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ABSTRACT  
 

We discuss the design and implementation of CAD tools for creating decorative  solids 
that tile 3 -space in a regular, isohedral manner. Starting with the simplest case  of 
extruded 2D tilings, we describe geometric algorithms used for maintaining  boundary 
representations of 3D tiles, including a Java implementation of  an interactive 
constrained Delaunay triangulation library and a mesh -cutting  algorithm used in  
layering e xtruded tiles to create more intricate designs. Finally, w e demonstrate a CAD 
tool for creating  3D tilings  that are derived from cubic lattices. The design process for 
these 3D tiles is  more constrained, and hence more difficult, than in the 2D case, and 
it raises  additional user interface issues.  
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1.  INTRODUCTION  
 

M. C. Escherõs intricate tilings are well known [9]  and appreciated by many people ; the intriguing, 
natural looking shapes that tile the plane in a regular manner have fascinat ed mathematicians, artists, 
and tiling hobbyists  (Fig. 1a). However, w ithout the help of computer graphics tools, it is rath er 
difficult and labor intensive to create aesthetically pleasing  tilings of this kind. Because of the wide -
spread interest in such patterns , many easy -to -use graphics tools have been created and made 
available on the web , allow ing  members of  the general p ublic with no special training in the graphics 
arts o r in computer science to experi ment with and generate innovative  regular patterns  [10] . 
 

 
 
Fig. 1: Escher -like tilings on 2 -manifolds: (a) in the plane; (b) on a sphere;  (c) in the Poincar é disk;  and 
(d) on a genus -3 òTetrusó surface.  
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Such tilings can  also be created in non -planar domains . Fig. 1(b) shows a spherical tiling made from 60 
identical tiles  [18]  that were fa bricated  on a rapid prototyping machine , and Fig.  1(c) displays a 
hyperbolic tiling  in the Poincaré disks, where the tiling becomes infinitely dense towards the rim of the 
circular domain. In fact, a ll  planar tilings can be generalized to hyperbolic patter ns by simply packing  
more instances of the tile around its shared vertices. Spherical tilings,  on the other hand , are limited to 
the symmetries of the Platonic solids, since they  have the added constraint  of  clos ing  smoothly around 
the back of the sphere. There are several tiling generators on the web for hyperbolic tilings , e.g. [6] , and 
also  for the spherical domain , e.g. [19] . In some isolated experiments , Escher-like tiling patterns have 
also bee n placed on symmetric surfaces of higher genus , e.g., onto a torus [16]  and onto a genus -3 
surface with tetrahedral symmetry  [12] , as in Fig. 1(d) . In both cases , special ly designed CAD tools were 
created  to address  the particular  challeng es of those tasks.  
 
Prompted by the emergence of affordable layered manufacturing machines and rapid -prototyping 
services, we began to explore the possibility of  mak ing  Escher-like tilings th at would  fill 3 -space 
regularly and seamlessly. This exploration space is much larger than the 2D domain. First , there are 
many more symmetry groups in 3 -space than in the plane. Second, the 3D tiles can be of a genus 
higher than zero, they can interlink with their neighbors, and  they can even be knotted! An exploratory 
paper [13]  surveys many of these possibilities , and conclude s that different approaches and tools 
would be needed to design such  tiles.  
 
In this paper , we are mainly concerned with CAD tools that help in the construction of isohedral tiles 
of genus zero , with  complex (possibly free -form) surfaces , and which  may or may not resemble shapes 
found in nature. In the 3D domain , new challenges arise for the development of appropriate CAD 
tools.  The data structures and geometrical algorithms are more complex ; but also there are user -
interface issues arising from both the limitations of projecting a 3D object onto a 2D viewing screen 
and the geometric interdepen den cies caused  by the imposed symmet ries . With 2D tiling s, the 
prototype tile and its nearest neighbors can readily be displayed  in one comprehensive view , but  this 
is no longer the case  for 3D tilings . If we deal with only one  isolated tile, then we can see at most half 
of its surface , and if we display more than one tile, we may encounter occlusions. Furthermore, it is 
important to view all faces that are modified as the result of an editing operation, yet , because of the 
tile õs symmetries, these faces are typically  opposite each other on t he tileõs surface. In the following , 
we address th ese issues and present CAD solution s. 
 
