (For the polynomial height field of Section 3, the coordinate axes were

mutually orthogonal and therefore ψ was zero.)
Eq. (26) can be written as an expression similar to Eq. (3):

κ ′
n(θ) = A cos3(θ + ψ) + B sin3 θ + C sin θ cos2(θ + ψ) + D sin2 θ cos(θ + ψ) (27)

where the coefficients A, B , C , and D are functions of P , Q , S , T , and E , F , and G:

A = T E3/2

σ 3
, B = P G3/2

σ 3
, (28)

C = 3S EG1/2

σ 3
, D = 3Q G E1/2

σ 3
. (29)

As described in Section 5, we can perform a Fourier analysis of the sinusoidal functions in Eq. (27):

cos3(θ + ψ) = 3

4
cosψ cos θ − 3

4
sinψ sin θ + 1

4
cos 3ψ cos 3θ − 1

4
sin 3ψ sin 3θ,

sin3 θ = 3

4
sin θ − 1

4
sin 3θ,

cos2(θ + ψ) sin θ = −1

4
sin 2ψ cos θ − 1

4
(cos 2ψ − 2) sin θ + 1

4
sin 2ψ cos 3θ + 1

4
cos 2ψ sin 3θ,

cos(θ + ψ) sin2 θ = 1

4
cosψ cos θ − 3

4
sinψ sin θ − 1

4
cosψ cos 3θ + 1

4
sinψ sin 3θ.

By grouping coefficients, we express the arc-length derivative of normal curvature as a sum of first-order and third-order
sinusoidal functions

κ ′
n(θ) = F1 cos cos θ + F1 sin sin θ + F3 cos cos 3θ + F3 sin sin 3θ, (30)

where
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Fig. 5. The first and third Fourier components of the third-order shape function — all third-order surface behavior can be expressed as properly scaled and
rotated combinations of these two shapes.

F1 cos = 1

4
(3A cosψ − C sin 2ψ + D cosψ), (31)

F1 sin = 1

4

(−3A sinψ + 3B − C(cos 2ψ − 2) − 3D sinψ
)
, (32)

F3 cos = 1

4
(A cos 3ψ + C sin 2ψ − D cosψ), (33)

F3 sin = 1

4
(−A sin 3ψ − B + C cos 2ψ + D sinψ). (34)

Finally, we can combine the sine and cosine functions to formulate the arc-length derivative of normal curvature as a
sum of phase-shifted sinusoidal functions of the angle θ

κ ′
n(θ) = F1 cos(θ + α) + F3 cos

(
3(θ + α + β)

)
, (35)

where the parameterization independent third-order shape parameters can be expressed in closed-form as:

F1 =
√

F 2
1 cos + F 2

1 sin

4
, F3 =

√
F 2

3 cos + F 2
3 sin

4
, (36)

α = tan−1
(−F1 sin

F1 cos

)
, β = 1

3
tan−1

(−F3 sin

F3 cos

)
− α. (37)

To summarize, to compute the third-order shape parameters for any point u, v on a general surface patch, we need to
compute the parameterization dependent third-order (P , Q , S , T ) and first-order (E , F , G) parameters. Algebraic manipula-
tion of these parameters yields the coefficients F1 cos, F1 sin, F3 cos, and F3 sin of the four sinusoidal components of arc-length
derivative of normal curvature. These four coefficients then readily yield the F1, F3, α and β parameters.

7. Qualitative description of the Fourier components

The shapes of the first and third Fourier components are shown in Fig. 5. Both functions are anti-symmetric with respect
to π , which leads to their combination being anti-symmetric as well (zc(r, θ) = −zc(r,π + θ)) — a fact pointed out by Berry
and Hannay (1977) in their study of umbilics and Mehlum and Tarrou (1998) in their study of normal curvature variation.

