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Abstract
Human figures have been animated using a wide
variety of geometric models including stick figures,
polygonal models, and NURBS-based models with
muscles, flexible skin, or clothing. This paper re-
ports on experiments designed to ascertain whether
a viewer’s perception of motion characteristics is af-
fected by the geometric model used for rendering.
Subjects were shown a series of paired motion se-
quences and asked if the two motions in each pair
were “the same” or “different.” The two motion se-
quences in each pair used the same geometric model.
For each trial, the pairs of motion sequences were
grouped into two sets where one set was rendered
with a stick figure model and the other set was ren-
dered with a polygonal model. Sensitivity measures
for each trial indicate that for these sequences sub-
jects were better able to discriminate motion varia-
tions with the polygonal model than with the stick
figure model.

Keywords: motion perception, motion sensitivity,
perceptual study, computer animation, geometric
model.

1 Introduction
Few movements are as familiar and recognizable

as human walking and running. Almost any collec-
tion of dots, lines, or shapes attached to an unseen
walking figure is quickly identified and understood as
human. Studies in human perception have displayed
walking motion using only dots of light located at
the joints and have found test subjects quite adept
at assessing the nature of the underlying motion[13].
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Figure 1: Image of an animated runner rendered
with a polygonal model (left) and with a stick figure
model (right). These images are typical of those
used in this study.

In particular, subjects could identify the gender of a
walker and recognize specific individuals even when
no other cues were available[6, 16, 17].

In part because people are skilled at detect-
ing subtleties in human motion, the animation of
human figures has long been regarded as an im-
portant but difficult problem in computer anima-
tion. Recent publications have presented a vari-
ety of techniques for creating animations of hu-
man motion. Promising approaches include tech-
niques for manipulating keyframed or motion cap-
ture data[29, 28, 4, 25], control systems for dynamic
simulations[11, 18], and other procedural or hybrid
approaches[1, 3, 15, 19, 5, 21]. Each method has
its own strengths and weaknesses, making the vi-
sual comparison of results essential, especially for
the evaluation of such subjective qualities as “natu-
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ralness” and “realism.”
Our ability to make judgments about human mo-

tion from displays as rudimentary as dot patterns
raises an important question: does the geometric
model affect the viewer’s judgment of the motion
or can the viewer make accurate judgments inde-
pendent of the model used for rendering? There
are three plausible but contradictory answers to this
question.

Possibility 1. Simple representations allow
finer distinctions when judging human mo-
tion. Simpler models may be easier to comprehend
than more complex ones, allowing the viewer’s at-
tention to be more completely applied to the de-
tails of the movement rather than the details of the
model. A stick figure is an obvious abstraction and
rendering flaws may be easily ignored. When more
detailed models are used, subtle flaws in rendering,
body shape, posture, or expression may draw atten-
tion away from the movements themselves.

Possibility 2. Complex, accurate representa-
tions allow finer distinctions. People have far
more experience judging the position and movement
of actual human shapes than they do judging more
abstract representations such as stick figures. A
viewer, therefore, may be able to make finer distinc-
tions when assessing the motion of more humanlike
representations. Furthermore, complex representa-
tions provide more features to identify and track.
Each body segment in a polygonal human model
has a distinctive, familiar shape, thereby making it
easier to gauge fine variations in both position and
rotation.

Possibility 3. Both simple and complex rep-
resentations allow equally fine distinctions.
The human visual system may use a displayed image
only to maintain the positions of a three-dimensional
mental representation. Judgments about the motion
may be made from this mental representation rather
than directly from the viewed image. Displayed im-
ages must of course supply enough cues to keep the
mental representation accurate, but additional de-
tail and accuracy may be irrelevant. Just as joint
positions shown by light dots are sufficient to con-
trol the mental representation, connecting the dots
with a stick figure might not improve the viewer’s
perception. Similarly, encasing a stick figure within
a detailed human body shape might likewise prove
unnecessary.

Figure 2: The dot pattern on the left shows the joint
locations of a human runner at a single point in time.
On the right, these joint locations are shown over the
course of one step in the running cycle. Although it
is difficult to determine the nature of these patterns
from a still image, studies show that most people
are able to recognize the motion, and even make fine
judgments when shown moving sequences of similar
images.

