
Updated Sparse Cholesky Factors for
Corotational Elastodynamics
Florian Hecht, Yeon Jin Lee, Jonathan R. Shewchuk, and James F. O’Brien
University of California, Berkeley

We present warp-canceling corotation, a nonlinear finite element formula-
tion for elastodynamic simulation that achieves fast performance by making
only partial or delayed changes to the simulation’s linearized system matri
ces. Coupled with an algorithm for incremental updates to a sparse
Cholesky factorization, the method realizes the stability and scalability of a
sparse direct method without the need for expensive refactorization at each
time step. This finite element formulation combines the widely used corota-
tional method with stiffness warping so that changes in the per-element ro-
tations are initially approximated by inexpensive per-node rotations. When
the errors of this approximation grow too large, the per-element rotations
are selectively corrected by updating parts of the matrix chosen according
to locally measured errors. These changes to the system matrix are prop-
agated to its Cholesky factor by incremental updates that are much faster
than refactoring the matrix from scratch. A nested dissection ordering of
the system matrix gives rise to a hierarchical factorization in which changes
to the system matrix cause limited, well-structured changes to the Cholesky
factor. We show examples of simulations that demonstrate that the proposed
formulation produces results that are visually comparable to those produced
by a standard corotational formulation. Because our method requires com-
puting only partial updates of the Cholesky factor, it is substantially faster
than full refactorization and outperforms widely used iterative methods such
as preconditioned conjugate gradients. Our method supports a controlled
trade-off between accuracy and speed, and unlike iterative methods its per-
formance does not slow for stiffer materials but rather it actually improves.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numer-
ical Linear Algebra—Sparse linear systems; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Physically based model-
ing; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Real-
ism—Animation; I.6.8 [Simulation and Modeling]: Types of Simulation—
Animation

This work was supported in part by NSF Awards CCF-0635381 and IIS-
0915462, UC Lab Fees Research Program grant 09-LR-01-118889-OBRJ,
Intel’s Science and Technology Center for Visual Computing, and by gifts
from Autodesk, NVIDIA, and Pixar.
Authors’ addresses: F. Hecht, Y. J. Lee, J. R. Shewchuk, and J. F.
O’Brien (correspondence author), University of California, Berkeley, CA;
email: job@berkeley.edu.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permis-
sion and/or a fee. Permissions may be requested from Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax
+1 (212) 869-0481, or permissions@acm.org.
c© 2012 ACM 0730-0301/2012/12-ART123 $10.00

DOI 0.1145/2231816.2231821
http://doi.acm.org/0.1145/2231816.2231821

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Sparse Cholesky factorization, corota-
tional finite element method, elastodynamics, stiffness warping, physically-
based animation

ACM Reference Format:
Hecht, F., Lee, Y. J., Shewchuk, J. R., and O’Brien, J. F. 2012. Updated
sparse Cholesky factors for corotational elastodynamics. ACM Trans.
Graph. 31, 5, Article 123 (August 2012), 13 pages.
DOI = 10.1145/2231816.2231821
http://doi.acm.org/10.1145/2231816.2231821

1. INTRODUCTION

The behavior of elastic objects and materials such as toys, rubber,
buildings, clothing, and skin is governed by partial differential
equations that are essentially linear for very small deformations,
but become nonlinear for large deformations. The main source of
nonlinearity is almost disappointingly mundane: objects rotate. In
particular, one part of a deforming object can rotate relative to
another part of the same object. An unfortunate consequence is that
standard methods for visually realistic simulation of the dynam-
ics of flexible objects are substantially slower than they would be
if the behavior was purely linear. These methods are widespread
in computer animation, special effects for films, secondary motion
in games, and environmental components in training applications.
The time available for computation varies wildly among applica-
tions, but the demand for faster simulation methods is universal.

The elastodynamic simulation methods most commonly used in
computer graphics employ finite element methods on tetrahedral
meshes with some form of implicit time integration scheme, such
as Newmark or backward Euler integration, where the main bottle-
neck is to assemble and solve a large, sparse, positive-definite lin-
ear system. This system must be solved many times, but because
the underlying physics are nonlinear, the work spent computing
one solution generally does not benefit subsequent solutions. In-
stead, the nonlinear equations are linearized at the beginning of
each time step, the resulting linear system is solved, and then the
process starts from scratch at the next time step. The corotational
formulation of the finite element method, discussed in Section 2, is
a linearization method widely used for elastodynamics in graphics
applications.