In the range [0,2π ), the first Fourier component has one maximum and minimum. The shape of this component is given
by the height field z = x3 + xy2 and can be understood as a lateral extrusion of the cubic curve z = x3 in the y direction,
enhanced by a linear component whose slope increases as the square of y (see Fig. 5). When F1 is zero, the first Fourier
component is flat and the angle α cannot be uniquely determined (in this case we set α to zero in our implementation).
We consider such a point a third-order equivalent of the umbilic. Unlike the umbilic where the normal curvature is equal
in all directions, at the third-order equivalent of the umbilic the normal curvature derivative does not necessarily behave
the same — it is influenced by the non-zero third Fourier component. In fact, as shown by Mehlum and Tarrou (1998), the
only situation when the normal curvature derivative is equal in all directions is when it is zero, meaning the surface is flat
in third order (i.e. both F1 and F3 are zero).
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Fig. 6. Sequence of third-order shape edits: starting from a purely second-order surface patch where F1 and F3 are zero (a), we increase the amplitude F1 of
the first Fourier component (b), rotate it about the z-axis by increasing the value of α (c), and increase the amplitude F3 of the third Fourier component (d).
(e) shows the same shape as (d) but with the third-order frame indicating the directions of α and β . Finally, we rotate only the third Fourier component
about the z-axis by increasing the value of β (f). The blue surface (without the grid) is the best-fitting (and unchanged) quadratic surface at the point of
analysis. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

In the range [0,2π ), the third Fourier component has three equally spaced maxima and minima. The shape of this
component is similar to that of the height field z = x3 − 3xy2. This is the well-known “monkey saddle” with three peaks
and troughs, each π/3 radians apart. The angle β denotes the rotation of the third Fourier component with respect to the α
direction given by the first Fourier component. As shown in Fig. 6, given a fixed α and F1, we can vary β and F3 to change
the undulatory behavior of the third order height function. When F3 is zero, β cannot be uniquely determined. In this case,
we set it to zero in our implementation.

7.1. Expressing cross derivatives using third-order shape parameters

Eq. (35) gives an expression for the inline derivative of curvature (κ ′
n) — the change of curvature is analyzed along the

line for which normal curvature is measured. Alternately, we can consider cross derivatives of curvature (κ×
n ), where the

change of curvature is analyzed in a direction perpendicular to the line along which the normal curvature is measured.
For example, functionals introduced by Gravesen and Ungstrup (2001) and Joshi and Séquin (2007) contain cross derivative
terms in principal directions: ∂κ1

∂e2
and ∂κ2

∂e1
. Here we use our third-order parameters F1, F3, α, and β to obtain an expression

for the cross derivative of normal curvature.
Suppose we are given a surface point with normal curvature κn(θ) in a direction given by angle θ in the tangent plane.

The cross derivative κ×
n (θ) is a directional derivative of κn(θ) along the direction denoted by θ + π/2. We can show that

the cross derivative is given by the formula

κ×
n (θ) = F1

3
cos(θ + π/2 + α) − F3 cos 3(θ + π/2 + α + β)

= − F1

3
sin(θ + α) − F3 sin 3(θ + α + β). (38)

The above equation is similar to Eq. (35) which expresses the normal curvature derivative (κ ′
n) using the third-order

shape parameters. There are three differences: (1) the F1 component is reduced to a third of its original value, (2) the F3
component switches sign and (3) the angles are shifted by π/2 radians.

In the rest of this section, we provide a qualitative sketch for the derivation of Eq. (38). We limit our attention to a small
neighborhood around a surface point where the first fundamental form is the identity matrix and the second fundamental
form is zero. A formal proof (for a general surface patch) will require a lengthy analysis similar to Section 6 and is not given
here.
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We can express the third-order surface information near the point of analysis by the cubic height field function used in
Section 3

zc(x, y) = C0x3 + C1 y3 + C2x2 y + C3xy2. (39)

