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Figure 1. Our importance sampling method for the Marschner specular lobe BRDF.
From left to right, top to bottom, cone angle β = 1, 3, 5, 7, 9, 11, 13, 15, 17 and 19◦.

Abstract
Hair and fur are increasingly important visual features in production render-
ing, and physically-based light scattering models are now commonly used. In
this paper, we enable efficient Monte Carlo rendering of specular reflections
from hair fibers. We describe a simple and practical importance sampling
strategy for the reflection term in the Marschner hair model. Our implemen-
tation enforces approximate energy conservation, including at grazing angles
by modifying the samples appropriately, and includes a Box-Muller transform
to effectively sample a Gaussian lobe. These ideas are simple to implement,
but have not been commonly reported in standard references. Moreover, we
have found them to have broader applicability in sampling surface specular
BRDFs. Our method has been widely used in production for more than a year,
and complete pseudocode is provided.
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1. Introduction
Hair and fur are important visual features, that are increasingly common in
production environments. They are also the building blocks for accurate ren-
dering of seemingly unrelated effects such as clothing, where we model indi-
vidual fibers of yarn. Standard surface reflection algorithms no longer apply
directly, since a hair fiber does not have a surface normal in the conventional
sense (a single pixel corresponds to the entire cylinder of micro-surface nor-
mals), but only an overall orientation or tangent direction.

For many years, the standard hair reflection model was the extension of
the Phong model proposed by Kajiya and Kay [?]. This model was adapted
for production by Goldman [?]. In 2003, [?] proposed a comprehensive
physically-based light scattering model from human hair fibers, that has be-
come the basis for most subsequent work, including this paper. While the
Marschner model defines an effective hair “BRDF”, efficient Monte Carlo
rendering also requires practical techniques for importance sampling (we use
BRDF importance sampling [?] within a multiple importance sampling frame-
work [?]). To date, no importance sampling method has been published, and
personal communications indicate the lack of widespread existence of such a
method.

In this paper, we describe a simple and practical importance sampling
scheme for the single scattering or reflection term R in the Marschner hair
model. While we do not address the other (T T and T RT ) terms, they are
often considered separately for easier artistic design [?], and have a similar
form. In fact, T RT is commonly split between a glint component (which can
be achieved via some noise calls), and a regular reflection lobe, derived from
R, only with a longitudinal shift in the opposite direction. And T T , the double
transmittance, is usually blocked because of shadowing and thus requires a
more global scatter approach for blonde hair [?].

Our method was originally developed simultaneously with the recent com-
prehensive work by d’Eon et al. [?] and addresses some of the same issues. In
particular, they correctly deal with energy conservation, modifying the BRDF
accordingly. However importance sampling is still an open problem.

In summary, we describe a simple practical approach to importance sam-
pling the reflected lobe in the Marschner hair model. We enforce approximate
energy conservation at grazing angles by clamping and simplifying the weight
of the Monte Carlo estimator, which is a “trick” that is also useful in other
contexts like specular BRDF sampling. There are a number of interesting

2

http://jcgt.org


Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

practical issues, that we describe in detail with pseudocode faithful to our ac-
tual production-ready implementation.

The panel in Figure ?? shows some results of our importance sampling
method for the Marschner specular lobe BRDF inside a global illumination
renderer for both direct lighting from an area light source and for tracing re-
flections. These images use 48 samples, and each cylinder is composed of 30
hair fibers shaped like circles and assembled next to one another. With a fairly
low number of samples, each hair fiber is reflection tracing to its surrounding
walls and ground. Observe that we can resolve both glossy and semi-glossy
specular defined by the Marschner reflection model. Our algorithm has been
used in production at Pixar for the past year in rendering hair for Monsters
University and other shows (see Fig. ?? for an example). It has produced sat-
isfactory results with no tweaking required, beyond what is reported in this
paper and described in our complete pseudocode.

2. Background
The reflected radiance is given in the standard way by

Lr(ωr) =
∫

Li(ω)S(ω,ωr)V (ω)cosθdω, (1)

where the integral is over all incident directions, S is the scattering function
(equivalent to the BRDF) for hair, Li is the lighting, and ω and ωr are incident
and reflected directions. V is the visibility function that is ray traced, or com-
puted using an approach like deep and multilayer shadow maps [?; ?]. For
notational simplicity, incident directions are not subscripted. The important
difference from surface reflection is that the angles are measured with respect
to the normal plane (perpendicular to the hair tangent direction), rather than a
single surface normal. Thus, θ is the incident angle to the plane, which ranges
from [−π/2,π/2].

