

Computer -Aided Design & Applications, 6(1 -4), 2009, xxx -yyy

1

Computer -Aided Design and Applications
© 2009 CAD Solutions, LLC

http://www.cadanda.com

CAD Tools for Creating Space -fi l ling 3D Escher Tiles

Mark Howison 1 and Carlo H. Séquin 2

1University of California , mhowison@berkeley.edu
2 University of Calif ornia , sequin@cs.berkeley.edu

ABSTRACT

We discuss the design and implementation of CAD tools for creating decorative solids
that tile 3 -space in a regular, isohedral manner. Starting with the simplest case of
extruded 2D tilings, we describe geometric algorithms used for maintaining boundary
representations of 3D tiles, including a Java implementation of an interactive
constrained Delaunay triangulation library and a mesh -cutting algorithm used in
layering e xtruded tiles to create more intricate designs. Finally, w e demonstrate a CAD
tool for creating 3D tilings that are derived from cubic lattices. The design process for
these 3D tiles is more constrained, and hence more difficult, than in the 2D case, and
it raises additional user interface issues.

Keywords: isohedral tilings, 3D tile generator, constrained Delaunay triangulation .
DOI: 10.3722/cadaps.2009 .xxx -yyy

1. INTRODUCTION

M. C. Escherõs intricate tilings are well known [9] and appreciated by many people ; the intriguing,
natural looking shapes that tile the plane in a regular manner have fascinat ed mathematicians, artists,
and tiling hobbyists (Fig. 1a). However, w ithout the help of computer graphics tools, it is rath er
difficult and labor intensive to create aesthetically pleasing tilings of this kind. Because of the wide -
spread interest in such patterns , many easy -to -use graphics tools have been created and made
available on the web , allow ing members of the general p ublic with no special training in the graphics
arts o r in computer science to experi ment with and generate innovative regular patterns [10] .

Fig. 1: Escher -like tilings on 2 -manifolds: (a) in the plane; (b) on a sphere; (c) in the Poincar é disk; and
(d) on a genus -3 òTetrusó surface.

http://www.cadanda.com/
mailto:mhowison@berkeley.edu
mailto:sequin@cs.berkeley.edu

Computer -Aided Design & Applications, 6(1 -4), 2009, xxx -yyy

2

Such tilings can also be created in non -planar domains . Fig. 1(b) shows a spherical tiling made from 60
identical tiles [18] that were fa bricated on a rapid prototyping machine , and Fig. 1(c) displays a
hyperbolic tiling in the Poincaré disks, where the tiling becomes infinitely dense towards the rim of the
circular domain. In fact, a ll planar tilings can be generalized to hyperbolic patter ns by simply packing
more instances of the tile around its shared vertices. Spherical tilings, on the other hand , are limited to
the symmetries of the Platonic solids, since they have the added constraint of clos ing smoothly around
the back of the sphere. There are several tiling generators on the web for hyperbolic tilings , e.g. [6] , and
also for the spherical domain , e.g. [19] . In some isolated experiments , Escher-like tiling patterns have
also bee n placed on symmetric surfaces of higher genus , e.g., onto a torus [16] and onto a genus -3
surface with tetrahedral symmetry [12] , as in Fig. 1(d) . In both cases , special ly designed CAD tools were
created to address the particular challeng es of those tasks.

Prompted by the emergence of affordable layered manufacturing machines and rapid -prototyping
services, we began to explore the possibility of mak ing Escher-like tilings th at would fill 3 -space
regularly and seamlessly. This exploration space is much larger than the 2D domain. First , there are
many more symmetry groups in 3 -space than in the plane. Second, the 3D tiles can be of a genus
higher than zero, they can interlink with their neighbors, and they can even be knotted! An exploratory
paper [13] surveys many of these possibilities , and conclude s that different approaches and tools
would be needed to design such tiles.