The predominant methods for solving these linear systems are
iterative solvers, such as the conjugate gradient method [Hestenes
and Stiefel 1952; Shewchuk 1994] with a diagonal or incomplete
Cholesky preconditioner. These iterative methods have proven
themselves efficient for systems of small to moderate sizes. They
typically converge rapidly and, for applications such as video
games where accuracy is not a main concern, the iterations may
be halted early without unacceptable artifacts. However, as the size
of the system increases, and in particular as its spectral span grows,
these solvers require more iterations, and the total work scales su-
perlinearly with the problem size. Moreover, slow convergence is
common with stiff materials and meshes with large disparities in

ACM Transactions on Graphics, Vol. 31, No. 5, Article 123, Publication date: August 2012.

http://doi.acm.org/10.1145/2231816.2231821

123:2 • Florian Hecht, Yeon Jin Lee, Jonathan R. Shewchuk, and James F. O’Brien

a) b) c)
Images copyright Hecht, Lee, Shewchuk, and O’Brien.

Fig. 1: A finite element simulation of an elastic object, sped up by incremental updates to the linear system’s Cholesky factor. (a) An animation frame where
red coloring indicates elements of the mesh whose entries in the Cholesky factor are updated during that frame. (b) Nested dissection of the mesh. (c) The
nested dissection ordering of the system matrix, with nonzeros color-coded to match the mesh. This structure is preserved in the Cholesky factor.

element sizes, both of which tend to worsen the conditioning of
the linear system. In these cases, efforts to achieve faster speeds
by performing too few iterations can generate obviously unrealistic
motion and even cause the time integration method to diverge.

Direct methods like Cholesky factorization followed by back
substitution [Cholesky 1910; Golub and Van Loan 1996] produce
accurate solutions and avoid many of the difficulties that plague
iterative methods.1 The Cholesky factor of a symmetric, positive-
definite matrix A is a lower triangular matrix L such that A =
LLT. Unfortunately, even if A is sparse, the factor L is usually
dense. The matrix positions that are zero in A but nonzero in L are
collectively called fill. The pattern of nonzeros and fill in L depends
(for all practical purposes) solely on the pattern of nonzeros in A,
and not on the numerical values of those nonzeros.

Cholesky factorization of sparse matrices consists of two phases,
called symbolic factorization and numerical factorization. Sym-
bolic factorization determines the positions, but not the numerical
values, of the nonzero values in the Cholesky factor L, and thus
lays out the data structure that efficiently stores these values. Nu-
merical factorization computes the values of L and records them
in the data structure. Once the factorization has been computed,
a linear system Ax = b can be solved for an unknown vector
x given a known vector b through forward and backward substi-
tution, which are simple and fast methods for computing L−1b
and L−TL−1b in succession. Sparse Cholesky solvers are robust
against ill-conditioning, and unlike iterative solvers, their running
times are unrelated to matrix conditioning.

Prior to factorization, reordering methods permute the rows and
columns of A to reduce the amount of fill created. Off-diagonal
nonzeros in A tend to generate fill to the right and downward in L.
Reordering strategies that move nonzero elements in A closer to
the diagonal or break A into semi-independent blocks improve the
sparsity of L. Cholesky factors for large linear systems can require
a great deal of memory, but good orderings can substantially miti-
gate both memory use and running times for factorization and back
substitution.

The reason direct solvers are less often used to animate nonlinear
elastic motion is that the cost of factorization cannot be amortized
across multiple time steps if the linearized system’s matrix changes.

1An interesting historical discussion of numerical algorithms including
Cholesky factorization and its relation to other methods such as Gaussian
elimination can be found in the article by Grcar [2011].

The ordering and symbolic factorization need to be recomputed
only when the structure of the underlying mesh changes, but the
dominant cost is that of numeric factorization, which must be re-
peated whenever matrix values change.

