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We present a method for generating surface crack patterns that appear in materials such as
mud, ceramic glaze, and glass. To model these phenomena, we build upon existing physi-
cally based methods. Our algorithm generates cracks from a stress field defined heuristi-
cally over a triangle discretization of the surface. The simulation produces cracks by
evolving this field over time. The user can control the characteristics and appearance of
the cracks using a set of simple parameters. By changing these parameters, we have gen-
erated examples similar to a variety of crack patterns found in the real world. We assess
the realism of our results by comparison with photographs of real-world examples. Using
a physically based approach also enables us to generate animations similar to time-lapse
photography.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Surface crack patterns occur on a variety of materials,
including glass, mud, and ceramic glaze. These cracks often
occur due to shrinkage of the object’s surface area. For
example, mud in a river bed dries faster on the surface than
the underlying soil, causing stress to build. The mud subse-
quently develops cracks to relieve this stress. In ceramics,
glaze with a different coefficient of thermal expansion than
that of the pottery will accumulate stress during the cool-
ing process. When this stress is too high, the glaze cracks.
We have developed a method for modeling the crack pat-
terns created by these types of processes, as demonstrated
by the example of ‘‘crackle glass” shown in Fig. 1.

Several papers on physically based animation have pre-
sented methods to model fracture in solid objects. These
fracturing methods use a second-order dynamic simula-
tion, accelerating the nodes according to calculated forces.
Our method does not simulate dynamic forces or elastic
. All rights reserved.
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waves, so the nodes do not move or have velocity. Instead,
we use a first-order quasi-static system, a method that is
inherently more stable than a second-order system. Our
quasi-static system will not be able to capture the dynamic
effects that may occur in real materials when the motion of
the crack front is driven by the momentum of the separat-
ing surfaces. This limitation is acceptable for the slow-
forming surface cracks that we are concerned with here.

Our approach avoids certain problems for simulations
that are caused by moving nodes, such as collisions or
mesh tangling issues. Instead, we optionally move nodes
as a post-processing step to create crack width. Although
we may encounter similar tangling issues during this step,
they only occur during post-processing and thus would not
affect simulation behavior or stability.

We generate crack patterns on a triangle discretization
of the input surface. This triangulation can be arbitrary,
although our results are better if the surface is 2-manifold
and the size and aspect ratio of the triangles do not vary
too drastically over the mesh. We define a stress field over
this triangle mesh and evolve it iteratively due to processes
such as elastic relaxation or shrinkage. Areas of high tensile
stress form cracks which in turn alleviate stress in the sur-
rounding region.
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Fig. 1. A crackle glass dragon, generated by uniform shrinkage of the
surface. This example required 2.17 h of computation with an input mesh
of 75,000 triangles.
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The algorithm we use to determine where cracks occur
and how they propagate is derived from the method orig-
inally presented in [27]. Cracks occur at existing vertices in
the triangle mesh and they propagate through a process of
local remeshing. The tip of an advancing crack always cor-
responds to a vertex location, allowing the formation of
smooth and realistic-looking crack patterns.

In this paper, we present an extended version of our
work that was originally presented in [14,15]. Our method
is a novel combination, obtaining the realism of a physi-
cally correct simulation but maintaining the controllability
of a heuristic based method. We provide the user with sev-
eral parameters to control the appearance and characteris-
tics of the crack patterns. Some of these parameters are
based on physical properties of the material while others
are heuristics. By tuning these quantities, the user can pro-
duce a variety of results using the same system.

2. Background

The methods used in computer graphics for generating
crack patterns can be loosely grouped into two categories.
One area of research follows a non-physical approach for
creating crack patterns, such as mapping procedural crack
patterns to a surface. Other papers use physically based
methods to crack or fracture objects. Our method falls pri-
marily into the second category, using a finite element dis-
cretization common in physically based approaches.
However, rather than accurately simulating the elastic
deformation of an object, we instead use heuristic methods
to define a stress field directly. The resulting approach gen-
erates realistic crack patterns while still allowing the user
a substantial amount of control.

Several researchers developed methods for modeling
fracture in solid materials, primarily using physically based
simulation. Terzopoulos and colleagues introduced to the
graphics community methods for simulating elastic [34]
and inelastic deformation of objects, including fracture
[33]. A mass-spring system was later used to simulate frac-
turing solids [24]. Finite elements have been widely used
to simulate brittle fracture [27], ductile fracture [26], elas-
to-plastic materials and interactive fracture [21], and the
fracture and deformation of voxelized surface meshes
[22]. Other algorithms include generating fracture on elas-
tic and plastic materials with the virtual node algorithm
[19], a membrane-bending model for thin shell objects
[9], and a meshless framework [29].