In this paper , we are mainly concerned with CAD tools that help in the construction of isohedral tiles
of genus zero , with complex (possibly free -form) surfaces , and which may or may not resemble shapes
found in nature. In the 3D domain , new challenges arise for the development of appropriate CAD
tools. The data structures and geometrical algorithms are more complex ; but also there are user -
interface issues arising from both the limitations of projecting a 3D object onto a 2D viewing screen
and the geometric interdepen den cies caused by the imposed symmet ries . With 2D tiling s, the
prototype tile and its nearest neighbors can readily be displayed in one comprehensive view , but this
is no longer the case for 3D tilings . If we deal with only one isolated tile, then we can see at most half
of its surface , and if we display more than one tile, we may encounter occlusions. Furthermore, it is
important to view all faces that are modified as the result of an editing operation, yet , because of the
tile õs symmetries, these faces are typically opposite each other on t he tileõs surface. In the following ,
we address th ese issues and present CAD solution s.

2. SIMPLE 2½-DIMENSIONAL TILINGS

As a warm -up exercise , we started by constructing a n editing tool for a 2½D tile . A tile that tessellates
2-space i s extruded in to a slab , and layers of these tiles are then stacked to fill 3-space. The 2D outline
of the tile can be designed with one of the many available 2D tools , but additional facilities are needed
for shap ing the top and bottom surfaces of this tile. This intermedi ate 2½D design tool allowed us to
explore suitable data structures and geometrical algorithms, and to debug them in a less complicated
context than the full 3D case .

Fig. 2: Four 2D symmetry groups: (a) IH01, hexagonal domain with translational symmetry; (b) IH41,
rectangular domain with translational symmetry; (c) IH79, right -triangle domain with 4 -fold rotational
symmetry ; and (d) IH31, kite -shape domain w ith 6 -fold rotational symmetry.

Computer -Aided Design & Applications, 6(1 -4), 2009, xxx -yyy

3

In our 2½D editor, we have implement ed four symmetry groups (Fig. 2). The first is a simple isohedral
tiling with only translational symmetry (IH01; type p1 [4] ; Conway notation: 0 [1]). The simplest
repeatable unit of this tiling (it s fundamental domain) is a skewed hexagon in which opposite sides are
identical, translated copies of one another. A similar group, IH41 , uses a rectangular instead of
hexagonal domain with the same translational symmetries. A third example uses higher -ord er
symmetries (IH79; type p4; Conway notation: 442). Its fundamental domain is an isosceles right
triangle in which the two legs transform into one another by a 90 ° rotation around the shared vertex,
and half the hypotenuse maps into the other half by a 180° rotation around its mid point (Fig. 3b,c & 4).
Finally, IH31 (type p6; Conway notation: 632) is similar to IH79, but has 6 -fold symmetry around its
shared vertex and a kite -shaped fundamental domain.

The construction of a 2½D Escher tile occurs in two distinct phases. From a userõs perspective, the
first phase resembles that of existing 2D Escher tile editors. The user picks one of the symmetry
group s and is given a basic shape th at represents the fundamental domain of th is group. This tile can
now be m odified in the context of all its neighbors and of the whole tiling array. Any change made to a
segment of the edge of a tile is readily replicated on all corresponding edge segments on all other
displayed tile instances. The user can also decorate the int erior of the tile with extra points and
constrained line segments (Fig. 3a, 4a).

Fig. 3: Simple 2½D Escher tiles : (a) height -editing of the top surface ; (b) 3 identical tiles, the white ones
seen from top, the red one seen from bottom ; (c) the 3 tiles stacked on top of one another .

In the second editing phase , the whole tile is extruded uniformly to a chosen thickness, and then the
top surfaces can be further modeled into a non -planar, single -valued height field by moving v ertices ð
both on the boundary and in the interior of the tile ð up or down in the vertical direction (Fig 3a).