Our goal is to importance sample S(ω,ωr) to determine incident direc-
tions, given that we know the reflected direction ωr. In doing so, we will pick
a number J of samples ω j, and compute

Lr ≈
1
J

J

∑
j=1

Li(ω j)S(ω j,ωr)V (ω j)

p(ω j)

cosθ j

cos2 θd, j
, (2)

where in the standard way, the Monte Carlo estimator takes the value of the
integrand divided by the probability p(ω j) of generating the sample. For rea-
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sons of notational simplicity in later derivations, we include the cos2 θd term
in [?] in the denominator above, outside of S. We will see that this term ap-
proximately cancels, and in any event we do not attempt to importance sample
it.

To do the importance sampling, we need to know the form of the scattering
function, which is given in [?] by

S(θi,φi,θr,φr) = M(θi,θr)N(φi,φr). (3)

This form is already factored, allowing us to use many of the techniques for
BRDF importance sampling as in Lawrence et al. [?]. Note that we have not
explicitly considered the Fresnel term, nor the division by cos2 θd (included
directly in equation ??). If the Fresnel term is desired, it can simply multiply
the value of the estimator (numerator in equation ??), but we do not consider
it in the importance sampling itself.

Finally, for the reflection lobe, we use the formulae,

M = g(β,θh−α)

N = cos
φ

2
, (4)

where g is a (normalized) Gaussian lobe, θh is the half-angle between incident
and reflected directions, α is an offset to capture the shift in reflected angle
because of the tilt of the surface scales, and φ = φr−φi is the azimuthal angle
in the range [−π,π]. The form for M is directly from [?], while the form for N
is a common simplification that can be derived [?]. Note also that unlike sur-
face reflection, we are considering angles to the normal plane, so the formula
for θh is just θh = (θi +θr)/2.

This paper now describes how to generate sample directions in a proba-
bility distribution corresponding to the scattering function in equation ??, and
how to compute equation ??.
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Algorithm 1. (Algorithm Pseudocode for Generating BRDF samples)
void sample (vector ωr; vector Rnd [ ]; in Geom; out BRDFsamp)1

// Basic Setup, compute θr and φr

float φr = atan(ωr[2],ωr[1]) ;2

float θr = π

2 −acos(ωr[0]) ;3

float θmax = π/2−abs(θr/2−α) ;4

// Now, loop over the required number of samples

uniform float k ;5

for (k = 0 ; k < numDirections; k += 1) do6

vector Rand = Rnd[k] ;7

// Box-Muller Transform for sampling M
float θs = β * sqrt (-2.0 * log (Rand[0])) * cos (2π * Rand[1]) ;8

// Account for edge conditions
if (abs (θs) > θmax) then9

θs = sign (θs) * θmax ;10

end11

θh = θs + α ; // Account for tilt from cuticle scales12

θi = 2.0 * θh - θr ; // Convert to θi13

if (abs (θi) > π/2) then14

θi = sign (θi) * (π - abs (θi)) ; // Set θi to [−π/2,π/2]15

end16

float cosi = cos (θi) ; // Frequently used trig function17

// Inverse-CDF for N and generate sample direction

float4φ = 2.0 * asin (2.0 * Rand[2] - 1.0) ;18

float φi = φr +4φ ;19

vector ωi = vector (sin (θi), cosi * cos (φi), cosi * sin (φi)) ;20

BRDFsamp→ dir[k] = Geom→ transformFromLocal(ωi) ;21

// Sample weights and pdf

uniform float denom = -0.5 / β / β ;22

float M = 1
β
√

2π
* exp (θs * θs * denom) ;23

float N = 2.0 * sqrt (Rand[2] * (1.0 - Rand[2])) ; // cos asin (u)24

BRDFsamp→ pdf[k] = M * N / (8.0 * cosi) ;25

// If desire cosθd: cosd = max(cos((θi−θr)/2),1.0e−5)
// BRDFsamp → wt[k] = Ks*(cosi*cosi)/(cosd*cosd);

// Simpler practical form, that conserves energy below

BRDFsamp→ wt[k] = Ks ;26

end27
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3. Sampling
This section is the main body of the paper and describes how to generate
the ω j samples, and assign their directions, probabilities and weights of the
Monte Carlo estimator in equation ??. Section ?? discusses some refinements
needed for multiple importance sampling. We include pseudocode for the
entire process, in Algorithm 1. Our system is implemented as a RenderMan
shader, and the pseudocode is taken directly from our source code, with only
minor editing for readability and to conform to the notational conventions in
the text.