In addition to being used for objects that are being bro-
ken or torn apart, physically based methods have also been
used to create surface cracks patterns. A mass-spring sys-
tem was used to reproduce crack patterns in microsphere
monolayers [32], and to model tree bark [6], cracks in sur-
faces [12], and in volumes [13]. Gobron and Chiba used cel-
lular automata to crack multi-layer surfaces [10] and
simulate materials peeling off of surfaces [11]. Paint crack-
ing and peeling was also simulated using a two-layered
model on a 2D grid [28]. Federl and Prusinkiewicz used
wedge-shaped finite elements to model cracks formed by
drying mud and tree bark [7,8].

There have been several non-physical approaches to
generating surface cracks. One type of approach maps
some form of procedural crack pattern to an object’s sur-
face [16] and then carves out a volume to generate crack
depth [18,5]. Others form cracks on a 2D surface to repli-
cate Batik painting cracks [35] or create cracks similar to
an input image [20]. These methods use an input pattern
or image to generate surface cracks. In contrast, our meth-
od creates cracks from a mechanical stress field defined
over the object’s surface.

Similar to our overall approach, Valette and colleagues
[36] use both physical and non-physical processes to gen-
erate cracks. First they precompute a 2D crack network
using either a stochastic model, a Voronoi tessellation, or
a watershed transform accounting for material thickness.
Using layers of cubic cells to model the volume decrease
in the material, they compute the resulting crack widths
for the given network and then apply it to a parameterized
3D surface. They further discuss their crack model for soil
desiccation in [37]. Our method uses a different combina-
tion of physical and non-physical components to create
crack patterns. We use heuristics to initialize the stress
field and a relaxation process to compute the resulting
crack pattern. We also run our simulation directly on the
3D triangle mesh of the model.

Outside of computer graphics, fracture mechanics has
been extensively studied in engineering and a wide range
of methods to analyze the failure of materials is available.
Researchers use finite element methods, finite differencing
methods, or boundary integral equations to simulate the
failure of real materials. An overview of methods used in
this field can be found in [1] and [23]. Physics researchers
have studied specific crack pattern problems, such as dry-
ing mud [17], alumina/water slurry [31], or both mud and
ceramics [2,3].

3. Stress, forces and the separation tensor

As in previous approaches [27,26,8], we use a finite ele-
ment discretization with local remeshing. However, our
method differs from previous ones in several aspects. First,
our algorithm generates cracks on the surface of objects in-



Fig. 2. As an artistic effect, we initialized the stress field to uniform
tension with some bias to crack in the principal curvature directions. The
result of using this heuristic is demonstrated by the vertical cracks of the
angel’s arm and the cracks following the folds of fabric. Total computation
time was 3.13 h with an input mesh of 105,772 triangles.
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stead of fracturing their volume. Because our interest con-
cerns only simulating the surface features, we use a trian-
gle mesh discretization of the model where other methods
use 3D elements. The reduced dimension of our elements
simplifies the simulation computations. Second, we initial-
ize our stress field directly with heuristics instead of using
a full finite element simulation. This simplification gives
the user control over the resulting crack patterns and de-
creases costs of the initial stress computation. Lastly, in-
stead of moving the nodes during the simulation, such as
in [27,13,8,19], our method keeps the nodes stationary
and updates the stress field with a first-order quasi-static
system.

3.1. The algorithm

To generate the crack patterns, we define a stress field
over the triangles and evolve this field through time using
a crack generation process. We then analyze the stress field
to determine where cracks form in the mesh. These cracks
are introduced as free boundaries that affect the relaxation
process and evolving stress field. After cracks form, we up-
date the stress field and repeat the process until either
additional cracks cannot be created or the user terminates
the simulation.

The following pseudo-code describes our algorithm:

(1) Initialize the stress field according to heuristics and
optionally evolve it with relaxation.

(2) Compute the failure criteria for each node and store
the nodes in a priority queue based on this value.

(3) While failure can occur and the user wishes to
continue:
(a) Crack the mesh at the node associated with the

top of the priority queue.
(b) Evolve the stress field:

(i) Perform relaxation.
(ii) Optional: Add shrinkage tension and/or

curvature biasing.
(c) Update the mesh information and priority

queue.
(4) For display, either:
(a) Post-process the mesh by moving the vertices to
give the cracks width and filling in the gaps with

side-walls for the cracks.