In this article we present warp-canceling corotation, a method
that takes advantage of the facts that the matrix changes grad-
ually and that we do not need an exact solution for vi-
sual applications, as long as there are no objectionable ar-
tifacts. We exploit the special nature of the changes to the
matrix, namely that we can approximate small or global
changes to the linear system without changing the Cholesky
factors by wrapping orthonormal matrices around the factor-
ization. These orthonormal matrices are functionally equivalent
to a variation of the stiffness warping method of Müller et al.[2002].

The source of the nonlinearity in elastodynamics is the fact that
elements can rotate and adjoining elements can rotate relative to
each other. Stiffness warping uses per-node rotations to approxi-
mate per-element rotations. Because the per-node rotations can be
expressed as orthonormal transformations to a fixed sparse matrix,
we can update them at each time step without changing the core
matrix. If the elements adjoining a node do not share the same ro-
tation from their rest configurations, the error in the approximation
is proportional to local differences among the element rotations.
Unfortunately, the error manifests as unbalanced forces (so-called
ghost forces), which can create odd visual artifacts and can cause
the time integrator to lose stability and blow up.

We control this error by performing local, incremental updates
of the sparse matrix and its Cholesky factors so that they better
approximate the exact nonlinear corotational method. (See Fig. 1.)
The updates are scheduled either by imposing a threshold on the
maximum permissible error or by allotting a fixed computational
budget per time step, thereby offering a range of choices about bal-
ancing speed with accuracy. The cost of these partial updates is typ-
ically a fraction of the cost of complete numerical refactorization.
Back substitution is very fast, so these partial updates constitute
most of the cost of a time step.

The greatest errors in stiffness warping arise where adjoining el-
ements undergo large relative rotations, usually because of large
forces or collisions. The computational budget is spent updating
these regions first. Where smaller deformations occur, stiffness
warping has acceptable artifacts, which we correct gradually over
many time steps. The stiffer an object is, the less it deforms and the

ACM Transactions on Graphics, Vol. 31, No. 5, Article 123, Publication date: August 2012.

Updated Sparse Cholesky Factors for Corotational Elastodynamics • 123:3

lower the error, so our warp-canceling method actually performs
better for stiffer materials, contrary to most iterative methods.

2. BACKGROUND

Physically-based animation of elastic objects was introduced by
Terzopoulos et al. [1987] and other contemporaneous work. A sub-
stantial amount of research has been done since, and we refer the
reader to Gibson and Mirtich [1997] for a review of older meth-
ods, or Nealen et al. [2006] for a review of more recent results.
Simulations of elastic systems have found many uses in animation,
and researchers have extended the range of materials that can be
simulated from solids to near-fluids exhibiting behaviors like in-
compressibility and plastic flow.

Our formulation of nonlinear finite element methods for elasto-
dynamics is a corotational method, which is widely used in com-
puter graphics. The nonlinearity of large material deformations
arises from the fact that an element can deviate from its rest con-
figuration not only by compression or expansion, but also by rota-
tion, and different elements may undergo different rotations. Coro-
tational methods explicitly account for these rotations by factoring
them out of the element stiffness matrices. The method was intro-
duced to the graphics community by Müller and Gross [2004] and
Etzmuß et al. [2003]. Other researchers have extended the method
to make simulations insensitive to element inversion [Irving et al.
2004], or modified it to work in a multigrid [Zhu et al. 2010] or
modal [Choi and Ko 2005] setting.

Müller et al. [2002] describe a precursor of the full corotational
method called stiffness warping, which uses per-node rotations in-
stead of per-element rotations. As discussed in the previous section,
the errors from this approximation induce ghost forces, and this
flaw has limited the adoption of this method. Nevertheless, we build
on this work by incrementally updating the matrix to make stiffness
warping better approximate the corotational method, thus limiting
the ghost forces so that they are not problematic. Courtecuisse et
al. [2010] take an approach related to ours: they use stiffness warp-
ing with an incomplete Cholesky factorization to precondition a
conjugate gradient solver. Bridson et al. [2006] use a conjugate gra-
dient solver with a modified incomplete Cholesky preconditioner
for fluid dynamics.