During this edit phase, a single tile is displayed as a 3D object that can be arbitrarily rotated around
its center of gravity , allowing the desi gner to choose a convenient viewing direction that best shows
the 3D deformations being performed. To allow some structured height -editing, multiple vertices can
be selected and all their heights changed si multaneously by the same amount by simply dragging one
of those vertices up or down in a direction perpendicular to the base plane of the tile . As a (not
particularly interesting) default case, the bottom surface of the tile is modified in exactly the same way
as the top surface (Fig. 3b), so that the 3D tiles would then stack on top of one another forming a
single prismatic column (F ig. 3c). And of course these columns would fit together laterally and fill all
of 3 -space.

In a more interesting 3D isohedral tiling, subsequent layers of these tiles will be shifted with respect to
one another, so that, for instance, the belly of a bird -like tile rests on top of the wings of the bird in
the layer below. So far, we have restricted ourselves to isohedral tilings, so the lateral offset from one
layer to the next one above must always be the same. This lateral offset is conveniently specified at the
end of Phase I of the edit process, by grabbing the proto -tile and shifting it laterally with respect to the
complete 2D tiling. The bottom surface of each tile is giv en by a combination of different parts of the
top surfaces of the tiles in the layer below. In essence, the outline of the prototype tile is used as a
òcookie cutteró to carve out a suitable mesh from the height field formed by all the top surfaces of all
the tiles in the layer below. This carved out mesh is then connected with vertical, prismatic side walls
to the top surface of the proto -tile to form a closed, water -tight, 2 -manifold boundary representation

Computer -Aided Design & Applications, 6(1 -4), 2009, xxx -yyy

4

of the 2½D Escher tile. In the translational sym metry cases, the lateral offset between two tile layers
can be arbitrary; any constant shift between two subsequent layers will lead to all identical tiles. In the
case of the rotational symmetry groups, however, only very special offsets will result in an isohedral
tiling , i.e., a shift along one of the legs of the f undamental triangle for IH79 (Fig. 4).

Fig. 4: Fancier 2½D tiles : (a) proto -tile of tiling type IH79 ; (b) top and bottom view of the extruded 2½D
tile ; (c) four t iles put together in one layer and two more tiles placed in layer above .

2.1 Interactive Constrained Delaunay Triangulation
Top and bottom surfaces of the resulting 2½D Escher tile are represented as triangle meshes . Only
points that were entered into the proto -tile during Phase I of the editing process can be used to define
the shape of the final tile. Thus , enough points and poly -lines need to be drawn in Phase I , so that
desired features such as the eyes, mouth , and fins o f a fish, or the rib -patterns o f a leaf , can be formed
by vertical extrusion during Phase II of the shape editing.

We create a mesh of good quality for the final boundary representation of the Escher tile by
performing a constrained Delaunay triangulation of the interior of the proto -t ile during Phase I (Fig.
5a). It is advantageous to show the designer the resulting triangulation after every edit step in Phase I,
so that she can readily judge whether that triangulation is rich and robust enough to allow for the
formation of the desired extruded features during Phase II. Writing a truly robust , high -performance
library for constrained Delaunay triangulation is a non -trivial task , and we contemplated using the
well -tested Triangle package [14] . However, severa l considerations discouraged us from taking this
approach. First, Triangle only operates in batch mode , deliver ing the Delaunay triangulation after all
the constrain ed points and line segments have been placed. It seemed wasteful to run this process
after every new placement or slight movement of a point in the proto -tile. Second, we wanted to
develop our tile editor as a web -ready Java application, but a Java implementation of Triangle does not
exist . Triangle õs C codebase could be retooled to use the Java Native Interface , or a platform -specific
Triangle executable could be called r emotely on ASCII mesh data files from within Java, but both of
these solutions would compromise platform -independence .