(b) Directly render crack edges.

3.2. Stress field

We define the stress field by storing tensors at the trian-
gle centers and treating the stress as a constant over the
area of the triangle. When the stress field is initialized to
zero, the surface is in equilibrium. To simulate drying
and shrinkage, the stress tensor can be initialized to uni-
form tension, indicating a uniform pull in all directions.
For example, see Figs. 1 and 5. Alternatively, we can use
the curvature tensor to initialize stress, indicating that
the high curvature areas are more prone to cracks, as illus-
trated in Figs. 2 and 4. The user could also manually specify
areas of high tension on the surface or use a pattern, such
as in Fig. 3. We can also introduce some amount of random
noise into the stress field to model material inhomogenei-
ties. See Section 4.2 for more details.

3.3. Forces

The stress tensor of an element encapsulates the
amount of force a small piece of material exerts on a node.
Let v½i� denote v at node i and vi denote element i of v. The
force acting on node i by an element is

f ½i� ¼ �A
X3

j¼1

p½j�
X2

k¼1

X2

l¼1

bjlbikrkl; ð1Þ

where A is the area of the element, b the barycentric basis
matrix, p the node positions in world coordinates and r the
stress tensor. To calculate the total force for a given node,
we sum the forces exerted by the surrounding elements.

The derivation of the force equation and the barycentric
basis matrix can be found in [27]. To summarize, the bary-
centric basis matrix will convert a point from local triangle
coordinates to its barycentric coordinates. For a triangle,
this basis matrix is defined by

b ¼
m½1� m½2� m½3�

1 1 1

� ��1

; ð2Þ

where m½i� for i 2 f1;2;3g are the node positions in the tri-
angle’s local 2D coordinate system. To compute the trian-
gle coordinate system, we use the vectors p½2� � p½1� and
p½3� � p½1� to fix an orthonormal basis.

The primary difference between our equations and
those presented in [27] is due to our discretization choice.
We use triangles instead of tetrahedra, so the stress tensor
is a two dimensional quantity in the plane of its triangle
and the b matrix is 3� 3 instead of 4� 4. This reduction
in dimension lowers the computation cost at each step of
the simulation. Note that while the stress tensor is defined
in a local 2D coordinate system for each triangle, Eq. (1)
produces a force vector in the common 3D world coordi-
nate system where the mesh is embedded.



Fig. 3. Cracks generated from initializing the stress field with a pattern modeling impacts in flat glass. The field is evolved by a relaxation process, causing
the cracks to propagate. The right image shows a close-up of the center of the impact region, demonstrating the gaps created by our post-processing step to
widen the cracks and add depth. Total computation time was 15 s with an input mesh of 4804 triangles.

Fig. 4. Curvature can be used to control crack formation, as demonstrated by the image on the left requiring 2.55 h computation. Notice the high
concentration of cracks around areas of high curvature, such as the ears, neck and leg. The right image was simulated using only uniform shrinkage of the
surface, resulting in more evenly spaced cracks and requiring 2.0 h. The input mesh size was 51,382 triangles for both examples.
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3.4. The separation tensor

We analyze the stress field to determine where to
generate cracks by using the formulation of the separation
tensor 1 that was originally presented in [27]. They form
the tensor by balancing the tensile and compressive forces
exerted on a node. Because the forces are calculated in 3D,
we can use them directly in the equation

1 ¼ 1
2
�mðf þÞ þ

X
f2ff þg

mðf Þ þmðf �Þ �
X

f2ff �g
mðf Þ

 !
;

ð3Þ

where f þ is the tensile force, f � the compressive force, and
m a function computing the outer product of a vector di-
vided by the input vector’s length. To compute these
forces, we decompose the stress tensor into tensile rþ

and compressive r� components and use Eq. (1).
We use this tensor to determine whether a crack occurs

at a node and to determine the resulting orientation for the
crack surface. We take the eigendecomposition of 1 to find
the largest positive eigenvalue, vþ. The material fails at a
node when vþ is greater than the material toughness, s. A
crack occurs at this node in the crack plane defined by
n̂þ, the eigenvector corresponding to vþ. We discuss this
process further in Section 4.3.
4. Mesh updates

After calculating an initial stress field, our method per-
forms an iterative procedure to generate crack patterns.
This process interleaves the evolution of the stress field
and propagation of cracks. The stress field changes primar-
ily according to elastic relaxation. The user can further con-
trol its evolution by imposing various conditions, such as
shrinkage tension, impact stress patterns, or bias toward
high curvature regions. Cracks occur when large stresses
produce a large separation eigenvalue in the mesh. The
cracks create open boundaries in the mesh that alleviate
perpendicular components of the nearby stress field. The
physically based interaction between the stress field evolu-
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tion and crack generation algorithm is what leads to the
creation of interesting crack patterns.