3.1. Basic Setup
The basic sampling function definition takes as inputs the reflected direction
ωr, an array of random numbers Rnd (each element is a vector since as we
shall see, we will need 3 independent random numbers), and a structure for
the geometry (that will be used to transform into local coordinates later). The
output will be the BRDF samples (their directions, weights and probabilities
for computing the estimator). The random numbers can be generated in the
standard way, with stratified or quasi-Monte Carlo methods. ωr is assumed to
be available in a local coordinate frame aligned with u−v−w directions as in
Marschner et al.’s work [?], where u is the tangent along the hair, and v and w
represent the normal plane. We first compute θr and φr.

3.2. Box-Muller for Sampling the Gaussian for M
We begin by generating samples according to the Gaussian for the M term.
The standard approach is based on an inverse-cumulative distribution func-
tion. However, the Gaussian cannot be analytically integrated and inverted,
which means we would need to resort to computing the inverse erf function
or numerical inversion. While erf is a standard numerical function in most
packages including RenderMan, the inverse erf is found in Mathematica and
Matlab, but is not standard in most shading languages, including RenderMan.
There are a number of routines to compute the inverse erf [?], but they can
be expensive and difficult to port. Instead, there is a simple trick using two
random variables known as the Box-Muller transform [?].

While the usual derivation is for the 2D normal distribution, each ran-
dom variable X or Y is also a normal distribution, and we can use either
for the 1D Gaussian for M. Note that unlike standard inverse-CDF meth-
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ods, we are using two random numbers to generate a single sample. There
are also rejection sampling-based methods to avoid the trigonometric calcula-
tions, but we did not use them in our implementation. The Wikipedia page
(http://en.wikipedia.org/wiki/Box_muller) on the Box-Muller transform [?]
happens to have an excellent discussion of the alternatives.

In line 8 of the algorithm, we first sample the 1D Gaussian to generate
θs. Note that the basic Box-Muller value is multiplied by β to account for the
variance. To obtain θh, we will now account for the offset α and edge effects.

3.3. Accounting for Edge Cases
The normal distribution function or Gaussian has no limits on its domain, but
angles must generally be within [−π,π]. This leaves the question of how to
handle samples that lead to angles outside these limits (not so much a problem
for θs itself, but for the result in θi). Note this only occurs in the tail of the
Gaussian and so any suitable method will generally lead to only minimal bias.
However, these edge cases must be addressed explicitly in some way to avoid
generating numerical garbage.

One physically-based approach [?] is to simply set the weight for these
samples to 0. While this is physically accurate for the BRDF as written, it
leads to some potentially undesirable properties with losing some incident en-
ergy; a contant white dome with a specular albedo of 1 should ideally reflect
an energy of 1, but setting samples to 0 loses energy. An alternative would be
to reject those samples and renormalize the weight of the remaining samples.
This approach is reasonable, but wastes samples. (Note that in neither case do
we explicitly fire rays for the samples in question, but performing the com-
putations to generate the sample is in itself wasteful; we would ideally like to
fully use all samples that we generate).

Therefore, in practice, we impose a maximum value on the domain of
the Gaussian and clamp to that. This only affects samples deep in the tail,
and this clamping introduces minimal bias. More sophisticated changes to
the Gaussian function itself, to handle this in a more principled fashion, as
explored by d’Eon [?], are a subject of future work. In particular, in line 4, we
compute the maximum value for θs to ensure that | θi |< π (simple algebra will
verify the result), and in line 10 we clamp the sampled value to this maximum.
Only then do we compute the values for θh and finally θi.
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3.4. Inverse CDF for sampling N and final sample direction
We now apply a fairly standard inverse-CDF method for sampling the N term.
Recall from equation ?? that N(φ) = cos(φ/2). Note that φ lies in the interval
from [−π,+π]. However, to convert this to a pdf, we need to normalize by a
factor of 4. The PDF and CDF are simply

pdf(φ) =
1
4

N(φ) =
cos(φ/2)

4
1
4

∫ π

−π

cos
φ

2
dφ = 1

cdf(φ) =
1
2

(
1+ sin

φ

2

)
, (5)

where the offset is to ensure the CDF is 0 at φ = −π. Inverting this directly
gives line 18 in the pseudocode.