As Felippa [2007] notes, the notion of separating out rota-
tions originates in the finite element literature outside graphics.
Belytschko and Hsieh [1979] introduced the term corotational
in 1979, with the goal of separating out a single rigid body
motion from an otherwise linear deformation. Nour-Omid and
Rankin [1991] describe an element-by-element method that acts
as a wrapper around an existing finite element library, extending
its domain of application from small, linear deformations to large,
nonlinear deformations.

The corotational method requires reassembly of the system ma-
trix every time step. This assembly can be a significant portion of
the overall simulation cost, in part because of its irregular memory
access patterns [Parker and O’Brien 2009]. Chentanez et al. [2009]
reduce this assembly cost by using partial updates to skip the full
reassembly in computations where the matrix changes locally be-
cause of local changes to the underlying mesh.

Any simulation of dynamics that uses an implicit time integra-
tion scheme requires a numerical solver for sparse linear systems.
The structure of the linear system’s sparsity is determined by the
edges of the tetrahedral mesh used to discretize the physical do-
main. Botsch et al. [2005] provide an overview of sparse direct
methods, iterative methods, and how they compare in computer
graphics applications. Iterative methods such as conjugate gradi-

ent solvers are easy to implement. They require only a simple
code template [Barrett et al. 1993], an implementation of a sparse
matrix-vector multiplication operation, and optionally, an imple-
mentation of a preconditioning operator.

Sparse direct solvers are more complicated to implement and
require optimized numerical kernels to achieve their potential for
speed, so the use of a well-established library is recommended.
We use Toledo’s TAUCS software package [2003] and have mod-
ified it to support incremental updates to the Cholesky factors. Al-
though we focus on elastodynamic simulation, sparse direct solvers
have applications to other areas of graphics. For example, many
geometry processing algorithms can benefit from sparse direct
solvers [Botsch et al. 2005]. A detailed evaluation and compari-
son of the currently available software for solving large, sparse,
symmetric linear systems can be found in the article by Gould et
al. [2007].

Two key parts of our method are a formulation where only rel-
atively small parts of the system matrix change at each time step
and an incremental update scheme for the factorization that only
does work proportional to these changes. The classic paper by
Gill et al. [1974] describes several schemes for updating the in-
verse or factorization of a matrix. Most of these methods focus on
small changes of a particular form. For example, the well-known
Sherman-Morrison formula [Press et al. 2002] computes the inverse
of a matrix A′ = A ± vvT for a given vector v when A−1 is al-
ready known. This type of low-rank change can also be computed
efficiently for sparse Cholesky factorizations using an algorithm
based on Givens rotations developed by Davis and Hager [1999;
2009]. This algorithm is implemented in the publicly available li-
brary CHOLMOD [Chen et al. 2008]. Unfortunately our formula-
tion requires higher-rank changes than can be efficiently performed
with CHOLMOD. We discuss this issue in more detail and provide
comparative running times in Section 5.2.

Sorkine et al. [2005] improve the speed of Davis and Hager’s al-
gorithm for the special case of inserting rows with a single nonzero
entry, and it might be possible to devise a more efficient variation
of the Davis-Hager algorithm for the specific kinds of changes we
make to the matrix. However, we believe that any method based on
Givens rotations will necessarily be slower than our update method
for the high-rank modifications we require.

3. FINITE ELEMENT FORMULATION

We start with a standard discretization of Lagrangian mechanics

Mẍ + Cẋ + K(x−m) = fext, (1)

where M is the (lumped) mass matrix, C is the damping matrix,
K is the stiffness matrix, fext is a vector of external forces, x is
a vector specifying the nodes’ coordinates in world space, and m
specifies the coordinates in material space. We use implicit Euler
time integration. Substituting ẍt+1 = (ẋt+1− ẋt)/∆t into (1) and
rearranging yields

(M + ∆tC + ∆t2K)ẋt+1 = Mẋt + ∆t(f t+1
ext + f tels), (2)

which we solve for the new velocities ẋt+1. The internal elastic
force f tels is a shorthand for −K(xt −m). Similar derivations can
be done for other implicit integrators such as Newmark integration.

3.1 Corotational Finite Element Methods

In the corotational method described by Müller and Gross [2004],
the right-hand side of Eq. (2) and the system matrix A = M +
∆tC+∆t2K change at each time step. The system matrix changes

ACM Transactions on Graphics, Vol. 31, No. 5, Article 123, Publication date: August 2012.