4.1. Relaxation

Rather than using a second-order dynamic system to
model the behavior of the mesh by integrating the motion
of its vertices, we instead treat stress directly as an inde-
pendent variable that evolves according to a first-order
relaxation process. If stress were a scalar quantity, this pro-
cess would simply be mesh-based diffusion. For tensor
quantities that each live in distinct local 2D coordinate sys-
tems, the derivation is somewhat more complex. Funda-
mentally, our stress relaxation is also a diffusion process,
as described below.

Other cracking methods have used relaxation to
smooth the stress field after initialization [10], to reduce
the tensile stress around cracks based on distance to the
nearest crack [28], or to recalculate the equilibrium state
adaptively during crack formation [8]. We use relaxation
to redistribute stress from areas of high stress to areas
of low stress. To perform the relaxation, we use the vir-
tual displacement of the nodes to calculate the change
in the stress field. We compute the forces exerted on
nodes with Eq. (1), encapsulating the effect of the stress
field on the nodes. We assume that if we were modeling
the displacement of the nodes, they would be moved by
these forces. However, by not actually moving the nodes,
we avoid the time-step and stability issues that would
otherwise result.

Let g½n� be the sum of all forces f ½n� on node n exerted by
the surrounding elements. We calculate the virtual dis-
placement based on the total forces acting on node n by

Dp½n� ¼ Dtg½n�; ð4Þ

where Dt is the time step controlling the rate of relaxation.
This quasi-static update corresponds to Aristotelian
dynamics where units for force, displacement, and time
do not balance as they would for a Newtonian formulation.

Rather than actually moving the node by Dp, we will in-
stead directly compute how this virtual displacement
would have altered stress in the surrounding elements.
We assume that stress in an element is isotropic and line-
arly proportional to its strain with proportionality constant
1. We use Green’s strain tensor, �, to relate displacement to
strain within an element. This tensor is represented by a
3� 3 matrix defined by

�ij ¼
1
2

@x
@ui
� @x
@uj
� dij

� �
; ð5Þ

where dij is the Kroneker delta:

dij ¼
1 if i ¼ j;

0 otherwise:

�
ð6Þ

If we assume that virtual displacements are piecewise lin-
ear over the mesh, then we can define the partial deriva-
tives as

@xi

@uj
¼
X3

k¼1

p½k�ibkj: ð7Þ
We need the change of the strain tensor within the ele-
ment, so we compute its derivative with respect to the
node positions by

@�ij

@p½n�r
¼ 1

2

X3

m¼1

p½m�rbnibmj þ
X3

m¼1

p½m�rbmibnj

 !
: ð8Þ

Because we have assumed the relationship between strain
and stress is linearly proportional, we compute the change
of stress in an element with node n as

Dr ¼ @�

@p½n�
Dp½n�: ð9Þ

At every time step, we use the force on the node to deter-
mine its virtual displacement from Eq. (4). We update the
element’s stress tensor by accumulating Dr into it. After
changing the stress, we update the forces on the nodes.
This process repeats iteratively. Periodically, the separation
tensor at each node is updated and the crack-generation
routine, described in Section 4.3, is invoked.

We can treat boundary edges in our mesh as either free
or fixed. For fixed boundaries, we simply zero the net force
acting on the fixed boundary vertices prior to computing
stress updates. Free boundaries require no special action
by the algorithm. The boundary edges introduced during
crack generation are treated as free open boundaries so
that relaxation will relieve stress components perpendicu-
lar to the crack edges. An example of a simulation with a
fixed boundary is Fig. 5 where the glaze meets the base
of the cup. Notice that the majority of the cracks along this
boundary are perpendicular to it, as they are in the photo-
graph of a real teacup.

The above equations implement a simple forward Euler
step of stress relaxation. Just as faster methods have been
used for integrating diffusion in the context of mesh
smoothing, we could likewise accelerate our algorithm by
using a more sophisticated integration scheme. However,
we have so far found our computation times to be suffi-
ciently fast and therefore have not invested time imple-
menting a more sophisticated, and presumably faster,
method.