We can now go ahead and construct the incident vector or geometric sam-
pling direction (note that the construction is in the hair coordinate system, and
therefore somewhat different from the standard spherical coordinates). Fi-
nally, we transform this into the appropriate reference frame.

3.5. Sample pdf
Finally, we need to compute the estimator in equation ??, which requires both
the value for a sample, as well as the probability distribution function. Note
that if we only need to do BRDF sampling, we need only the final weight
(value/pdf), in line 26. The explicit pdf calculations in lines 22-25 of the pseu-
docode are only needed for multiple importance sampling.

First, consider the probability of choosing a given sample direction, sep-
arately considering the angles θi and φi. We need to compute the probability
distribution function pdf(θi,φi) with proper normalization,∫ π/2

θi=−π/2

∫ π

φi=−π

pdf(θi,φi)cosθi dθi dφi = 1, (6)

where the cosine is needed for the solid angle measure in our hair coordinates
(compare to the sine for standard spherical coordinates). To compute this
probability, we observe that we have sampled so far not in terms of (θi,φi) but
in terms of the half angle (θh,φ). In other words, we actually have,∫

θh

∫
φ

M(θh)
N(φ)

4
dθh dφ = 1, (7)
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where the normalizing factor of 4 is because pdf(φ) = (1/4)cosφ/2. To con-
vert this to the form of equation ??, we must change variables, or use the
Jacobian J(θh,φ;θi,φi) = ∂(θh,φ)/∂(θi,φi), with a term for the area measure
| det(J) | as is standard for change of variables for integration.

In our case, the Jacobian is even simpler than in surface reflection, since
we simply have φ = φr− φi and θh = (θi + θr)/2. From this, it is clear that
| dφ |=| dφi | and dθh = dθi/2. Since the Jacobian is diagonal, the factor
| det(J) | is simply 1/2. Therefore,∫

θi

∫
φi

M(θh)

2
N(φ)

4
dθi dφi = 1

⇒
∫

θi

∫
φi

M(θh)

2cosθi

N(φ)

4
cosθi dθi dφi = 1, (8)

where in the last line we have accounted for the cosθi in the solid angle mea-
sure. By inspection (compare to equation ??) from the equation above,

pdf(θi,φi) =
M(θh)N(φ)

8cosθi
, (9)

which is directly expressed in line 25 of the pseudocode.1 Line 24 introduces
a neat trick to avoid explicitly applying a trigonometric function. We know
that 4φ is obtained by an inverse sine. Noting that cos(sin−1(u)) =

√
1−u2

and simplifying the algebra, we obtain the result.

3.6. Computing the Estimator and Energy Conservation
Finally, we must compute the sample’s contribution to the estimator in equa-
tion ??. One condition we would like to ensure is energy conservation, that
the hair appears uniform when placed in a lighting dome of uniform radiance.
This requires the hair BRDF to be properly normalized. In our case, it will be
a probability function, essentially requiring the scattering function to have the
same normalization as the pdf. Therefore, we use

S(ωi,ωr) =
M(θh)N(φ)

8
, (10)

1The factors of 2 and 8 in lines 24 and 25 could easily be pre-cancelled and other trivial
optimizations applied. We retain the original form for readability.
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(a) 1 BRDF sample (b) 1 light sample (c) 16 light samples (d) 256 light samples

Figure 2. While our BRDF sampling offers full convergence at 1 sample under a
uniform white dome with no shadowing (fig a), light sampling needs all the way to
256 samples (fig d) to resolve the correct normalization. For reference, we show
images with 1 and 16 light samples (fig b and c).

from which it follows that the reflectance-dependent part in equation ?? is
given by

S(ωi,ωr)

p(ωi)
· cosθi

cos2 θd
=

cos2 θi

cos2 θd
, (11)

since all other factors involving M and N cancel. Indeed, this is the beauty of
good importance sampling, that most factors cancel, leaving an estimator with
very low variance. We robustly compute (avoiding small values) the cosine
denominator cosθd = max(cos((θi−θr)/2),1.0e−5). In the pseudocode, we
also include the overall specular color Ks in the weight.