Suppose we are interested in the cross derivative κ×
ny

= ∂κn(π/2)
∂x = ∂

∂x
∂2 zc
∂ y2 = ∂3 zc

∂ y2∂x
= 2C3. We will show how this cross

derivative is closely related to the inline curvature derivative κ ′
nx

= ∂κn(0)
∂x = ∂3 zc

∂x3 = 6C0.
Consider the situation when F1 is non-zero and F3 is zero. Without loss of generality, we can define the x–y coordinate

system around such a surface point such that C0 = C3 �= 0 and C1 = C2 = 0 (the x-axis is along the maximal direction of

the F1 component). In this case, ∂3 zc
∂x∂ y2 = 1

3
∂3 zc
∂x3 , which implies that the value of the cross derivative of normal curvature is

equal to one third the value of the inline derivative of normal curvature, where both curvature derivatives are in the same
direction. For a general direction denoted by θ , the cross derivative in the direction φ = θ + π/2 of the normal curvature
κn(θ) is

∂κn(θ)

∂eφ

= 1

3

∂κn(φ)

∂eφ

= 1

3
F1 cos(φ + α) = 1

3
F1 cos(θ + π/2 + α) = −1

3
F1 sin(θ + α). (40)

Now consider the situation when F1 is zero and F3 is non-zero. Without loss of generality, we can define the x–y
coordinate system around such a surface point such that C0 = −3C3 �= 0 and C1 = C2 = 0 (the x-axis is along one of the

maximal directions of the F3 component). In this case, ∂3 zc
∂x∂ y2 = − ∂3 zc

∂x3 which implies that the value of the cross derivative of

normal curvature is equal to the negative value of the inline derivative of normal curvature, where both curvature derivatives
are in the same direction. For a general direction denoted by θ , the cross derivative in the direction φ = θ + π/2 of the
normal curvature κn(θ) is

∂κn(θ)

∂eφ

= −∂κn(φ)

∂eφ

= −F3 cos 3(φ + α + β) = −F3 cos 3(θ + π/2 + α + β) = −F3 sin 3(θ + α + β). (41)

Just like the inline curvature derivative function κ ′
n , we can express the cross curvature derivative function κ×

n as a sum
of its first and third Fourier components. By combining Eqs. (40) and (41), we get the expression for Eq. (38).

7.2. Expressing normal curvature derivatives in arbitrary directions using third-order shape parameters

The inline and cross derivatives are only two of the infinitely many directions in which we can compute directional
derivatives of normal curvature. Given a surface point and a normal curvature κn(θ) measured along a direction given by θ ,
we should be able to compute the directional derivative ∂κn(θ)

∂eψ
for an arbitrary direction eψ . At any surface point, up to third

order, we can define a rank-3 tensor that takes 3 directions as input: two (equal) directions to query the curvature tensor
and specify the normal curvature and a third direction to specify the direction of normal curvature derivative (Rusinkiewicz,
2004; Gravesen and Ungstrup, 2001). We now show that the normal curvature derivatives in all directions are simple linear
combinations of inline and cross curvature derivatives.

Recall the rule of directional derivatives: let f be a scalar function over a domain spanned by directions x̂ and ŷ. Let the
direction m also be spanned by the x–y basis (m = mxx̂ + my ŷ). Then, the directional derivative ∂ f

∂m = m · ( ∂ f
∂x x̂ + ∂ f

∂ y ŷ).
Let the direction of the inline derivative be along the x axis, and the direction corresponding to the cross derivative be

along the y axis. A vector along an arbitrary direction given by angle ψ can be written as (cos ψ)x̂ + (sin ψ)ŷ. Therefore,
using the above rule of directional derivatives and given the inline and cross derivatives of normal curvature, κ ′

n(θ) and
κ×

n (θ), we can express the directional derivative of κn(θ) along the direction of ψ as:

∂κn(θ)

∂eψ

= (
(cosψ)x̂ + (sinψ)ŷ

) · (κn(θ)′x̂ + κn(θ)×ŷ
)

= κ ′
n(θ) cos ψ + κ×

n (θ) sin ψ (42)

where ψ is computed as the offset angle from the direction of θ .
Eq. (42) is significant because it shows that at a surface point, the derivative of any normal curvature in any direction

can be expressed as a function of the F1, F3, α and β parameters. This is another way of observing that the F1, F3, α and
β parameters fully describe the third-order shape of a surface point.