Objective evidence is needed to determine which
of these three possibilities is correct. We argue that
definitive experiments to select between possibili-
ties 1 and 2 are impractical. The question of which
style of geometric model is more useful for judging
motion is likely to be context dependent and end-
lessly complex, affected by all of the variables of both
the motion and the rendering. If possibility 3 were
correct, and model style were largely irrelevant, then
we would be able to perform critical comparisons of
motion synthesis techniques using substantially dif-
ferent geometric models. This paper provides exper-
imental evidence to disprove possibility 3 by show-
ing that viewer sensitivities to motion variation are
significantly different for the stick figure model and
the polygonal model shown in figure 1. In partic-
ular, for the types of motion variation we tested,
the viewers were more sensitive to motion changes
when displayed through the polygonal model than
they were with the stick figure model. We discuss
the implications of this result in section 5.

2 Background
Several researchers have used light-dot displays to

study perception of human movements and to inves-
tigate the possibility of dynamic mental models[10].
The light-dot displays showed only dots or patches
of light that moved with the main joints of walk-
ing figures (figure 2), but even these minimal cues
were sufficient for viewers to make detailed assess-
ments of both the motion and the nature of the fig-
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ure. In related work, light dots placed on the finger-
tips and hands were sufficient for skilled readers of
American Sign Language(ASL) to read some signed
messages[22].

The ability to perceive human gaits from light-dot
displays has been widely reported to be acute and ro-
bust. Early experiments by Johansson[13] reported
that 10-12 light dots “evoke a compelling impression
of human walking, running, dancing, etc.” Because
such displays provide motion cues independent of
form or outline, other investigations have used them
to study human motion perception. Work by Cut-
ting and Kozlowski[6] showed that viewers easily rec-
ognized friends by their walking gaits on light-dot
displays. They also reported that the gender of un-
familiar walkers was readily identifiable, even after
the number of lights had been reduced to just two
located on the ankles[16]. In a published note, they
later explained that the two light-dot decisions were
probably attributable to stride length[17]. Continu-
ing this work, Barclay, Cutting, and Kozlowski[2]
showed that gender recognition based on walking
gaits required between 1.6 and 2.7 seconds of dis-
play, or about two step cycles. Our experiments used
pairs of 4 second stimuli displaying about six step cy-
cles, but we noticed that test subjects often marked
their answer sheets near the midpoint of the second
stimuli which is consistent with Barclay’s results.

Motion is apparently essential for identifying hu-
man figures on light-dot displays. The Cutting stud-
ies reported that while still light-dot displays were
not recognized as human, moving light-dot displays
of a walking figure were recognized immediately.
Poizner and his colleagues[22] also noted that move-
ment is required for accurately reading reading ASL
gestures.

This capacity to recognize moving figures was
shown to be robust in the presence of masking by ad-
ditional light points. In a modified experiment, sub-
jects were shown light-dot displays of walkers facing
either left or right, and asked to determine walking
direction. Only very complex masks of extraneous
light dots moving in patterns that were similar to
those of the walking figure were able to disrupt the
viewer’s judgment[7].

Although human walking movements are accu-
rately sensed from light-dot displays, synthetic hu-
man movements are easily accepted as human. Us-
ing measurements from light-dot displays, Cutting
and colleagues[8] found that apparent torso struc-
ture and rotation were strongly correlated with judg-
ments of walker gender. Cutting then constructed a

simple mathematical model of light-dot motion for
human walkers and computed displays of synthetic
walkers. Viewers easily identified the synthetic dis-
plays as human walkers and accurately determined
the intended gender of the walkers. These exper-
iments clearly showed that variations in torso ro-
tation are important for gender judgments. Accord-
ingly, we chose to measure viewer sensitivity to torso
rotations in our experiments.

Proffitt and his colleagues[24] found that occlu-
sion of light dots by clothing or human body seg-
ments plays an important role in gait judgment and
may also provide information about body outlines.
Synthetic displays without occlusion yielded poorer
subject performance. These experimental observa-
tions suggest that extremely simple models of hu-
man figures, such as thin stick figures may present
similar difficulties for the viewer.

Surprisingly, the perception of rigid body seg-
ments between moving light dots at joints does not
generalize to movements of isolated pairs of light
dots. Ishiguchi[12] showed test subjects one fixed
light dot and a second one that moved on an arc of
±15 degrees as if it were on the end of a pendulum
with the first light dot as the pivot joint. Viewers
perceived the dots as attached to a flexible bar held
fixed at the first light dot rather than as a rigid bar
moving as a pendulum. Thus the perception of rigid
body segments in the largely pendulum-like move-
ments of human walking is exceptional; perhaps the
ensemble of dot movements is important, or perhaps
the movements are so intimately familiar that the
perception of a more basic flexible bar is overridden.