2.  SIMPLE 2½-DIMENSIONAL  TILINGS  
 

As a warm -up exercise , we started by constructing a n editing tool for a  2½D tile . A tile  that tessellates  
2-space i s extruded in to a slab , and layers of these tiles are then stacked to fill 3-space. The 2D outline 
of the  tile can be  designed with one  of the many available 2D tools , but  additional facilities are needed 
for  shap ing  the top and bottom surfaces of this tile. This intermedi ate 2½D design tool allowed us to 
explore suitable data structures and geometrical algorithms, and to debug them in a less complicated 
context  than the full 3D case . 
 

 
 
Fig. 2: Four 2D symmetry groups: (a) IH01, hexagonal domain  with translational  symmetry; (b) IH41, 
rectangular domain with translational symmetry;  (c) IH79, right -triangle  domain with 4 -fold rotational 
symmetry ; and (d) IH31, kite -shape domain w ith 6 -fold rotational symmetry.  
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In our 2½D editor, we have implement ed four symmetry groups (Fig. 2). The first is a simple isohedral 
tiling with only translational symmetry (IH01;  type p1 [4] ; Conway notation: 0 [1] ). The simplest 
repeatable unit of this tiling (it s fundamental domain ) is a skewed hexagon  in which opposite sides are 
identical, translated copies of one another. A similar  group, IH41 , uses a rectangular instead of 
hexagonal domain with  the same translational symmetries. A third example uses higher -ord er 
symmetries  (IH79; type p4; Conway notation: 442). Its fundamental domain is an isosceles  right 
triangle in which the two legs transform into one another by a 90 ° rotation around the shared vertex, 
and half the hypotenuse maps into the other half by a  180° rotation around its mid point ( Fig. 3b,c & 4). 
Finally, IH31  (type p6; Conway notation: 632) is similar to  IH79, but has 6 -fold symmetry around its 
shared vertex and a kite -shaped fundamental  domain.  
 
The construction of a 2½D Escher tile occurs in two distinct phases. From a userõs perspective, the 
first phase resembles that of existing  2D Escher tile editors. The user picks one of the  symmetry 
group s and is given a basic shape th at represents the fundamental domain of th is group. This tile can 
now be m odified in the context of all its neighbors and of the whole tiling array. Any change made to a 
segment of the edge of a tile is readily replicated on all corresponding edge segments on all other 
displayed tile instances. The user can also decorate the int erior of the tile with extra points and 
constrained line  segments  (Fig. 3a, 4a). 
 

 
 
Fig. 3: Simple 2½D Escher tiles : (a) height -editing of the top surface ; (b) 3 identical tiles, the white ones 
seen from top, the red one seen from bottom ; (c) the 3 tiles stacked on top of one another . 
 
In the second editing phase , the whole tile is extruded uniformly to a chosen thickness, and then the 
top surfaces can be further modeled into a non -planar, single -valued height field by moving v ertices  ð
both on the boundary and  in the interior of the tile  ð up or down in the  vertical direction  (Fig 3a). 

During this edit phase, a single tile is displayed as a 3D object that can be arbitrarily rotated around 
its center of gravity , allowing the desi gner to  choose a convenient viewing direction that best shows 
the 3D deformations being performed. To allow some structured height -editing, multiple vertices can 
be selected  and all their heights changed si multaneously by the same amount  by simply dragging  one 
of those vertices up or down in a direction perpendicular to the base plane of the tile . As a (not 
particularly interesting) default case, the bottom surface of the tile is modified in exactly the same way 
as the top surface  (Fig. 3b), so that the 3D tiles would then stack on top of one another forming a 
single prismatic column (F ig. 3c). And of course these columns would fit together laterally and fill all 
of 3 -space. 
 