123:4 • Florian Hecht, Yeon Jin Lee, Jonathan R. Shewchuk, and James F. O’Brien

(a) (b) (c)

Fig. 2: Nested dissection partitions the simulation mesh (a) into a separator
and two subdomains, which are bisected recursively, forming a hierarchy
of separators called a dissection tree (b). Reordering the rows and columns
of the system matrix according to a postorder traversal of the tree produces
a hierarchical block structure (c). The elongated blocks shown with hatch
marks contain the edges connecting a separator to its descendants in the
tree.

because both C and K change as they are reassembled with the cur-
rent element rotations. Both matrices have the same sparse structure
and differ only in their scaling coefficients, as C maps the veloc-
ities to damping forces and K maps the displacements to internal
elastic forces. Each tetrahedral element in the mesh contributes a
12 × 12 element stiffness matrix to the global stiffness matrix K.
The contribution of an element e is

K̂e =

Re

Re

Re

Re

Ke

RT
e

RT
e

RT
e

RT
e

 , (3)

where Ke is the unrotated 12 × 12 element stiffness matrix using
the linear Cauchy strain and incorporating the two Lamé constants
for the material parameters. Re is the 3×3 rotation matrix that ro-
tates from e’s reference frame in material coordinates to the world
coordinate frame. Likewise, e’s contribution Ĉe to C is computed
the same way from a material-frame element damping matrix Ce.
The rotations are computed from the element’s deformation gra-
dient using the modified 3 × 3 singular value decomposition de-
scribed by Irving et al. [2004] that allows a simulation to continue
even when some elements become inverted.

3.2 Cholesky Factorization

Section 1 describes three steps in computing the Cholesky factor-
ization A = LLT: reordering, symbolic factorization, and numeric
factorization. The first two steps only need to be done at the begin-
ning of the simulation or when the structure of the mesh changes.

Reordering permutes the rows and columns of A so that L will
also be sparse. We find that the nested dissection strategy [George
1973; Lipton et al. 1979] produces excellent results. Nested dissec-
tion uses recursive graph bisection to partition the mesh into a hier-
archy of small subdomains, and orders the rows and columns of A
accordingly, as illustrated in Fig. 2. The graph in the figure, which
represents the structure of a mesh, is subdivided into four subdo-
mains (yellow, cyan, lavender, and orange) separated by subsets of
nodes called separators (green, red, and blue). The colored blocks
on the right illustrate the nonzero structure of A. Some of the en-
tries in these blocks are zero, but fast solvers typically treat the

blocks with optimized dense matrix libraries such as the Basic Lin-
ear Algebra Subprograms (BLAS). The hierarchy of subdomains,
illustrated in the center of the figure, is commonly called a dissec-
tion tree. It determines the structure of our incremental updates of
the Cholesky factor L.

The second step, symbolic factorization, computes L’s sparsity
pattern. For all but the simplest meshes, L has fill where nonzeros
appear in positions that are zero in A. This step determines where
fill occurs and allocates the data structure that stores L. The merit
of the nested dissection ordering is that L retains the same sparse
structure shown at the right of Fig. 2.

Changes in A trigger a cascade of changes in L. Normally the
whole numerical factorization would be redone at each time step,
but the nested dissection ordering helps to limit the dependencies
between entries of A and entries of L. A change to A in one mesh
subdomain affects L only in that subdomain and the separators
above it in the hierarchy. We exploit this phenomenon in our in-
cremental update method.

The efficiency of this type of sparse factorization depends heav-
ily on implementation details such as the data structures used to
store sparse matrices, the ordering of memory accesses, the graph
partitioning algorithm, and the parallelization approach. The text
by Davis [2006] provides an excellent discussion. We use the
software TAUCS [Toledo 2003] for the initial factorization and
METIS [Karypis and Kumar 1995] for graph partitioning. Note that
TAUCS creates a supernode structure that is not always an exact
match to METIS’ hierarchy of separators, but the differences are
generally minor and did not hurt the efficiency of our method.