4.2. Other stress field updates

In addition to relaxation, there are other ways to update
the stress field. We model uniform shrinkage of the object
by adding cd, where c is a positive constant factor and d the
identity matrix, to the stress tensor of each element. This
amounts to generating uniform tension in the mesh, as
illustrated by Figs. 5 and 6.

We also model anisotropic materials and impact pat-
terns by specifying directionally varying stress patterns
(Sections 4.2.1 and 4.2.2, respectively). As artistic effects,
we use curvature (Section 4.2.3) or an input pattern
(Section 4.2.4) to update the stress field. Additionally,
we want to avoid stress patterns that are identically uni-
form as they can create unrealistic artifacts in the result-
ing crack pattern. The discretization error in an
unstructured mesh adds some inherent randomness to
the stress field. We can also add randomness to the ten-
sor field explicitly.



Fig. 5. A rendered example of a crackle glaze cup (left) compared to a photograph (right). Our algorithm generates this effect by initializing the stress field to
uniform shrinkage over the surface and evolving it with uniform tension. Total computation time was 31 min with a 39,611 triangle input mesh.

Fig. 6. Example of a crackle glaze teapot, generated by initializing the
stress field to uniform shrinkage and evolving it by adding uniform
tension. This example required 4.27 h computation with an input mesh of
60,000 triangles.
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4.2.1. Modeling anisotropic materials
We can also model anisotropic materials, such as wood,

by heuristically specifying the stress field. In terms of
internal forces, an anisotropic material may have forces
acting in one orientation only. To create directional crack
patterns, we add directional forces to the stress field by
projecting the desired direction to the local 2D coordinate
system of each element, giving direction vd. We update the
stress tensor by

r0 ¼ rþ vT
dvd: ð10Þ

For a real-world example of cracks forming in one direc-
tion, we examined wood, a simple anisotropic material
that is stronger along the grain than across it. We model
wood cracking along the grain by using a directional stress
field that is perpendicular to the grain. Fig. 7 shows an
example of the resulting crack pattern along with a photo-
graph for comparison.

We can also model the cracks forming in the cross-sec-
tion of a sawn tree trunk. These types of wood cracks
form perpendicular to the tree rings. We initialize the
stress field to follow the rings, forming a circular stress
field around the center of the tree. To calculate the direc-
tion to add to the stress field, we use Eq. (13) derived in
the next section. We show an example of the cracks cre-
ated from a circular stress field and a photograph for
comparison in Fig. 8.
4.2.2. Modeling impact patterns
We can generate impact patterns on a surface by initial-

izing the stress field appropriately. However, the stress
field generated by an impact varies based on the material.
For flat glass, we model a low-velocity impact fracture, the
type of impact that produces surface crack patterns instead
of pulverizing the glass. When the pane of glass is held in
place, radial cracks initially form outward from the impact
point, followed by concentric cracks [30].

We model this crack interaction by initializing the
stress field with low stress radiating outward from the im-
pact point and high stress in the concentric direction, as
demonstrated by Fig. 3. After picking an impact point, p,
we determine the area where the stress pattern is defined
from a user-specified radius, r. We use a falloff function to
weight the stress amount at each triangle center c½i� so that
the stress is initially concentrated near the impact point
and decreases to zero at the edge of the impact radius.
After experimentation, we found the following weighting
function to give us the desired falloff:

wi ¼ 2:0 cos
di

r

� �
; ð11Þ

where di is the Euclidean distance from the i-th triangle
center to the impact point. We determine the radial direc-
tion by first computing the vector

vrad ¼ wi
c½i� � p
j c½i� � p j

� �
ð12Þ

and converting it to the triangle’s coordinate system so
that it can be added directly to the stress tensor, giving
v0rad. The concentric direction is the perpendicular vector
given by



Fig. 8. We show an example of wood cracking perpendicular to the grain at the sawn end of a tree trunk (left) compared to a photograph (right, copyright
2005 Mayang Adnin). We used a concentric stress field, radiating outward from the center of the tree point, to model the anisotropic stress. Total
computation time was 10.1 min on a 79,202 element mesh.

Fig. 7. An example of cracked wood along the grain (left) compared to a photograph (right, copyright 2006 Mayang Adnin). We used a vertical stress field to
model the anisotropic material. Total computation time was 19.2 min on a 79,202 element mesh.
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vcirc ¼ 1:25 v0rad

� �?
: ð13Þ

Recall that cracks form perpendicular to the largest force
direction acting on a node. To ensure that the radial cracks
form before concentric cracks, we use the scaling factor
1:25 in the above equation, giving larger forces in the con-
centric stress field than the radiating stress. After comput-
ing these two directions, we add them each to the stress
tensor using Eq. (10).