In a more interesting 3D isohedral tiling, subsequent layers of these tiles will be  shifted with respect to 
one another, so that, for instance, the belly of a bird -like tile rests on top of the wings of the bird in 
the layer below. So far, we have restricted ourselves to isohedral tilings, so the lateral offset from one 
layer to the next  one above must always be the same. This lateral offset is conveniently specified at the 
end of Phase I of the edit process, by grabbing the proto -tile and shifting it laterally with respect to the 
complete 2D tiling. The bottom surface of each tile is giv en by a combination of different parts of the 
top surfaces of the tiles in the layer below. In essence, the outline of the prototype tile is used as a 
òcookie cutteró to carve out a suitable mesh from the height field formed by all the top surfaces of all 
the tiles in the layer below. This carved out mesh is then connected with vertical, prismatic side walls 
to the top surface of the proto -tile to form a closed, water -tight, 2 -manifold boundary representation 
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of the 2½D Escher tile. In the translational sym metry cases, the lateral offset between two  tile layers 
can be arbitrary; any constant shift between two subsequent layers will  lead to all identical tiles. In the 
case of the rotational symmetry groups, however,  only very special offsets will result in an  isohedral 
tiling , i.e., a shift along one of  the legs of the f undamental triangle for IH79  (Fig. 4). 
 

 
 
Fig. 4: Fancier 2½D tiles : (a) proto -tile of tiling type  IH79 ; (b) top and bottom view of the extruded 2½D 
tile ; (c) four t iles put together in one layer  and  two more tiles placed in layer above . 
 
2.1  Interactive Constrained Delaunay Triangulation  
Top and bottom surfaces of the resulting 2½D Escher tile are represented as triangle meshes . Only 
points that were  entered into the  proto -tile during Phase I of the editing process can be used to define 
the  shape of the final tile. Thus , enough points and poly -lines need to be drawn in Phase I , so that 
desired features such as the eyes, mouth , and fins o f  a fish, or the rib -patterns o f  a leaf , can be formed 
by vertical extrusion during Phase II of the shape editing.  
 
We create a mesh of good quality for the final boundary representation of the Escher tile  by 
performing a constrained Delaunay triangulation of the interior of the proto -t ile  during Phase I  (Fig. 
5a). It is advantageous to show the designer the resulting triangulation after every edit step in Phase I, 
so that she can readily judge whether that triangulation is rich and robust enough to allow for the 
formation of the desired  extruded features during Phase II. Writing a truly robust , high -performance  
library  for  constrained Delaunay triangulation is a non -trivial task , and  we contemplated using the 
well -tested Triangle  package  [14] . However, severa l considerations discouraged us from taking this 
approach. First, Triangle  only operates in batch mode , deliver ing  the Delaunay triangulation after all 
the constrain ed points and line segments have been placed. It seemed wasteful to run this process 
after every new placement or slight movement of a point in the proto -tile. Second, we wanted to 
develop our tile editor as a web -ready  Java application,  but a Java implementation of Triangle  does not 
exist . Triangle õs C codebase could be retooled to  use the Java  Native Interface , or a platform -specific 
Triangle  executable could be called r emotely on ASCII mesh data files from within Java, but both of 
these solutions would compromise platform -independence . 
 
Therefore, we decided to implement an incremental algorit hm for creating and modifying a Delaunay 
triangulation on the fly as the designer performs editing operations. Potentially, this could amount to 
a daunting task, considering how much effort was spent in the development of Triangle  on issues of 
precision an d numerical stability. Triangle  uses adaptive precision  arithmetic to avoid inconsistencies 
[14] , but  there are also less efficient ways to achieve robustness that are not as difficult to implement 
as adaptive routines . Moreove r, o ur editor has different goals and constraints that do not call for a 
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high  level of precision. First, the editor  is limited by screen resolution; designers never input 
coordinates, and they judge the results visually to decide whether the resulting mesh  fits their needs. 
We want to discourage the generation of many narrow sliver triangles; overly -complicated geometry 
cannot be realized accurately  by the layered manufacturing machines used to fabricate the tiles. Thus, 
our triangulation algorithm automati cally merges vertices that are placed too closely together, and 
subdivides and snaps line segments to new vertices that are placed too closely to them. If the result is 
not acceptable, the designer can always grab a vertex in question and move it to a slig htly different 
location. We need to invoke robust routines in only a few places in our code . Thus  with some careful 
consideration of critical  cases, we have written a quasi -robust triangulation algorithm without 
resorting to the more  complex  (but more  effi cient ) adaptive precision approach used by Triangle . 
Having a triangle mesh available during Phase I of the editing process also provides a convenient data 
structure in which to locate new points and check for illegal edit moves, e.g., boundary deformation s 
that would lead to a self -intersecting boundary.  
 

