# Making big things look small: Blur combined with other depth cues affects perceived size and distance

Robert Held<sup>1,2</sup>, Emily Cooper<sup>1</sup>, James O'Brien<sup>1</sup>, & Martin Banks<sup>1</sup> <sup>1</sup>University of California, Berkeley, <sup>2</sup>University of California, San Francisco

> Vision Sciences Society Meeting May 11th, 2009

Funded by NSF Graduate Research Fellowship, NIH R01 EY012851, & NSF BCS-0117701

#### Blur as a depth cue: Previous findings

- Blur is a weak cue to depth
  - Other depth cues, such as disparity, are much stronger (Mather 2000)

- Blur only useful to reveal the depth ordering of surfaces that occlude each other (Marshall et al. (1996) and Mather (1996))







## Revisiting blur as a cue

![](_page_5_Figure_1.jpeg)

#### Important terms:

Focal (absolute) distance: z<sub>0</sub>

## Revisiting blur as a cue

![](_page_6_Figure_1.jpeg)

![](_page_7_Picture_1.jpeg)

![](_page_8_Picture_1.jpeg)

• Blur alone could correspond to any combination of relative distance and focal distance

![](_page_9_Figure_2.jpeg)

Pupil data from Spring and Stiles (1948)

## **Other information**

Perspective information can estimate the relative distance to the building

![](_page_10_Figure_2.jpeg)

Pupil data from Spring and Stiles (1948)

## Model

![](_page_11_Picture_1.jpeg)

- Combined with relative depth information, blur can act as a cue to absolute distance
- Bayesian approach:

![](_page_11_Figure_4.jpeg)

![](_page_12_Figure_1.jpeg)

![](_page_13_Figure_1.jpeg)

![](_page_14_Figure_1.jpeg)

![](_page_15_Figure_1.jpeg)

![](_page_16_Figure_1.jpeg)

![](_page_17_Figure_1.jpeg)

![](_page_18_Figure_1.jpeg)

![](_page_19_Figure_1.jpeg)

![](_page_20_Figure_1.jpeg)

• Predicted perceived distance: 8cm

#### Inaccurate blur

![](_page_21_Picture_1.jpeg)

![](_page_21_Picture_2.jpeg)

Consistent blur

Aligned blur gradient

# Aligned blur gradient

![](_page_22_Figure_1.jpeg)

- Predicted perceived distance: ~10cm
  - Expect weaker influence of blur due to variance

#### Inaccurate blur

![](_page_23_Picture_1.jpeg)

![](_page_23_Picture_2.jpeg)

Consistent blur

#### Unaligned blur gradient

## Unaligned blur gradient

![](_page_24_Figure_1.jpeg)

- Predicted perceived distance: ambiguous
  - Expect weakest miniaturization effect, if any

## Experiment

- 7 sample scenes from GoogleEarth
- Each scene rendered sharply and with consistent, aligned gradient, and unaligned gradient blur
- 5 blur magnitudes
- Subjects viewed each image monocularly for 3.0sec, then reported the distance from a marked building in the center of the image to the camera that produced the image
- Each image repeated 7 times (randomly interleaved)

## Results

![](_page_26_Figure_1.jpeg)

## Discussion

• Previously, blur considered a weak depth cue

## Discussion

- Previously, blur considered a weak depth cue
- Blur can act as a strong cue to absolute distance and size
  - Must be combined with other depth cues
  - Explains the perceptual basis of the tilt-shift effect
  - Also predicts previous findings in vision science literature

## Acknowledgments

The authors thank the following people for their valuable input:

- Björn Vlaskamp
- Johannes Burge
- Kurt Akeley

Funding:

- NSF Graduate Research Fellowship
- NIH ROI EY012851
- NSF BCS-0117701

## Blur as a depth cue: Previous results

- Blur is a weak, ordinal cue to depth
  - Blur can reveal the depth ordering of surfaces that occlude each other (Marshall et al. (1996) and Mather (1996))

![](_page_30_Picture_3.jpeg)

![](_page_30_Picture_4.jpeg)

## Theory

• Matching-task interpretation

![](_page_31_Picture_2.jpeg)

# Likelihood estimates

![](_page_32_Figure_1.jpeg)

## **Consistent Blur**

![](_page_33_Figure_1.jpeg)

• Sampled points perfectly match curve

![](_page_34_Picture_1.jpeg)

![](_page_34_Figure_2.jpeg)

Blur alone could correspond to any combination of relative distance and focal distance

![](_page_35_Figure_2.jpeg)

## Theory applied to previous studies

Explains results by Marshall et al. (1996) and Mather (1996)

![](_page_36_Figure_2.jpeg)

0.3

1

**Relative Distance** 

3

0.01

0.1

0.3

1

3

10

0.1

0.3

3

1

5

10

0.1

10

## Predictions

![](_page_37_Figure_1.jpeg)

- Consistent blur most reliable, followed by vertical and horizontal gradients
- Vertical gradients more reliable for low depth variation

![](_page_38_Picture_0.jpeg)

![](_page_39_Picture_0.jpeg)

# Blur in Photography

![](_page_40_Picture_1.jpeg)

![](_page_41_Picture_0.jpeg)

## **Blur in cinema**

![](_page_42_Picture_1.jpeg)

- Small apertures and long exposures minimize blur
- Result: Scale models appear life-sized

![](_page_42_Picture_4.jpeg)

![](_page_42_Picture_5.jpeg)

## Blur as a depth cue

- Compare strengths of disparity and blur as depth cues
- With disparity present, blur had little effect on percept, unless it was greatly exaggerated
- Conclusion: Blur provides coarse, qualitative information

![](_page_43_Figure_4.jpeg)

## Revisiting blur as a cue

![](_page_44_Figure_1.jpeg)

#### **Important terms:**

Focal distance:  $z_0$ Relative distance:  $d = z_1/z_0$ Blur magnitude:  $c_1$  (deg)

$$c_1 = \left| A\left(\frac{s_0}{z_0}\right) \left(1 - \frac{1}{d}\right) \right|$$