4.2.3. Using curvature
Another way to update the stress field is with the ob-

ject’s curvature. We estimate the principal curvature using
the discrete operator given in [4]. As an update, we add a
specified amount of the curvature tensor to the stress ten-
sor, causing areas with high curvature to be more prone to
cracking as illustrated by Fig. 2. Alternatively, we can mul-
tiply the separation tensor by a scaling factor, such as
Gaussian curvature, mean curvature or the Frobenius norm
of the curvature tensor. Directly modifying the separation
tensor controls the distribution of cracks on the surface,
as demonstrated in Figs. 4 and 15.
4.2.4. Defining arbitrary stress patterns
Our method also allows us to arbitrarily set the stress

field. For example, we used texture mapping to define the
concentration of stress. Given a gray-scale image, we use
the color assigned to a triangle’s center to determine the
amount of stress on that element. It is arbitrary how this
weight is defined, but we decided to have the weight range
from ½0;1� by directly using the intensity of the colors from
white to black. For our example, we multiply a uniform
shrinkage stress tensor by this weight, giving the highest
stress where there is black in the input image and no stress
where there is white. See Fig. 9 for an example.

4.3. Generating cracks

As described in Section 3.4, we use the separation ten-
sor 1 to determine where to crack the mesh. We insert
the largest positive eigenvalue, vþ, of each node’s 1 into a
priority queue. We then iteratively crack based on the larg-
est values in the queue. When the top eigenvalue is larger
than the material toughness threshold, s, a crack occurs at
the corresponding node. We generate cracks in the direc-



Fig. 9. We can use an input image, such as the letters ‘‘crack”, to define
areas with high stress and produce the small scale cracks shown in the
center. We then created the large scale cracks with a second simulation
by decreasing the stress in the letter region and reinitializing the
surrounding area to uniform shrinkage.
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tion perpendicular to the corresponding eigenvector. To
compute where new edges should be inserted in the mesh,
we intersect the plane defined by n̂þ with the surrounding
triangles. The intersecting triangles are split, creating new
free boundary edges in the mesh. We do not add a new
crack edge if it is too close to a current crack edge, avoiding
back-cracking as described in [27] and illustrated in Fig. 10.
This plane-triangle intersection is fast in comparison to
splitting and remeshing tetrahedra, an advantage of com-
puting cracks on a surface discretization.

The results generated by our method depend on the res-
olution of the discretization of the model, only generating a
crack in the elements surrounding the node at each time
step. We use the approach presented in [25] to propagate
the crack further. After cracking a node, we compute a
residual value v� ¼ vþ � s. We then modify the separation
tensor of nodes at the crack tip by
θ1

θ2

Fig. 10. The dotted line (crack plane) gives the location of a new crack.
Bold edges are crack edges. Left: After crack edges are added, we locally
remesh to ensure all elements are triangles. Middle: Cracks are snapped to
an existing edge if h1 is less than a set threshold (ex: 15�). Right: Cracks
are also snapped to an existing crack edge when h2 is less than a set
threshold (ex: 25�), avoiding back-cracking.
10 ¼ 1þ amðn̂þÞv�; ð14Þ

where a is an input parameter in the range ½0;1�. Small val-
ues for a result in more jagged cracks while large values
cause the cracks to propagate further in the same direction.
The parameter a heuristically captures material inhomoge-
neities, effectively controlling the jaggedness of the cracks
in the simulation, as illustrated in Figs. 11 and 12. For our
trials, we used a values near 0:5 to generate jagged cracks
and in the range ½0:8;0:9� to generate longer cracks. The va-
lue of the a parameter can not be greater than one; other-
wise, the eigenvalues of the separation tensor will
continually increase at each step, quickly causing the sim-
ulation to become unstable.

Even after updating the separation tensor using Eq.
(14), we found that we were unable to generate certain
types of long cracks. For example, cracks that initially form
in ceramic glaze are often long and wrap around the object.
To create this type of crack, we add a small constant factor
to the residual, v�. We found that the value 0:25 produces
the desired result, as demonstrated in our ceramic glaze
examples (Figs. 5 and 6).