 
 
Fig. 5: Incremental Delaunay triangulation : (a) the mesh of a decorated fish tile with constrained edges 
(magenta) ; (b) a mesh search from vertex A to face B, which exploits the symmetry of the tile by moving 
directly through an adjacent copy; (c ) the n -gonal hole resulting from removing a vertex . 
 
Our implementation allows t he user to  add, move, and remove boundary and interior vertices , to 
constrain edges , and even  to  inters ect constraint edges , all in real -time.  We use Lawsonõs incremental 
insertion algorithm [8]  to compute the Delaunay triangulation,  which iteratively adds vertices to the 
existing triangulation and is therefore well -suited to ou r interactive approach.  The mesh is backed by a 
half -edge data structure  [3] . Most  editing  operations involve  searches over the half -edge structure and 
modif ication  and re -linking of the half -edges. For example , the vertex inse rtion  operation starts by  
search ing  for the face in the existing mesh  that contains the site of the new vertex . Our heuristic for 
choosing a starting site for the search is to use the last insertion site, since designers will often add 
features  as localize d groups of vertices . The search moves from triangle to triangle in the direction of 
the new vertex location. It exploits the  symmetry of the overall til ing  and follows a direct path to the 
insertion site by  moving through adjacent , transformed  copies of t he tile  if necessary  (Fig. 5b). Once 
the containing face is found, the new vertex is inserted by creating additional half -edges and re -linking 
the data structure to split the existing triangle  into three new faces . If the inserted point lies too close 
to a n existing edge, we instead snap the point to that edge and split the two adjacent faces.  
 
Temporary  polygonal holes do arise (Fig. 5c) when  vert ices are moved or removed, and they require  a 
polygon filling algorithm that is robust for  the types of simple polygon s that arise in these situations . 
For ease of implementation, we use an O(n2) algorithm  published by Anglada [1] , which starts with an  
edge that is òvisibleó to the other vertices of the polygon, meaning that those vertices can be 
connected to the edgeõs endpoints without leaving the polygon. The algorithm finds  the vertex with 
the largest circum -circle through the edge, and uses that vertex and the edge to form a triangle lying 
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inside the polygon. This procedure is recu rsively applied to the polygons that remain on  either side of 
the new triangle . Although t here exist more refined  polygon -filling  algorithms  with running times 
ranging from O(n log n) to the theoretical  lower bound of O(n) [11] , they are more complicated to 
implement , and in practice we are typically  filling small polygons , where speed is not an issue . In an 
improved version  of our library , we could  implement  Seidel's O(n log* n) randomized incremental 
algorithm  [11]  as a reasonable trade -off between complexity and  speed . 
 
As mesh editing operations are performed,  modified half -edges are added to a running òDelaunay testó 
queue that is  cleared by performing an in -circle Delaunay test on each edge, fli pping the edge if 
necessary . When an edge is flipped, its four neighbors are subsequently added back onto the queue.  
This process is guaranteed to terminate  because the  circum -radii of the triangles are strictly 
decreasing and there are only finitely many triangulations . Proofs of th is and other  mathematical 
properties  of the algorithm  are available  in a succinct treatment by Sibson  [17] . 
 