Our final form in line 26 is even simpler. For sharp specular lobes, inci-
dent and reflected cosines will be very similar, as will that of the difference
angle. Thus, the right-hand side in equation ?? can simply be replaced with
1. We also note that Marschner et al.’s original derivation [?] uses a mirror
where cosθi = cosθr = cosθd , and the rationale for using a denominator with
θd for rough surfaces, as opposed to θi is not clear, except from conditions of
reciprocity. Therefore, we directly use the very simple form in line 26, and we
have not found this to change the results significantly. Besides simplicity, this
formula enforces a form of exact energy conservation; the scattering function
is now exactly a probability distribution function (with edge cases handled not
with an analytic formula, but implicitly through our earlier discussion; implic-
itly both the probabilities and value of the scattering function are modified in
the same way to give a net Monte Carlo weight of 1).2

2 Note that the first part of equation ??, and by extension equation ?? requires the Gaussian
normal distribution function to integrate to 1, which it does over an infinite domain. The
integral is approximately 1 over the restricted angular domain, but our computations do not
strictly account for the way we handled edge cases to clamp the range of values. This does
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(a) 1 sample (b) 4 samples

(c) 16 samples (d) ground truth

Figure 3. As can be seen from the figure, BRDF sampling converges rapidly to the
true result (ground truth was obtained using light sampling with 256 samples). This
example includes full shadow tracing.

Finally, the overall rendering system will take the weights produced from
the BRDF sampler, and multiply them with the lighting for the sample direc-
tions, modulated by visibility, and average over all Monte Carlo samples. Note
that the overall rendering system cares only about the weight and the BRDF
direction. However, we do compute the pdf explicitly, both for instructive
purposes, and since it is useful for multiple importance sampling, as discussed
next.

Refer to Figure ??, where a common validating "white furnace" test is
done. The idea is to make sure that the BRDF correctly integrates to white
under a non shadowing uniform white dome. Similarly Figure ?? demon-
strates the fast convergence of our approach under arbitrary lighting with full
shadowing computations.

not create practical problems, especially since the estimator is also set up to compensate and
ensure energy conservation, as discussed above.
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Algorithm 2. (BRDF Value and PDF for Multiple Importance Sam-
pling)
void ValuePDF (vector ωr; vector Dir [ ]; out BRDFsamp)1

// Basic Setup, compute θr and Rperp to calculate φ

float θr = π

2 −acos(ωr[0]) ;2

vector Rperp = normalize (vector (0.0, ωr[1], ωr[2]) ) ;3

uniform float denom = -0.5 / β / β ;4

// Now, loop over the required number of samples
uniform float k ;5

for (k = 0 ; k < numDirections; k += 1) do6

// Compute M term
vector ωi = Dir [k] ;7

float θi = π

2 −acos(ωi[0]) ;8

float cosi = sqrt (1.0 - ωi[0] * ωi[0]) ;9

float θs = (θi +θr)/2−α ;10

float M = 1
β
√

2π
* exp (θs * θs * denom) ;11

// Compute N term
vector Lperp = normalize (vector (0.0, ωi[1], ωi[2]) ) ;12

// Trig identity cosφ = 2cos2(φ/2)−1
float N = sqrt ( (1.0 + Rperp · Lperp ) * 0.5 ) ;13

// Compute Value and PDF
BRDFsamp→ pdf[k] = M * N / (8.0 * cosi) ;14

BRDFsamp→ value[k] = Ks * BRDFsamp→ pdf[k] ;15

// If we desire to keep the cosθd term, we can
multiply this by (cosθi/cosθd)

2.

end16

4. Multiple Importance Sampling
In practice, the BRDF sampling routine above will often be combined with
light sampling in a multiple importance sampling (MIS) framework [?]. One
requirement of MIS is that we are able to compute the BRDF value and pdf
for an arbitrary direction generated by light sampling. Moreover, there may be
cases where we want to use light sampling; we still need to be able to evaluate
the normalized BRDF value in those cases for an arbitrary incident direction.
Therefore, we describe the Value and PDF function in algorithm ??, which is
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largely similar to BRDF sampling.
The main difference is that we now are given as input a list of incident

directions (in Dir [ ]). We start with the basic setup as for BRDF sampling,
computing θr and the constant denom term. Instead of computing φr, we com-
pute the corresponding vector Rperp instead (a similar vector Lperp will be
computed later for incident directions).