Small or poorly shaped elements can introduce numer-
ical instabilities in the simulation. We attempt to avoid
creating ill-shaped triangles by snapping crack edges to
mesh edges if they are close, as described in [27] and illus-
trated in Fig. 10. However, some slivers are large enough
that edge snapping would create objectionable artifacts,
yet still small enough that they would generate poorly con-
ditioned elements.

We can trace the numerical instabilities in the simula-
tion back to very large singular values in the b matrix.
We initially compute a threshold based on the average sin-
gular value from the input triangles’ b matrices. Each time
an element is split and we calculate b matrices for the new
triangles, we compute its SVD and examine the singular
values. If any singular values exceed our conditioning
threshold, we replace them with the threshold value and
reconstruct the b matrix. The effect on the behavior of
the simulation is that these small slivers become more
compliant in the direction with large singularity. This
change causes the system to remain numerically stable
even with poorly shaped elements.

5. Post-processing

During the simulation, we do not change the positions
of the nodes. For some examples, such as ceramic glaze,
displaying the results does not require moving the node
positions because the crack widths are small. Instead, we
can render the results directly, as described below. How-
ever, for larger crack formations, we perform a post-pro-
cessing step to compute crack widths. We can also add
other types of effects after the simulation, such as curling
or force-propagating cracks until they hit boundaries.

Because we allow the user to choose when the simula-
tion terminates, some cracks may not have finished form-
ing. We provide a method that propagates these crack tips
until they terminate at another crack or mesh boundary.
Our simulation keeps track of crack tip vertices as it pro-
gresses. However, crack tips may also form when two



Fig. 11. A rendered example of dried mud (left) compared to a photograph (right, copyright 2004 Mayang Adnin). We used uniform shrinkage of the surface
and set a ¼ 0:85 to propagate the cracks further, requiring 2.05 min computation time on a 19,602 triangle input mesh.

Fig. 12. A comparison between rendered dried mud (left) and a photograph (right, copyright 2004 Mayang Adnin). As in Fig. 11, we used uniform shrinkage
of the surface, but changed a ¼ 0:5 to demonstrate controlling the crack propagation parameter. Total computation time was 1.5 min on a 19,602 triangle
input mesh.
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cracks intersect during growth. We detect this second case
by searching for cracks with angles greater than 270� be-
tween two crack boundary edges. We treat the correspond-
ing vertex as a crack tip.

After stopping the simulation, we finish cracks by set-
ting the separation tensor of the crack tip’s vertex to its
residual tensor. This ensures that we continue cracking in
the last known crack direction. We then crack the mesh
as before, including the relaxation step because we need
to compute the position change for generating gaps in
the mesh. Finishing cracks effects the simulation results
so it must be executed before other post-processing steps.
This method is used in some of our examples, including
Figs. 5, 11, and 15.

For the ceramic examples, we implemented a shader
that interpolates information about crack locations to ren-
der dark lines. This rendering technique is demonstrated in
Figs. 5 and 6. To achieve this effect, we treat each triangle
separately and annotate its vertices with the distance to a
crack edge in the triangle, if present. We split triangles
with multiple crack edges into triangles with only one
crack edge to ensure that this distance metric remains un-
ique. Otherwise, the entire element would be treated as a
crack and would be shaded the crack color.
For some of our examples, such as Figs. 3 and 11, we
wanted to create a visible gap at the crack locations. To
do so, we sum the change in positions from Eq. (4) for each
node n as we compute them in the relaxation process:

DT p½n� ¼
XR

i¼1

cg½n�; ð15Þ

where R is the total number of relaxation steps and c a
parameter controlling the rate of movement. As a post-pro-
cessing step, we displace the nodes by this vector. This dis-
placement generates gaps in the mesh where the cracks
occur. To fill the gaps, we build rectangles connecting the
displaced crack node positions to the original positions,
offset inward perpendicular to the surface by a user spec-
ified amount. This creates nice side-walls for the cracks,
as illustrated in Figs. 11 and 12. Other examples using this
method include Figs. 1 and 2. Note that this post-process-
ing movement is performed after the simulation is fin-
ished. Poorly shaped or inverted triangles that may result
do not create difficulties at this stage.

We can also add a curling effect to the crack edges, as
found in some mud and peeling paint. To model this phe-
nomena, we use the magnitude of the result from Eq.



Fig. 13. Example of adding a curling effect to the cracked mud from
Fig. 12. This example required 1.5 min computation time on a 19,602
triangle input mesh.