2.2  Cookie -Cutter Operation  
The bottom mesh of a laterally -offset  2½D Escher tile has to b e generated using a cookie -cutter 
operation  that  crops the appropriate geometry from the top meshes  of the tiles  in the underlying 
layer , allowing  the layers to align properly and  fit together seamlessly . Once a lateral offset has been 
specified (Fig. 6a),  we form  the  cookie cutter by copy ing  the tile mesh , retain ing  only the boundary 
edges and triangulating the interior  with temporary edges  (Fig. 6b)  to facilitate subsequent  vertex 
insertion s. Then we move the  cookie cutter  to the offset location and walk  its  boundary  to find all 
intersections with the under ly ing landscape . The underlying landscape is made up of many copies of 
the tile mesh , which  have been sub jected to the tileõs symmetries. But when we start the boundary 
walk , we only load the copy that c ontains the first vertex of the cookie -cutter boundary . As the  cookie  
cutter  travers es boundary edge s in  the landscape , we load on demand the appropriate adjoining mesh 
copy . This on -demand approach bypasses the problem of determining a priori  the planar e xtent of the 
cookie cutter  across the mesh  copies  forming the underlying landscape . 
 

 
 
Fig. 6: Cookie -cutter operation : (a) a cookie -cutter contour (blue) has been offset from the underlying 
landscape (gray), whose meshes will s ubsequently be loaded on -demand ; (b) intersection points (green) 
are found by walking the cookie -cutter boundary, which is temporarily filled with interior edges (gray) 
to enable later vertex insertions; (c) edge fragments in the active queue have been add ed as constraint 
edges (magenta) ; and (d) the remaining landscape edges lying inside the cookie cutter have been found 
via flood fill and added as constraint edges (magenta) . 
 
When the cookie cutter  bisects an underlying edge, the int ersection point is add ed to its  boundary  (Fig. 
6b), and the fragment  of the edge projecting inside the cookie cutter  is retained and placed on a n 
òactive fragment ó queue. In order to catch all the fragments that might  arise when an underlying edge 
is bisected multiple times fro m different directions, new fragments  are checked for intersections with 
all existing fragments in the queue. As an additional optimization, we have implement ed separate 
queues for each underlying edge to reduce unnecessary intersection tests.  When the bou ndary  walk 
finishes, all active fragments and their endpoints are added to the interior of the cookie cutter, and are  
marked as  constrain ed edge segments (Fig. 6c). The algorithm performs a  òflood fill ó on the endpoints 
to collect  any remaining edges of th e landscape that lie  inside the cookie cutter  (Fig. 6d). The resulting 
cookie -cutter mesh now contains all of the  cropped geometry of the underlying landscape and 
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becomes the bottom mesh of the 2½D tile . Quadrilateral side -wall faces are added  between 
corr esponding boundary edge segments in the to p and bottom meshes, and t he resulting water -tight 
boundary representation can be output  in .STL format , which is understood by almost all layered 
manufacturing machines . 
 
The cookie -cutter problem was another  moti vat ion  for our deci sion to implement a constrained 
Delaunay triangulation algorithm  in Java . Tackling th is problem with Triangle , for example, is possible 
but not straight -forward . In particular, we would have to i dentify the extent of the landscape  needed  to 
cover  the cookie cutter , and copy, transform, and aggregate that geometry at the start (as opposed to 
loading the landscape geometry on -demand) . Next, we would constrain all of the edges to prompt 
Triangle õs automatic split ting of intersecting edges, a nd finally r emove all geometry exterior to the 
cookie cutter  by using Triangle õs òtriangle-eating virusó mechanism  [14] . However, many 2½D tile 
designs utilize off sets that create coinciding vertices and/or partly coinciding ed ge segments  between 
the cookie cutter and  the landscape , e.g., when an interior feature on the top mesh is lined up with a 
boundary feature on the bottom mesh . In these cases Triangle õs use of adaptive precision arithmetic 
would likely create  many undesira ble sliver triangles.  
 