We now proceed to compute M, starting by reading in ωi and determining
θi. Note that we have ωi so the cosine can be computed directly without a
trigonometric function call. θs is now computed directly from the formula
(since θh = θs +α). From this, we apply the standard formula for M.

For computing N, we compute Lperp for the incident direction, just as
we calculated Rperp. cosφ is simply the dot product between these vectors.
cos(φ/2) is obtained directly from a well-known trigonometric identity, with-
out using any explicit trigonometric functions.

Finally, we need to compute the value and pdf. The pdf is computed just
as for the BRDF sampling case, discussed earlier. The value is simply the final
weight times the pdf, and we have already seen that the weight is simply Ks.

Figure ?? compares light sampling with BRDF sampling and MIS. In this
environment, the advantage of MIS is rather minimal. However, as is com-
mon with MIS, situations with more isolated light sources would demonstrate
benefits from light sampling.

5. Discussion and Use in Production
The method described in this paper was originally developed for production
use for hair rendering on Pixar’s upcoming Monsters University feature. It
is one component of a significant shift involving the computer-generated ani-
mation industry, where previous ad-hoc shading models within a rasterization
pipeline are increasingly being replaced by physically accurate lighting and
reflectance, within a raytracing and importance sampling framework. Indeed,
from mid-2011, Pixar’s industry standard Renderman 16.0 software has in-
cluded support for (multiple) importance sampling, inspired in large part by
our initial shaders for this purpose (which in addition to the work described
in this paper also handled standard diffuse and specular BRDFs in a similar
fashion). Since our application is to hair rather than surface BRDFs, and the
original development pre-dates this change in RenderMan, our actual imple-
mentation uses independent shaders, pseudocode for which is given here.

The technique described in this paper has been in production use at Pixar
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(a) 4 light samples (b) 24 light samples

(c) 4 BRDF samples (d) MIS 4 light and 4 BRDF samples

Figure 4. Here we compare the quality of BRDF sampling versus light sampling.
Under this environment, 4 BRDF samples (fig c) are equivalent to about 24 light sam-
ples (fig b). We also provide (fig d) an MIS render (a combination of light 4 samples
and 4 BRDF samples): the differences are rather subtle since light sampling is much
worse than BRDF sampling, but if you look closely, you can see better definition of
the individual strands.

for Monsters University and other shows for more than a year now, and has
been generally well received, with almost no additional tweaks required be-
yond what is described here. To our knowledge, it has performed satisfactorily
in all settings. Given the “in-production” nature of Monsters University, we
are unable to provide too many example images at this time. Figure ?? shows
one example from the publicly-released trailer. We see how the parameters
(reflectance Ks, color, width of highlight defined by β and shift α) can be
used to create interesting appearances, allowing sufficient flexibility for artis-
tic direction. In this case, the image actually uses two Marschner lobes (both
sampled with our algorithm) for creating the right look.

While many of the basic ideas in this paper are a fairly direct application
of the literature, our informal discussions with many other production houses
indicated they were not aware of, nor able to independently develop, a suitable
method for importance sampling. We are therefore publishing our complete
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Figure 5. An example image in production from Monsters University, with the
hair rendered using our method. This image uses a small diffuse component, but
is primarily rendered with our specular model. It uses two Marschner lobes, one
with Ks = 0.17,β = 5◦,α = −2◦ with a white color, and a secondary lobe with
Ks = 1,β = 10◦,α = 5◦ with a saturated blue color. Image copyright (2012) Pixar.
All Rights Reserved.

implementation in the hope it is more broadly useful to the industry. There is
also considerable room for future work, such as including the other Marschner
terms, like TT and TRT, as well as in applying the concepts to more recent hair
BRDF models such as d’Eon’s [?].
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