Fig. 15. Another example of an artistic effect achieved by using curvature
to bias the concentration of cracks. In this example, the separation tensor
was weighted by j2

1 þ j2
2 where j1 and j2 are the principal curvature

values. Computation time was 1.23 h on a 30,008 element mesh.

H.N. Iben, J.F. O’Brien / Graphical Models 71 (2009) 198–208 207
(15), giving the distance the node moved on the surface.
We then move the crack nodes in the normal direction
by a user-defined portion of this displacement. By itera-
tively propagating this change to the surrounding nodes,
we produce a lifting effect. An example of curled mud is
demonstrated in Fig. 13.

6. Results and discussion

We implemented the method described above in C++
and rendered our results using the open source renderer,
Pixie. The running time of the algorithm is dependent on
the mesh resolution and concentration of cracks on the
surface, with the largest amount of time spent in the relax-
ation process. Because adding cracks increases the size of
the mesh, the computation time for each iteration also in-
creases. However, we found the simulation times to be rea-
sonable on a Macintosh 2.5 GHz G5 computer with 2.5 GB
of memory. These times are given in the figure captions.

Our method generates crack patterns similar to a vari-
ety of cracks found in nature. For example, ceramic glazes
often contain cracks, sometimes generated intentionally by
a crackle glaze process. Our method simulates this effect
by uniformly shrinking the surface and evolving the stress
field with uniform tension. The results of simulating this
phenomenon appear in Figs. 5 and 6. We also provide a
comparison photograph with a Japanese teacup in Fig. 5.

Crack patterns also occur in glass for various reasons.
When the outer layer of molten glass cools rapidly, as hap-
pens when submerged in water, it solidifies without
chance for annealing. The resulting thermal shock causes
the solidified outer layer to crack, creating glasswork
known as ‘‘crackle glass.” Because this layer adheres to
Fig. 14. An animation of mud drying for Fig. 11, simulated by se
the inner core of molten glass, the object retains its overall
shape. We model this effect by initializing the stress field
to uniform shrinkage, as illustrated in Fig. 1.

Flat glass also cracks in a particular manner when
struck by an object, as described in Section 4.2.2. We allow
the user to specify a stress field on the object to model this
impact effect and demonstrate our results in Fig. 3. As a fu-
ture direction, we could extend our system to allow users
to specify arbitrary stress fields on objects.

During the mud drying process, cracks form to alleviate
the stress that builds on the surface. Our method generates
similar results by using uniform shrinkage, as demon-
strated in the comparison between our results and photo-
graphs in Figs. 11 and 12. The simulation generating these
results differed in the parameter controlling crack propa-
gation, a. Capturing such a mud cracking process with
time-lapse photography is time consuming because drying
can be slow. Our method is able to generate animations of
the cracking process similar to the real world by writing
frames as the simulation progresses, as demonstrated in
Fig. 14. We also generate a curled version of Fig. 12 in
Fig. 13. These examples demonstrate the ease of generating
different results by varying a few parameters.

We also model anisotropic materials by using a nonuni-
form stress field. For example, we model cracks forming
along the wood grain by initializing the stress field to lie
in the direction perpendicular to the grain. We demon-
strate cracks created by this method in Fig. 7. We also cre-
ate wood cracked along the rings of the sawn end of a tree
by initializing the stress field along the rings. The resulting
cracks are perpendicular to the rings, as illustrated in Fig. 8.

Our method can use the object’s geometry to influence
crack patterns. For example, the simulation creating Fig. 2
tting the stress field to uniform shrinkage of the surface.
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initialized the stress field to uniform shrinkage and then
biased it in the principal curvature directions. This is illus-
trated by the vertical cracks in the left arm and the cracks
along the folds of cloth. We can also bias the cracks to form
in regions of high curvature by scaling the separation ten-
sor. We use the Frobenius norm of the curvature tensor as
a scale factor in Fig. 4 and the sum of squares of the prin-
cipal curvature values in Fig. 15, generating a higher con-
centration of cracks in high curvature regions.

The method presented in this paper generates a vari-
ety of crack patterns by combining a physically based
simulation with traditional appearance driven heuristics.
With this approach, we obtain the realism of a physically
correct simulation but keep the controllability of a heu-
ristic based method. We compare some of our results,
such as the mud and ceramic glaze, with photographs
to demonstrate the realism generated by our method.
Although the images are different, the generated crack
patterns have qualitatively similar characteristics to the
real ones. Our approach could be incorporated into an
artistic tool, enabling users to paint a stress field on an
object to easily generate various cracking results using
one system.
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