3.  THREE-DIMENSIONAL CUBIC -LATTICE  TILINGS  
 

There exist many more symmetry groups and tiling groups in 3 -space than in the plane. In our 
prototype 2½D implementation , we have realized only four  planar symmetry groups , but have creat ed 
a modular framework that allow s for incorporation of other tiling symmetries at a later time.  For 
instance, we could use the complete set of 91 isohedral tiling parameterizations as categorized by 
Kaplan and Salesin [7] . To our knowledge, there is no similar categoriz ation of 3D tiling  groups, and  
the number of possibilities  is much larger than in the 2D case.  
 

 
 

Fig. 7: Fundamental domains of 3D tiling, and nearest neighbors for: (a) a truncated o ctahedral cell 
based on the body centered cubic lattice; and (b) a rhombic dodecahedral cell based on the densest 
sphere packing.  
 
In  our 3D tile editor, we have implemented  two tiling groups  so far . For both, we  start by displaying a 
corresponding polyhed ron representing the fundamental domain.  The first tiling is derived from the 
body -centered cubic lattice, with a truncated  octahedron as its fundamental domain (Fig. 7a). However, 
we only consider  translational symmetries, and thus allow the user to perfo rm arbitrary affine  
distortions of the underlying coordinate system. In this scheme, each cell has 14  nearest neighbors, 
and its fundamental domain can always be represented as a polyhedron  with 7 pairs of opposite, 
parallel, and identical faces. A second tiling that  we have explored is based on the densest sphere 
packing, with the rhombic dodecahedron  as its fundamental domain (Fig. 7b). Again, since we only 
consider  translational symmetries, this domain can be distorted  into a polyhedral shape with  6 pair s 
of opposite, parallel, and identical faces.  
 
3.1 Pane-based Editing Workflow  
Initially, these fundamental domains are not offered to the user as 3D objects that can be freely edited 
in a 3D domain. Instead, there is again a Phase I of the editing process , where we present the 
individual faces of the fundamental domain to the user as 2D òpanesó that can be decorated with extra 
vertices and edges (Fig. 8a). These are later manipulated to create 3D free -form shapes during a second 
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editing phase. To provide c ontext, the 14 or 12 panes of the whole domain are always shown as a 3D 
object that can readily be rotated around its center of gravity with a òcrystal ball ó or òorbitó interface  
[5] . A right  click into one of these panes of th e fundamental domain snaps that  pane  into the display 
plane and loads the 2D editor  described above. Right -clicking subsequently into any of the other panes 
will initiate the most direct rotation that will bring that pane to the front, so as to preserve th e 
orientation context and minimize the userõs confusion  [5] .  
 

 
 

Fig. 8: Pane-based construction of a 3D Escher tile : (a) a pane of the dodecahedral tile available for 2D 
editing and Delaunay triangu lation; and (b) free -form 3D vertex editing with dual  cameras and a radial 
selection -and -extrusion vector v (red).  
 
In this 2D edit mode , any of the face õs internal vertices and line segments can be added, deleted or  
moved, result ing  in a Delaunay triangul ation  obtained through our interactive  algorithm  (Fig. 8a). 
Boundary vertices can be added onto existing boundary line segments, but they cannot be moved, 
since  this would  cause other faces of the fundamental polyhedron to become non -planar. For the  2D 
edi ts, each face uses its own  local  coordinate system with the origin at  the centroid of the face . 
Another right  click re stores  the 3D crystal ball view . 
 
In Phase II of the 3D shape -editing process, local 2D coordinates for each pane  are transformed into 
3D vertices that can be manipulated in 3 -space (Fig. 8b) . The last  vertex the user selects defines an 
extrusion vector  through th at vertex . The user can now translate all selected vertices parallel to  th is 
vector , or in the plane  parallel to the edit pane . We interpret the cursorõs position in the XY -plane of 
the  view screen as if it were in the plane that is parallel to the edit pane, but  rotated through  the 
minimal angle that brings  it paral lel to  the screen . 
 