Therefore, we decided to implement an incremental algorit hm for creating and modifying a Delaunay
triangulation on the fly as the designer performs editing operations. Potentially, this could amount to
a daunting task, considering how much effort was spent in the development of Triangle on issues of
precision an d numerical stability. Triangle uses adaptive precision arithmetic to avoid inconsistencies
[14] , but there are also less efficient ways to achieve robustness that are not as difficult to implement
as adaptive routines . Moreove r, o ur editor has different goals and constraints that do not call for a

Computer -Aided Design & Applications, 6(1 -4), 2009, xxx -yyy

5

high level of precision. First, the editor is limited by screen resolution; designers never input
coordinates, and they judge the results visually to decide whether the resulting mesh fits their needs.
We want to discourage the generation of many narrow sliver triangles; overly -complicated geometry
cannot be realized accurately by the layered manufacturing machines used to fabricate the tiles. Thus,
our triangulation algorithm automati cally merges vertices that are placed too closely together, and
subdivides and snaps line segments to new vertices that are placed too closely to them. If the result is
not acceptable, the designer can always grab a vertex in question and move it to a slig htly different
location. We need to invoke robust routines in only a few places in our code . Thus with some careful
consideration of critical cases, we have written a quasi -robust triangulation algorithm without
resorting to the more complex (but more effi cient) adaptive precision approach used by Triangle .
Having a triangle mesh available during Phase I of the editing process also provides a convenient data
structure in which to locate new points and check for illegal edit moves, e.g., boundary deformation s
that would lead to a self -intersecting boundary.

Fig. 5: Incremental Delaunay triangulation : (a) the mesh of a decorated fish tile with constrained edges
(magenta) ; (b) a mesh search from vertex A to face B, which exploits the symmetry of the tile by moving
directly through an adjacent copy; (c) the n -gonal hole resulting from removing a vertex .

Our implementation allows t he user to add, move, and remove boundary and interior vertices , to
constrain edges , and even to inters ect constraint edges , all in real -time. We use Lawsonõs incremental
insertion algorithm [8] to compute the Delaunay triangulation, which iteratively adds vertices to the
existing triangulation and is therefore well -suited to ou r interactive approach. The mesh is backed by a
half -edge data structure [3] . Most editing operations involve searches over the half -edge structure and
modif ication and re -linking of the half -edges. For example , the vertex inse rtion operation starts by
search ing for the face in the existing mesh that contains the site of the new vertex . Our heuristic for
choosing a starting site for the search is to use the last insertion site, since designers will often add
features as localize d groups of vertices . The search moves from triangle to triangle in the direction of
the new vertex location. It exploits the symmetry of the overall til ing and follows a direct path to the
insertion site by moving through adjacent , transformed copies of t he tile if necessary (Fig. 5b). Once
the containing face is found, the new vertex is inserted by creating additional half -edges and re -linking
the data structure to split the existing triangle into three new faces . If the inserted point lies too close
to a n existing edge, we instead snap the point to that edge and split the two adjacent faces.

Temporary polygonal holes do arise (Fig. 5c) when vert ices are moved or removed, and they require a
polygon filling algorithm that is robust for the types of simple polygon s that arise in these situations .
For ease of implementation, we use an O(n2) algorithm published by Anglada [1] , which starts with an
edge that is òvisibleó to the other vertices of the polygon, meaning that those vertices can be
connected to the edgeõs endpoints without leaving the polygon. The algorithm finds the vertex with
the largest circum -circle through the edge, and uses that vertex and the edge to form a triangle lying

Computer -Aided Design & Applications, 6(1 -4), 2009, xxx -yyy

6

inside the polygon. This procedure is recu rsively applied to the polygons that remain on either side of
the new triangle . Although t here exist more refined polygon -filling algorithms with running times
ranging from O(n log n) to the theoretical lower bound of O(n) [11] , they are more complicated to
implement , and in practice we are typically filling small polygons , where speed is not an issue . In an
improved version of our library , we could implement Seidel's O(n log* n) randomized incremental
algorithm [11] as a reasonable trade -off between complexity and speed .