3 Experimental Method
While it is impossible to exhaustively test all of

the variables that may affect the perceived motion,
we can form a preliminary assessment of whether the
geometric model affects a viewer’s motion percep-
tion with A/B comparison tests. We evaluated two
different variables in separate experiments described
below: torso rotation and additive noise. For both
these experiments, the modifications to the motion
were controlled by a normalized parameter t that
varied between t = 0 and t = 1. Samples of the
animated motion are shown in figure 3 and motion
traces in figure 4. In each case, subjects viewed pairs
of animated sequences rendered using the same ge-
ometric model and were asked whether the motions
in the two sequences were the same or different. We
computed a sensitivity measure for each type of geo-
metric model. The difference between the sensitivity
values is a measure of whether a particular subject
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Figure 4: The top graph shows a trace of the mo-
tion of the left and right shoulders and the head for
one stride of the original running data. The camera
is positioned directly above the runner. The mid-
dle graph shows the same traces after the data were
altered for the torso rotation test (t = 1). The bot-
tom graph shows the traces for the additive noise
test (t = 1).

was better able to discriminate between the motions
when they were rendered with a polygonal model or
with a stick figure model.

3.1 Experiment One: Torso Rotation
This experiment measured whether a subject’s

ability to differentiate between larger and smaller
yaw rotations of a runner’s torso was affected by the
geometric model used for rendering. The motion se-
quences were generated by making kinematic mod-
ifications to data obtained from a physically based
dynamic simulation of a human runner[11]. The ver-
tical, or yaw, rotation of the torso at the waist was
exaggerated. The neck was counter rotated to com-
pensate for the torso rotation so that the facing di-
rection of the head remained unchanged.

The magnitude of the exaggeration in torso ro-
tation was controlled by a normalized parameter, t.
A value of t equal to zero gave a magnification fac-
tor of 1×, so that the modified motion was identical
to the original data. Larger values of t correspond
linearly to higher magnification factors, with t = 1
yielding a 10× magnification of the torso rotation.
The motion of body segments below the waist was
left unchanged.

The test consisted of a series of 40 pairs of motion
sequences divided into two sets of 20 pairs each. One
set was rendered with the stick figure model and the
other with the polygonal model (figure 1). Except
for the geometric models, all parameters used to ren-
der the animations were identical for the two sets.
Within each set, half of the pairs were randomly se-
lected to show two different motion sequences (dif-
ferent t values). Of those that were different, the
pairs with the largest disparity in t were placed to-
ward the beginning of each set so that the questions
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Figure 5: Plot of sensitivity scores, log(α), versus
fraction correct. Shown at zero bias.

became progressively more difficult. To minimize
bias due to fatigue or learning effects, we varied the
order in which the two sets were presented.

Twenty-six student volunteers served as subjects.
All had normal or corrected-to-normal vision. Sub-
jects were tested in groups of two or three in a quiet
room. The test stimulus was presented on a 20-
inch monitor approximately three feet from the sub-
jects. All animations were pre-rendered and shown
at 30 frames per second in NTSC resolution.

Subjects were told that they would be shown a
series of 4-second computer-generated animations of
a human runner and that the animations would be
grouped in A/B pairs with five seconds of delay be-
tween the presentation of each pair. Subjects were
asked to view each pair and then indicate on a re-
sponse sheet whether the two motions were the same
or different. They were also informed that the varia-
tions would be confined to the motion of the runner’s
upper body and that the questions would become
progressively more difficult. A monetary reward was
offered as an incentive to the subject who had the
most correct responses. Subjects were not told the
purpose of the experiment.

3.2 Experiment Two: Additive Noise
The format of the second experiment was iden-

tical to that of the first, except for the manner in
which the running motion was modified. For this ex-
periment, time-varying noise was added to the joint
angles for the waist, shoulders, and neck. The noise
was generated using a sinusoidal wave generator[26]
with frequency varying randomly about that of the
runner’s gait (approximately 3 Hz). The amplitude
of the additive noise was controlled by a normalized
parameter t, as in the torso rotation test. A value of
t = 0 resulted in motion data that was identical to
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Figure 3: Sample image sequences from the animations used in the experiments. First Row: Original
running motion rendered with the polygonal model. Second Row: Torso rotation with t = 1.0. Third
Row: Additive noise with t = 1.0. Fourth Row: Original running motion rendered with the stick figure
model. Fifth Row: Torso rotation with t = 1.0. Sixth Row: Additive noise with t = 1.0. Images are
sampled at 0.067 second intervals.
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Figure 6: A graphical representation of the differ-
ence in sensitivity for the torso rotation test. The
left graph shows the sensitivity values for all sub-
jects; the right graph shows values for only those
subjects who performed well on the torso rotation
test with a sensitivity of log(α) ≥ 1.0 (approxi-
mately 73% correct or better) on at least one of
the two sets. If a subject has a positive slope for
the line connecting the two sensitivities, then that
subject was more sensitive to motion changes when
polygonal models were used.