If , during this 3D edit mode, additional detail  is needed beyond what is possible with the tesselated 
panes , new vertices can be added by sub -dividing a n individual  face or edge. These edits are  kept as 
purely local changes, however, with no attempt to optimize the resulting  mesh or to clean  up sliver 
triangles. If the designer still cannot achieve the desired  result, and needs many more vertices in a 
particular pane of the fundamental polyhedron,  we provide a limited roll -back option. The designer 
may return to the 2D  edit mode for that particular pane  and modify its  triangulation, then return to 
the  Phase II 3D edit mode. During this transition, the 3D information of all the vertices  associated with 
any other panes is maintained, and only the Delaunay mesh for the  rolled -back pane is recalculated. 
Any 3D information that belongs solely to this  modified pane needs to be re -entered from scratch.  
 
We chose this  pane-based workflow model as a good trade -off between the needs for maintaining the 
logical equivalence between corresponding panes in the fundamen tal polyhedron and the desire for a 
truly free -form shape editor. We quickly rejected the idea of representing the whole 3D tile as a 
volumetric object partitioned into a collection of 3D tetrahedra . A constrained 3D Delaunay  
tetrahedralization does not even exist for all sets of constraints, and implementing a conforming 
Delaunay tetrahedralization code  would be considerably more work than creating robust  2D 
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triangulation code  [15] .  Moreover, there is no need to modify  the int erior of the tile. Instead, w e 
require only a consistently -oriented boundary representation in order to display the tile on the screen 
and to manufacture it on a rapid prototyping machine.  
 
3.2 User  Interface Issues  
Occlusion is probably the largest obstac le to free -form editing of 3D tiles. Because  of the translation al 
symm etries associated with the fundamental domains , editing a  face that is visible in the current view 
will cause changes to the opposite face of the  tile, but the opposite side is occluded when the tile is 
rendered opaquely. Often, it  is important to see the symmetry -induced changes on the opposite face. 
Creating a  convex feature such as a fish fin on one side of the tile will create a corresponding concave 
feature  such as an eye socket on t he opposite side, and the designer may need to strike  a delicate 
balance between concavity and convexity to achieve the desired artistic  effect. To addre ss this issue, 
we have implemented a dual -camera view that simultaneously displays  these convex/concave  pairings 
(Fig. 8b). 
 
3D tilings can have complicated interlocking features. We have experimented  with rendering faces 
transparently and with omitting faces to reveal the interior  faces of the opposite side of the tile, but in 
both cases the resulting disp lay is cluttered  and confusing. Instead, we found that display ing  nearest 
neighbors that are scaled a bout their centers of mass was the clearest way to reveal the interface  
between adjoining tiles (Fig. 9a). 
 

 
 

Fig. 9: User inte rface features: (a) displaying the nearest neighbors scaled about their centers of mass, 
to reveal the interface between tiles; and (b) a skew widget provides 9 control points each with one 
degree of freedom.  
 
Because both fundamental domains  are based on cubic lattice s, but with only the translational 
symmetries enforced,  they can be  scaled and skewed into parallelepiped  lattices and remain space -
filling. Such an  affine transform has nine degrees of freedom , or nine entries in its matrix 
representation . For each of the X, Y, and Z directions, there is a scale factor in that direction and two 
skew factors in the other directions.  We have created a widget with exactly nine control points, each 
restricted to  one degree of freedom  and corresponding to an entry in the skew  matrix . The widget 
maintains the same orientation as the view camera, and  dragging a control point projects the XY 
motion of the mouse in the view plane  onto the one dimensional axis of  the control point (Fig. 9b). 
 
4.  RESULTS 
 

We have produce d both 2½D and 3D tilings of 3 -space. In designing 2½D tiles, we can draw on an 
existing òvocabularyó of aesthetically pleasing 2D tilings from Escherõs sketchbook [9] . Starting with  
Escherõs sketch number 127  (Fig. 10a), we tr aced a bird -shaped contour and  added constraint edges 
(Fig. 10b), which  were  used later to form ridges along the  birdõs back when we edited  the height field 
(Fig. 10 c). A lateral offset was chosen  to allow the thickness of the birdõs head and body to 
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compl ement the thinness of its  wings . After editing the height field, the resulting 2½D tile fills 3 -space 
in l aterally -offset sheets (Fig. 11). 
 