8. Applications

We present two applications from geometric analysis and design that benefit from having an intuitive understanding of
third-order shape.
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Fig. 7. Principal curvature lines near the three types of umbilic points with the graphs of corresponding third-order height functions (thick black). The
top row of figures is from Berry and Hannay (1977). The number of extrema (two or six) and zero crossings (two or six) of the height function together
determine the type of the generic umbilic point. Notice how the first Fourier component (solid red) dominates the overall third-order behavior for the
lemon umbilic, while the third Fourier component (dotted blue) creates local extrema in the monstar umbilic and additional zero crossings of the height
function in the star umbilic. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

8.1. Classification of umbilics

As the first example, we show how to use our third-order shape parameters to understand the surface behavior near
umbilic points (points with equal principal curvatures). As mentioned before, generic umbilic points on surfaces are clas-
sified according to the pattern made by lines of curvature as they pass through the point. Since the surface behavior up
to second order is uniform in all directions, we need a third-order analysis to classify umbilics. As presented by Berry and
Hannay (1977), based on the pattern of lines of principal curvature near the point, there are three types of generic (stable)
surface umbilics: lemon, monstar and star (see Fig. 7). The pattern of lines of principal curvature depends on the number
of real, distinct roots of the cubic equations zc(r, θ) = 0 (zc from Section 3) and ∂zc(r,θ)

∂θ
= 0. The roots can be obtained by

computing the discriminants of the two cubic equations (the third-order height function and ∂zc(r,θ)
∂θ

= 0). Porteous (2001)
presents a more accessible method using complex analysis that is often used in practice.

Our third-order shape parameters offer an alternative, visual and high-level explanation of when different types of um-
bilics are formed. When the first Fourier component dominates the overall third-order behavior, we get only one maximum
and minimum for zc(r, θ). In that case, we have the lemon type of umbilic. When the third Fourier component is strong
enough that its derivatives (slope) exceed those of the first component, we get three distinct maxima and minima (six real
roots for the equation ∂zc(r,θ)

∂θ
= 0) and obtain the monstar umbilic. If the third Fourier component dominates the third-order

height function and creates six zero crossings (instead of two), we get the star type of umbilic. Fig. 7 compares the network
of curvature lines to the number of zeros and extrema of the third-order height function evaluated along a small circle
around the umbilic point.

8.2. Constructing surface design functionals

In a recently published thesis (Joshi, October 2008), we used the third-order shape parameters F1, F3, α and β to
formulate surface energy functionals that produce aesthetically pleasing shapes upon minimization. We showed that the
functional introduced by Mehlum and Tarrou (1998) is a “complete” third-order functional because it measures all the
curvature-derivative information at a surface point, and is conveniently given by the sum of the squares of the F1 and F3
terms.

Mehlum and Tarrou (1998) argue that to measure the total curvature variation at a surface point, one should compute
the average of the squared magnitude of the arc-length derivative of normal curvature across all directions.

Mehlum–Tarrou energy = 1

π

∫ ( π∫
0

κ ′
n(θ)2 dθ

)
dA (43)

where κ ′
n(θ) is a directional derivative of κn(θ) in the direction denoted by angle θ in the tangent plane. The Mehlum–

Tarrou energy was introduced with a complicated closed-form expression (Eq. (34) in Mehlum and Tarrou, 1998), but can
be simply expressed by using our third-order shape parameters. In particular, we show that the Mehlum–Tarrou energy is
the sum of squares of the amplitudes of the two Fourier components that define third-order surface behavior.
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Fig. 8. Different optimal shapes obtained by minimizing (a) the F 2
1 energy, (b) the F 2

3 energy, and (c) their sum (which corresponds to the Mehlum–Tarrou
energy). For a detailed description of this and other examples, please refer to Joshi (October 2008).