the original data (zero noise amplitude). The maxi-
mum noise amplitude used, given by t = 1, produced
a variation of ±0.15 radians about the original joint
angles.

Twenty-six additional volunteers who had not
participated in first experiment were subjects for
this second experiment. Testing procedures were
identical to those used in the first experiment.

4 Results
To analyze the data from the two experiments,

the responses were used to compute the Choice The-
ory sensitivity measure for each subject on each test
set[20]. The sensitivity measure, log(α), is defined
as

log(α) =
log(H/(1−H))− log(F/(1− F ))

2
, (1)

where H is the fraction of pairs in a set that were dif-
ferent and which the subject labeled correctly, and F
is the fraction of pairs in a section that were the same
and which the subject labeled incorrectly[20]. This
measure is zero when the subject’s responses are un-
correlated with the correct responses (i.e. 50% cor-
rect) and increases as response correlation improves
(figure 5). Additionally, the measure is symmetric,
naturally invariant with respect to response bias,
and suitable for use as a distance metric[20].
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Figure 7: Histogram of sensitivity differences for
the torso rotation test. The upper graph shows
the occurrence frequency for sensitivity differences
(log(αpoly) − log(αstick)) across all subjects. The
bottom graph shows the data for subjects who
achieved a sensitivity score of log(α) ≥ 1.0 (approxi-
mately 73% correct or better) on either the set using
the polygonal model or the set using the stick figure.
Positive values of the sensitivity difference indicate
a higher sensitivity to changes in the motion with
the polygonal model. (Bucket size = 0.5.)

In Section 1, we proposed three possible answers
to the question of whether the geometric model
used for rendering affects a viewer’s judgment of
motion. The third possible answer implied that
subjects would achieve similar sensitivity measures
when asked identical questions about the motion of
stick figure models or polygonal models. To test this
hypothesis, we computed the difference in sensitivity
for each subject:

∆log(α) = log(αpoly)− log(αstick). (2)

For the torso rotation test, the mean of the differ-
ence in sensitivities across all subjects was 0.427 with
a standard deviation of 0.77. Student’s t test for
paired samples[23] shows this difference to be signif-
icant, p ≤ 0.012. When we reduced the subject pool
by removing those who had been unable to judge
differences accurately in either set (log(αpoly) < 1.0
and log(αstick) < 1.0, or equivalently less than 73%
correct for both the stick figure model and the polyg-
onal model), the mean rose to 0.73 while the vari-
ance fell to 0.68. Again, the t test for paired samples
shows this difference to be significant, p < 0.001.

For the additive noise test, the mean of the differ-
ence in sensitivities across all subjects was 0.74 with
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Figure 8: A graphical representation of the dif-
ference in sensitivity for the additive noise test.
(See figure 6.)

a standard deviation of 0.69, a difference significant
at p < 0.001. When we reduced the subject pool by
removing those who had been unable to judge dif-
ferences accurately in either set, the mean was 0.72
and the variance was 0.73, a difference significant at
p < 0.001.

The results of the torso rotation test are displayed
graphically in figure 6. Sensitivity values for the set
rendered with the stick figure model are plotted on
the left vertical axis, while values for the the set with
the polygonal model are on the right. The values for
each subject are connected with a straight line, the
slope of which indicates the difference in sensitivities
measured between the two geometric models. Fig-
ure 7 shows a histogram of the sensitivity differences
for the torso rotation test. As with the slopes in fig-
ure 6, positive values correspond to higher sensitivity
for the set rendered with the polygonal model. Fig-
ures 8 and 9 show similar plots for the data from the
additive noise test.

These results indicate that, for the two types of
motion variation tested, subjects were better able to
discriminate motion variations using the polygonal
model than they were with the stick figure model.