 
 

Fig. 10: A 2ĬD bird tile: (a) Escherõs sketch number 127  provides the basic contour; (b) interior vertices 
and constraint edges are added to provide control points for editing  the height field; and (c) the edited 
height -field.  

 
 

 
 

Fig. 11: An offset, layered  2½D bird tile: (a) manufactured tiles fit together to form a layer in 3 -space; 
and (b) several  layer s stacked with  a lateral offset.  
 
Designing an attractive 3D Escher tile derived from a 3-dimensional  lattice is inherently  more difficult 
than creating  2D tilings. Because we assume an opaque solid tile  in the  3D case, and are not structur ing 
in any way the interior volume of the tile, only the boundary representation of its surface  is editable ; 
and  th is entire surface is constrained to fit seamlessly with adjacent tiles.  In contrast, a 2D tiling only 
has symme try constrains on the 1D border, and the  fully visible 2D surface of the tile can be decorated 
freely to clarify the content of  the tile.  Moreover , any decorations that are imprinted on the surface  of a 
3D tile will automatically create complementary featu res in the opposite location on the  tile surface. 
Adding a concave feature such as a mouth to a fish -shaped tile requires  accommodating it with a 
convex f eature such as a fin.  
 
Unlike in the 2D case, there is no Escher sketchbook  available for tracing an i nitial 3D shape, although 
a vocabulary of 3D shapes  may  emerge  as artist s attempt to create 3D tilings. In the meantime, we  
create d a 3D tile of a fish based on the rh ombic dodecahedron lattice by start ing  with an earlier 
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prototype  that uses Bezier patches  for the 12 faces to achieve a fish -like shape (Fig. 12a). With this 
shape in mind, w e created a rhombic dodecahedron with similar control points and skew in our  3D tile 
editor, and used the pane editor to add  control points and con straints for  forming the  fishõs eyes and 
mouth  (Fig. 12b) . After free -form editing, we generated a 3D fish tile complete with fins,  eyes, and 
mouth (Fig. 12c). This boundary representation was then sent to a Fused Deposition Modeling machine 
to create some physical tiles in diffe rent colors. Nearest neighbors join together to form a òschooló of 
fish that fill 3 -space (Fig. 13) . 
 

 
 

Fig. 12: A 3D tiling based on the rhombic dodecahedron lattice: (a) an initial prototype that uses Bezier 
patches for the fa ces; (b) creating similar Bezier patch control points in our 3D editor, along with 
control points for eye and mouth features; and (c) the finished tile after free -form editing.  
 
 

 
 

Fig. 13: Prototypes of true  3D fish tiles : (a) isolated tiles, front and back;  (b) a tight 3D assembly of 
several tiles.  
 
5.  SUMMARY AND CONCLUSIONS 
 

We have implement ed a tile editor that is simultaneously easy to use while  offer ing  a fair amount of 
flexibility in the design of 2½D Escher -tile surfac es. A generaliza tion of this 2ĬD òpaneó editor forms 
the basis for our 3D tile editor, which allow s more general deformation of the surface of an arbitrary 
genus -zero 3D Escher tile. An  important side product of this work is our Java constrained Delaunay 
t riangulation  library,  which we have released as jmEscher  under an open -source license on  Google 
Code (http://code.google.com/p/jmescher ). We anticipate that such a library will prove  useful for  
other inter active mesh -editing applications, especially those targeting Java -enabled  web platforms . 
 
The move from 2½D to 3D tile design introduc es new user interface problems. When should the 
application perform Delaunay triangulation and how should a user  specify c ontrol points, then 
manipulate them in 3D using the 2D input of a mouse?  We have addressed these with our pane -based 
editing workflow and our use of normal  axes to constrain free -form vertex editing . We also 
implemented dual cameras to help reveal features  that are  occluded during the editing process due to 

http://code.google.com/p/jmescher



