Using blur to affect perceived distance and size

Robert Held^{1,2} Emily Cooper¹ James O'Brien¹ Martin Banks¹ ¹UC Berkeley ²UC San Francisco

SIGGRAPH 2010 Los Angeles, CA

Blur in cinema

- Minimize blur
- Result: Scale models appear life-sized

Images copyright Lucasfilm Ltd.

Sunday, August 1, 2010

I. Review optics of blur

2. Determine how blur acts as a distance (and size) cue

3. Develop tips and rules for changing blur

Optics of blur

Imaging Plane

Optics of blur

Blur in cinema, revisited

- Minimize blur (small aperture, long exposure)
- Result: Scale models appear life-sized

Images copyright Lucasfilm Ltd.

A = 4.5mm

A = 60 m

Imaging Plane Lens

Imaging Plane Lens

Focal Plane

$\left| \begin{array}{c} \uparrow \\ c = A\left(\frac{s_0}{z_0}\right) \left| 1 - \frac{z_0}{z_1} \right| \right.$

$\oint c = A\left(\frac{s_0}{z_0}\right) \left| 1 - \frac{z_0}{z_1} \right|$

$\oint c = A\left(\frac{s_0}{z_0}\right) \left| 1 - \frac{z_0}{z_1} \right|$

Important terms:

Blur magnitude: c Focal (absolute) distance: **z**₀ Relative distance: $\frac{1}{20}$

 $c = A\left(\frac{s_0}{z_0}\right) \left| 1 - \frac{z_0}{z_1} \right|$

$z_0 = A\left(\frac{s_0}{c}\right) \left| 1 - \frac{z_0}{z_1} \right|$

• Blur alone cannot reveal absolute distance

• Blur alone cannot reveal absolute distance

Other information

• Perspective information can reveal z_1/z_0

Model

- Combined with relative depth information, blur can act as a cue to absolute distance
- Bayesian approach:

Combined Depth Estimate

Sunday, August 1, 2010

Approximating blur

Consistent blur

Sunday, August 1, 2010

Aligned blur gradient

Aligned blur gradient

- Predicted perceived distance: ~8cm
 - Expect weaker influence of blur due to variance

Approximating blur (very badly)

Consistent blur

Sunday, August 1, 2010

Unaligned blur gradient

Unaligned blur gradient

- Predicted perceived distance: ambiguous
 - Expect weakest miniaturization effect, if any

Abs. Distance Distribution

Experiment

- 7 sample scenes from GoogleEarth
- Each scene rendered sharply and with consistent, aligned gradient, and unaligned gradient blur
- 5 blur magnitudes

Fixation point (0.5s)

Enter camera distance in meters: 0.010

Response

Results

Semi-automated Algorithm

Semi-automated Algorithm

Semi-automated Algorithm

${\bf Choosing} \ A \ {\bf for} \ {\bf desired} \ {\bf depth} \ {\bf of} \ {\bf field}$

Disparity of target relative to fixation:

$$\delta = I\left(\frac{s_0}{z_0}\right)\left(1 - \frac{z_0}{z_1}\right)$$

$$c = A\left(\frac{a}{a}\right)$$

Diameter of blur circle: $\left| \frac{s_0}{z_0} \right) \left| 1 - \frac{z_0}{z_1} \right|$

Disparity of target relative to fixation:

$$\delta = I\left(\frac{s_0}{z_0}\right)\left(1 - \frac{z_0}{z_1}\right) \qquad \qquad c = A\left(\frac{s_0}{z_1}\right)$$

$$c = (A/I)|\delta|$$

In natural viewing, blur is proportional to disparity

Diameter of blur circle: $\left| \frac{s_0}{z_0} \right) \left| 1 - \frac{z_0}{z_1} \right|$

Disparity of target relative to fixation:

$$\delta = I\left(\frac{s_0}{z_0}\right)\left(1 - \frac{z_0}{z_1}\right) \qquad \qquad c = A\left(\frac{s_0}{z_1}\right)$$

$$c = (A/I)|\delta| \rightarrow c \approx \frac{1}{2}$$

- In natural viewing, blur is proportional to disparity
- Practical application: Natural stereo content should be generated with camera apertures ~1/12 the camera baseline

Diameter of blur circle: $\left| rac{s_0}{z_0} ight) \left| 1 - rac{z_0}{z_1} ight|$

Discussion

- Blur is deeply connected to distance
- Also closely related to other distance cues
- Modeling and understanding the relationship between blur and other depth information helps us understand how to make blur appear natural

Discussion

- Once we know how to make blur look natural, we can intentionally modify to create perceptual effects
 - Tilt-shift, model photography were gross modifications
- Blur-based effects in stereo photography deserve attention

Acknowledgments

The authors thank the following people for their valuable input:

- **Björn Vlaskamp**
- Johannes Burge
- Kurt Akeley

Funding:

- NSF Graduate Research Fellowship
- NDSEG Graduate Research Fellowship
- NIH ROI EYOI2851
- **NSF BCS-0117701**

Original city images and data from GoogleEarth are copyright Terrametrics, SanBorn, and Google.

Tilt-shift effect

Approximating blur

Consistent blur

Aligned blur gradient

Sunday, August 1, 2010

% Difference (blur-circle diameter):

10 100 1000 0