Mehlum–Tarrou energy

= 1

π

∫ ( π∫
0

κ ′
n(θ)2 dθ

)
dA

= 1

π

∫ ( π∫
0

(
F1 cos(θ + α) + F3 cos 3(θ + α + β)

)2
dθ

)
dA

= 1

2

∫
F 2

1 + F 2
3 dA. (44)

In the above derivation, we use the orthogonality of the cosine function:
∫ π

0 cos(θ + γ ) cos 3(θ + δ)dθ = 0 for any con-
stants γ and δ. Thus, the Mehlum–Tarrou energy is independent of the phase shift β of the third Fourier component.

While the total computational cost necessary to compute F1 and F3 may not be smaller than that of the expression given
by Mehlum and Tarrou (Eq. (34) of Mehlum and Tarrou, 1998), we believe our Fourier components allow us to provide a
simpler, more intuitive explanation of their third-order energy.

We can modify Eq. (44) to obtain a weighted form of the SI-Mehlum–Tarrou energy, where the weights are used to favor
or ignore the first or third Fourier components of the curvature derivative function,

weighted Mehlum–Tarrou energy = 1

2

∫
w1 F 2

1 + w3 F 2
3 dA. (45)

Similarly, we can obtain an energy functional that measures the amplitude of only one of the two components of the
curvature derivative function:

F 2
1 energy =

∫
F 2

1 dA, (46)

F 2
3 energy =

∫
F 2

3 dA. (47)

In the thesis (Joshi, October 2008) we showed that all surface energies consisting of only third-order terms can be
expressed as combinations of the F1 and F3 terms. Therefore, the F1 and F3 terms are useful for constructing a basis that
spans the range of all third-order functionals. In Fig. 8 we show a comparison of the different types of shapes preferred by
the third-order basis functionals.

9. Higher order surface analysis

So far we have concentrated on extracting the parameters that intuitively describe third-order surface behavior. In this
section we will show how our approach based on Fourier analysis of the shape function easily extends to arbitrary orders.
Similar to the method from Section 5 the Fourier components of the fourth-order height function are r4 cos 0, r4 cos 2θ and
r4 cos 4θ . Therefore, the five parameterization-independent, intuitive parameters that fully describe fourth-order shape are
the amplitudes and phase shifts of the cos 0, cos 2θ and cos 4θ functions (the cos 0 function has constant amplitude and
thus no phase shift). Similarly, the six parameters that intuitively describe fifth-order shape are the amplitudes and phase
shifts of the cos θ , cos 3θ and cos 5θ functions. See Fig. 9 for an illustration of these basis shapes.

In general, n + 1 parameters are sufficient for fully and intuitively describing the nth-order shape of a surface point.
The parameters are the amplitudes and phase shifts associated with the Fourier components of the shape function. If n is
even, the Fourier components are rn cos(kt) where k = 0,2,4, . . . ,n. In this case, the nth-order shape function consists of n
2
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Fig. 9. The first row shows the three Fourier components of the fourth-order shape function — all fourth-order surface behavior can be expressed as
properly scaled and rotated combinations of these three shapes. Similarly, the second row shows the three Fourier components of the fifth-order shape
function.

phase shifts and n
2 + 1 amplitudes. If n is odd, the Fourier components are rn cos(lt) where l = 1,3,5, . . . ,n. In this case, the

nth-order shape function consists of n+1
2 phase shifts and n+1

2 amplitudes.

10. Summary

We have presented an intuitive analysis of third- and higher-order surface behavior in terms of the Fourier components
of the appropriate shape function. We hope our exposition will be useful as a tool for studying and characterizing higher-
order geometric terms of surface behavior for modeling and optimization purposes.
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