As mesh editing operations are performed, modified half -edges are added to a running òDelaunay testó
queue that is cleared by performing an in -circle Delaunay test on each edge, fli pping the edge if
necessary . When an edge is flipped, its four neighbors are subsequently added back onto the queue.
This process is guaranteed to terminate because the circum -radii of the triangles are strictly
decreasing and there are only finitely many triangulations . Proofs of th is and other mathematical
properties of the algorithm are available in a succinct treatment by Sibson [17] .

2.2 Cookie -Cutter Operation
The bottom mesh of a laterally -offset 2½D Escher tile has to b e generated using a cookie -cutter
operation that crops the appropriate geometry from the top meshes of the tiles in the underlying
layer , allowing the layers to align properly and fit together seamlessly . Once a lateral offset has been
specified (Fig. 6a), we form the cookie cutter by copy ing the tile mesh , retain ing only the boundary
edges and triangulating the interior with temporary edges (Fig. 6b) to facilitate subsequent vertex
insertion s. Then we move the cookie cutter to the offset location and walk its boundary to find all
intersections with the under ly ing landscape . The underlying landscape is made up of many copies of
the tile mesh , which have been sub jected to the tileõs symmetries. But when we start the boundary
walk , we only load the copy that c ontains the first vertex of the cookie -cutter boundary . As the cookie
cutter travers es boundary edge s in the landscape , we load on demand the appropriate adjoining mesh
copy . This on -demand approach bypasses the problem of determining a priori the planar e xtent of the
cookie cutter across the mesh copies forming the underlying landscape .

Fig. 6: Cookie -cutter operation : (a) a cookie -cutter contour (blue) has been offset from the underlying
landscape (gray), whose meshes will s ubsequently be loaded on -demand ; (b) intersection points (green)
are found by walking the cookie -cutter boundary, which is temporarily filled with interior edges (gray)
to enable later vertex insertions; (c) edge fragments in the active queue have been add ed as constraint
edges (magenta) ; and (d) the remaining landscape edges lying inside the cookie cutter have been found
via flood fill and added as constraint edges (magenta) .

When the cookie cutter bisects an underlying edge, the int ersection point is add ed to its boundary (Fig.
6b), and the fragment of the edge projecting inside the cookie cutter is retained and placed on a n
òactive fragment ó queue. In order to catch all the fragments that might arise when an underlying edge
is bisected multiple times fro m different directions, new fragments are checked for intersections with
all existing fragments in the queue. As an additional optimization, we have implement ed separate
queues for each underlying edge to reduce unnecessary intersection tests. When the bou ndary walk
finishes, all active fragments and their endpoints are added to the interior of the cookie cutter, and are
marked as constrain ed edge segments (Fig. 6c). The algorithm performs a òflood fill ó on the endpoints
to collect any remaining edges of th e landscape that lie inside the cookie cutter (Fig. 6d). The resulting
cookie -cutter mesh now contains all of the cropped geometry of the underlying landscape and

Computer -Aided Design & Applications, 6(1 -4), 2009, xxx -yyy

7

becomes the bottom mesh of the 2½D tile . Quadrilateral side -wall faces are added between
corr esponding boundary edge segments in the to p and bottom meshes, and t he resulting water -tight
boundary representation can be output in .STL format , which is understood by almost all layered
manufacturing machines .

The cookie -cutter problem was another moti vat ion for our deci sion to implement a constrained
Delaunay triangulation algorithm in Java . Tackling th is problem with Triangle , for example, is possible
but not straight -forward . In particular, we would have to i dentify the extent of the landscape needed to
cover the cookie cutter , and copy, transform, and aggregate that geometry at the start (as opposed to
loading the landscape geometry on -demand) . Next, we would constrain all of the edges to prompt
Triangle õs automatic split ting of intersecting edges, a nd finally r emove all geometry exterior to the
cookie cutter by using Triangle õs òtriangle-eating virusó mechanism [14] . However, many 2½D tile
designs utilize off sets that create coinciding vertices and/or partly coinciding ed ge segments between
the cookie cutter and the landscape , e.g., when an interior feature on the top mesh is lined up with a
boundary feature on the bottom mesh . In these cases Triangle õs use of adaptive precision arithmetic
would likely create many undesira ble sliver triangles.