5 Discussion
Though the differences in sensitivity measures

show that our subjects were more sensitive to motion
changes when a polygonal model was used for ren-
dering, our results should not be generalized to mean
that polygonal models are always better than stick
figure models for judging motions. Rather the two
types of geometric models are distinctly different and
in the cases we tested polygonal models allowed bet-
ter discrimination. We measured sensitivity for only
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Figure 9: Histogram of sensitivity differences for the
additive noise test. (See figure 7.)

two types of variation in running motions. There
may well be variations for which the difference in
sensitivity has the opposite sign, implying that stick
figures might be a better type of model for mak-
ing fine discriminations about that particular type
of motion variation.

Our results, however, do show that stick figures
and polygonal models are not equivalent for tasks
that require making fine discriminations about mo-
tion. Any useful comparison of motion sequences
requires that the same models and rendering meth-
ods be used for each. Comparing motions of a stick
figure model to those of a more complex model may
be meaningless because viewer sensitivities can differ
substantially. Furthermore, presenting the results
of animation techniques using stick figures, or other
simple models, should be avoided because it is likely
that viewers would have different sensitivities to the
more realistic models used in the final rendering.

Considerable familiarity with the motion appears
to make differences in the geometric models less sig-
nificant. For example, when the authors of this pa-
per took the tests, they answered nearly all questions
correctly. (Of course, the authors were not included
among the subjects whose data is reported above.)
If a larger subject pool showed that subjects who
were very familiar with particular animated motions
showed equal sensitivity to the two models, then we
would have evidence that using stick figures for pre-
liminary pencil tests of motion sequences will provide
good information about the motion. The subject, in
this case the animator, is very familiar with the mo-
tion and may be able to make subtle observations
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independent of the geometric models used for ren-
dering.

A potential problem with the experimental design
used in this study is that the test must be of an ap-
propriate difficulty. If the test is too difficult then all
of the subject’s responses will be guesses regardless
of which model is presented. Conversely, if the test
is too easy then all of the subject’s responses will be
correct. In either case the data gathered will not be
useful. We can increase or decrease the difficulty of
a test by changing the spacing of the t values for the
trials or the amount of information given to the sub-
jects about the alterations to the motion. Unfortu-
nately, it can be difficult to devise a test sequence of
appropriate difficulty. This dilemma could be over-
come by using tests that adaptively adjust difficulty
level by selecting subsequent questions based on past
responses. Alternatively, selection criteria can be
used to cull subjects whose responses are not signif-
icantly correlated with the test stimuli.

The additive noise test was designed to be eas-
ier than the torso rotation test, and the plots in
figures 6 and 8 show that in general the subjects’
average scores were indeed higher for the additive
noise test. While our assessment that the polygo-
nal models allow greater sensitivity holds irrespec-
tive of culling, it is interesting to note how culling
based on performance criteria does affect the data.
For the more difficult torso rotation test, culling no-
tably alters both the mean of ∆log(α) as well as the
shape of the histogram in figure 7. For the easier
additive noise test, culling has essentially no effect.
Moreover, the effect of culling on the torso rotation
data appears to make it more closely resemble the
data from the additive noise test, supporting the
notion that lowering the difficulty of the test and
culling based on performance criteria are approxi-
mately equivalent.

Although we did not formally measure the sub-
jects’ perceptions of how well they did on the test,
it appeared that their perceptions did not always
match their performance. Several subjects were cer-
tain that they had scored higher on the section with
the stick figure model when in fact they had a higher
sensitivity to motion changes with the polygonal
model.

To create the animation sequences for these tests,
we altered only the motion and the geometric mod-
els used; all other aspects of the rendering were held
constant. It would be interesting to explore whether,
and how, other aspects of the rendering affect the
perception of motion. For example, we have infor-

mally observed that the motion of the simulated run-
ner appears more natural when the tracking cam-
era has a constant velocity rather one that matches
the periodic accelerations of the runner’s center of
mass. If the camera motion matches the motion of
the center of mass exactly, then the running motion
appears jerky. More sophisticated models that in-
corporate clothing and skin may help to smooth out
rapid accelerations of the limbs and make the motion
appear more natural. Motion blur probably plays a
similar role. Textured ground planes and shadows
help to determine motion of the feet with respect to
the ground and may provide important clues about
the details of the motion.

If we had enough psychophysical results to build
a model of how people perceive motion, we could
optimize the rendering of animated sequences by
including only those factors that would make the
greatest differences in how a viewer perceives the
sequence. This approach of using results from the
psychophysical literature to refine rendering tech-
niques has already been used successfully for still
images[14, 27, 9].
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