3. THREE-DIMENSIONAL CUBIC -LATTICE TILINGS

There exist many more symmetry groups and tiling groups in 3 -space than in the plane. In our
prototype 2½D implementation , we have realized only four planar symmetry groups , but have creat ed
a modular framework that allow s for incorporation of other tiling symmetries at a later time. For
instance, we could use the complete set of 91 isohedral tiling parameterizations as categorized by
Kaplan and Salesin [7] . To our knowledge, there is no similar categoriz ation of 3D tiling groups, and
the number of possibilities is much larger than in the 2D case.

Fig. 7: Fundamental domains of 3D tiling, and nearest neighbors for: (a) a truncated o ctahedral cell
based on the body centered cubic lattice; and (b) a rhombic dodecahedral cell based on the densest
sphere packing.

In our 3D tile editor, we have implemented two tiling groups so far . For both, we start by displaying a
corresponding polyhed ron representing the fundamental domain. The first tiling is derived from the
body -centered cubic lattice, with a truncated octahedron as its fundamental domain (Fig. 7a). However,
we only consider translational symmetries, and thus allow the user to perfo rm arbitrary affine
distortions of the underlying coordinate system. In this scheme, each cell has 14 nearest neighbors,
and its fundamental domain can always be represented as a polyhedron with 7 pairs of opposite,
parallel, and identical faces. A second tiling that we have explored is based on the densest sphere
packing, with the rhombic dodecahedron as its fundamental domain (Fig. 7b). Again, since we only
consider translational symmetries, this domain can be distorted into a polyhedral shape with 6 pair s
of opposite, parallel, and identical faces.

3.1 Pane-based Editing Workflow
Initially, these fundamental domains are not offered to the user as 3D objects that can be freely edited
in a 3D domain. Instead, there is again a Phase I of the editing process , where we present the
individual faces of the fundamental domain to the user as 2D òpanesó that can be decorated with extra
vertices and edges (Fig. 8a). These are later manipulated to create 3D free -form shapes during a second

Computer -Aided Design & Applications, 6(1 -4), 2009, xxx -yyy

8

editing phase. To provide c ontext, the 14 or 12 panes of the whole domain are always shown as a 3D
object that can readily be rotated around its center of gravity with a òcrystal ball ó or òorbitó interface
[5] . A right click into one of these panes of th e fundamental domain snaps that pane into the display
plane and loads the 2D editor described above. Right -clicking subsequently into any of the other panes
will initiate the most direct rotation that will bring that pane to the front, so as to preserve th e
orientation context and minimize the userõs confusion [5] .

Fig. 8: Pane-based construction of a 3D Escher tile : (a) a pane of the dodecahedral tile available for 2D
editing and Delaunay triangu lation; and (b) free -form 3D vertex editing with dual cameras and a radial
selection -and -extrusion vector v (red).

In this 2D edit mode , any of the face õs internal vertices and line segments can be added, deleted or
moved, result ing in a Delaunay triangul ation obtained through our interactive algorithm (Fig. 8a).
Boundary vertices can be added onto existing boundary line segments, but they cannot be moved,
since this would cause other faces of the fundamental polyhedron to become non -planar. For the 2D
edi ts, each face uses its own local coordinate system with the origin at the centroid of the face .
Another right click re stores the 3D crystal ball view .

In Phase II of the 3D shape -editing process, local 2D coordinates for each pane are transformed into
3D vertices that can be manipulated in 3 -space (Fig. 8b) . The last vertex the user selects defines an
extrusion vector through th at vertex . The user can now translate all selected vertices parallel to th is
vector , or in the plane parallel to the edit pane . We interpret the cursorõs position in the XY -plane of
the view screen as if it were in the plane that is parallel to the edit pane, but rotated through the
minimal angle that brings it paral lel to the screen .

If , during this 3D edit mode, additional detail is needed beyond what is possible with the tesselated
panes , new vertices can be added by sub -dividing a n individual face or edge. These edits are kept as
purely local changes, however, with no attempt to optimize the resulting mesh or to clean up sliver
triangles. If the designer still cannot achieve the desired result, and needs many more vertices in a
particular pane of the fundamental polyhedron, we provide a limited roll -back option. The designer
may return to the 2D edit mode for that particular pane and modify its triangulation, then return to
the Phase II 3D edit mode. During this transition, the 3D information of all the vertices associated with
any other panes is maintained, and only the Delaunay mesh for the rolled -back pane is recalculated.
Any 3D information that belongs solely to this modified pane needs to be re -entered from scratch.

We chose this pane-based workflow model as a good trade -off between the needs for maintaining the
logical equivalence between corresponding panes in the fundamen tal polyhedron and the desire for a
truly free -form shape editor. We quickly rejected the idea of representing the whole 3D tile as a
volumetric object partitioned into a collection of 3D tetrahedra . A constrained 3D Delaunay
tetrahedralization does not even exist for all sets of constraints, and implementing a conforming
Delaunay tetrahedralization code would be considerably more work than creating robust 2D

Computer -Aided Design & Applications, 6(1 -4), 2009, xxx -yyy

9

triangulation code [15] . Moreover, there is no need to modify the int erior of the tile. Instead, w e
require only a consistently -oriented boundary representation in order to display the tile on the screen
and to manufacture it on a rapid prototyping machine.

3.2 User Interface Issues
Occlusion is probably the largest obstac le to free -form editing of 3D tiles. Because of the translation al
symm etries associated with the fundamental domains , editing a face that is visible in the current view
will cause changes to the opposite face of the tile, but the opposite side is occluded when the tile is
rendered opaquely. Often, it is important to see the symmetry -induced changes on the opposite face.
Creating a convex feature such as a fish fin on one side of the tile will create a corresponding concave
feature such as an eye socket on t he opposite side, and the designer may need to strike a delicate
balance between concavity and convexity to achieve the desired artistic effect. To addre ss this issue,
we have implemented a dual -camera view that simultaneously displays these convex/concave pairings
(Fig. 8b).

3D tilings can have complicated interlocking features. We have experimented with rendering faces
transparently and with omitting faces to reveal the interior faces of the opposite side of the tile, but in
both cases the resulting disp lay is cluttered and confusing. Instead, we found that display ing nearest
neighbors that are scaled a bout their centers of mass was the clearest way to reveal the interface
between adjoining tiles (Fig. 9a).

Fig. 9: User inte rface features: (a) displaying the nearest neighbors scaled about their centers of mass,
to reveal the interface between tiles; and (b) a skew widget provides 9 control points each with one
degree of freedom.

Because both fundamental domains are based on cubic lattice s, but with only the translational
symmetries enforced, they can be scaled and skewed into parallelepiped lattices and remain space -
filling. Such an affine transform has nine degrees of freedom , or nine entries in its matrix
representation . For each of the X, Y, and Z directions, there is a scale factor in that direction and two
skew factors in the other directions. We have created a widget with exactly nine control points, each
restricted to one degree of freedom and corresponding to an entry in the skew matrix . The widget
maintains the same orientation as the view camera, and dragging a control point projects the XY
motion of the mouse in the view plane onto the one dimensional axis of the control point (Fig. 9b).

4. RESULTS

We have produce d both 2½D and 3D tilings of 3 -space. In designing 2½D tiles, we can draw on an
existing òvocabularyó of aesthetically pleasing 2D tilings from Escherõs sketchbook [9] . Starting with
Escherõs sketch number 127 (Fig. 10a), we tr aced a bird -shaped contour and added constraint edges
(Fig. 10b), which were used later to form ridges along the birdõs back when we edited the height field
(Fig. 10 c). A lateral offset was chosen to allow the thickness of the birdõs head and body to

Computer -Aided Design & Applications, 6(1 -4), 2009, xxx -yyy

10

compl ement the thinness of its wings . After editing the height field, the resulting 2½D tile fills 3 -space
in l aterally -offset sheets (Fig. 11).

Fig. 10: A 2ĬD bird tile: (a) Escherõs sketch number 127 provides the basic contour; (b) interior vertices
and constraint edges are added to provide control points for editing the height field; and (c) the edited
height -field.

Fig. 11: An offset, layered 2½D bird tile: (a) manufactured tiles fit together to form a layer in 3 -space;
and (b) several layer s stacked with a lateral offset.

Designing an attractive 3D Escher tile derived from a 3-dimensional lattice is inherently more difficult
than creating 2D tilings. Because we assume an opaque solid tile in the 3D case, and are not structur ing
in any way the interior volume of the tile, only the boundary representation of its surface is editable ;
and th is entire surface is constrained to fit seamlessly with adjacent tiles. In contrast, a 2D tiling only
has symme try constrains on the 1D border, and the fully visible 2D surface of the tile can be decorated
freely to clarify the content of the tile. Moreover , any decorations that are imprinted on the surface of a
3D tile will automatically create complementary featu res in the opposite location on the tile surface.
Adding a concave feature such as a mouth to a fish -shaped tile requires accommodating it with a
convex f eature such as a fin.

Unlike in the 2D case, there is no Escher sketchbook available for tracing an i nitial 3D shape, although
a vocabulary of 3D shapes may emerge as artist s attempt to create 3D tilings. In the meantime, we
create d a 3D tile of a fish based on the rh ombic dodecahedron lattice by start ing with an earlier

Computer -Aided Design & Applications, 6(1 -4), 2009, xxx -yyy

11

prototype that uses Bezier patches for the 12 faces to achieve a fish -like shape (Fig. 12a). With this
shape in mind, w e created a rhombic dodecahedron with similar control points and skew in our 3D tile
editor, and used the pane editor to add control points and con straints for forming the fishõs eyes and
mouth (Fig. 12b) . After free -form editing, we generated a 3D fish tile complete with fins, eyes, and
mouth (Fig. 12c). This boundary representation was then sent to a Fused Deposition Modeling machine
to create some physical tiles in diffe rent colors. Nearest neighbors join together to form a òschooló of
fish that fill 3 -space (Fig. 13) .

Fig. 12: A 3D tiling based on the rhombic dodecahedron lattice: (a) an initial prototype that uses Bezier
patches for the fa ces; (b) creating similar Bezier patch control points in our 3D editor, along with
control points for eye and mouth features; and (c) the finished tile after free -form editing.

Fig. 13: Prototypes of true 3D fish tiles : (a) isolated tiles, front and back; (b) a tight 3D assembly of
several tiles.

5. SUMMARY AND CONCLUSIONS

We have implement ed a tile editor that is simultaneously easy to use while offer ing a fair amount of
flexibility in the design of 2½D Escher -tile surfac es. A generaliza tion of this 2ĬD òpaneó editor forms
the basis for our 3D tile editor, which allow s more general deformation of the surface of an arbitrary
genus -zero 3D Escher tile. An important side product of this work is our Java constrained Delaunay
t riangulation library, which we have released as jmEscher under an open -source license on Google
Code (http://code.google.com/p/jmescher). We anticipate that such a library will prove useful for
other inter active mesh -editing applications, especially those targeting Java -enabled web platforms .

The move from 2½D to 3D tile design introduc es new user interface problems. When should the
application perform Delaunay triangulation and how should a user specify c ontrol points, then
manipulate them in 3D using the 2D input of a mouse? We have addressed these with our pane -based
editing workflow and our use of normal axes to constrain free -form vertex editing . We also
implemented dual cameras to help reveal features that are occluded during the editing process due to

http://code.google.com/p/jmescher