3.3 Stiffness Warping

Stiffness warping approximates changes to the assembled system
matrix A as the product of a constant core matrix and a pair of
changing orthonormal rotation matrices. Because the core matrix
does not change, there is no need to recompute its numerical fac-
torization at every time step.

This approximate method does not apply the changing per-
element rotations of the corotational method, but instead applies
changing rotations to each node. Each per-node rotation is an av-
erage of the rotations of the surrounding elements. It is only an
approximation because the elements adjoining a node do not have
identical mappings from their rest frames to the world frame. How-
ever, it is a good approximation if the relative rotation differences
between adjoining elements are small.

The approximate system has the formR1

. . .
Rn

A

RT
1

. . .
RT

n

 ẋt+1 = Mẋt + ∆t(f t+1
ext + f tels),

(4)
where each Ri is a 3 × 3 nodal rotation matrix. This system is
easily solved given the Cholesky factors of A, because the rotation
matrices are trivially inverted.

We compute the per-node rotations with Horn’s algorithm [1987]
on the node’s one-ring neighbors. The algorithm finds the least-
squares quaternion that best rotates the neighboring nodes from
their material space positions to their world space positions. We
find that Horn’s algorithm yields a very smooth field of per-node
rotations, which helps to keep the errors small.

This formulation differs slightly from the original stiffness warp-
ing formulation of Müller et al. [2002], wherein the rotations are
also applied to the internal forces on the right-hand side. We use the
correct forces from the corotational formulation on the right-hand

ACM Transactions on Graphics, Vol. 31, No. 5, Article 123, Publication date: August 2012.

Updated Sparse Cholesky Factors for Corotational Elastodynamics • 123:5

side, and only incur error induced by the left-hand side’s approxi-
mation of per-element rotations by per-node rotations.

A second difference is that the original method postmultiplies
each 3 × 3 block of A with the same 3 × 3 rotation matrix used
for premultiplication (albeit transposed), even for blocks not on the
diagonal of A. This treatment cannot be written in the form (4) or
as a matrix multiplication by a block diagonal matrix. It requires
the entries in the matrix to be changed at each time step, and it
yields a nonsymmetric matrix.

The errors associated with our approximation are small for ob-
jects with low velocities or undergoing deformations with smoothly
changing rotations. In those cases stiffness warping as we describe
it here might be the preferred method, as it is very fast. In general,
though, stiffness warping can introduce undesirable visual artifacts
and exhibit poor stability.

4. WARP-CANCELING COROTATION

Section 3 describes the exact corotational method and the fast but
flawed stiffness warping method. Here we fuse the two into a fast
method that has limited error and fewer problems with stability than
stiffness warping. Our goal is to exploit the fast solution times and
robustness against ill-conditioning of a direct solver, without incur-
ring the cost of having to recompute the numeric factorization at
each time step. The matrix does not change dramatically at each
time step, and we are willing to accept small errors that do not
cause objectionable visible artifacts.

Warp-canceling corotation includes both per-element and per-
node rotations in the system. When a simulation begins with an
object in its rest configuration, all the per-element and per-node
rotations are the identity, and our method mimics the corotational
method with no error. As the elements begin to rotate relative to
each other, we perform stiffness warping, updating the per-node
rotations at each time step to account for the changes in orienta-
tion of the elements as best as possible. We also estimate the errors
in intra-element forces incurred by the use of per-node rotations to
approximate per-element rotations. For elements in which the error
grows too large, we locally update the corresponding per-element
rotations, thereby correcting the computation of the local velocities,
and closing the gap between the behavior of stiffness warping and
the behavior of the exact corotational method. Error accumulates
again during subsequent time steps, so we continue to periodically
correct some of the per-element rotations as the object continues
to deform. Because only a subset of all the per-element rotations
are updated at each time step, only the corresponding parts of A
change. To take advantage of the fact that large parts of A do not
change from one step to the next, we perform an incremental update
of its Cholesky factor L.

When the error threshold is zero, our method becomes exactly
the corotational method, except that it is slightly slower due to
the cost of computing per-node rotations. However, our method’s
strength appears when it permits some error to accumulate, thereby
running substantially faster while giving the user a controllable
trade-off between accuracy and speed.

The choice concerning which per-element rotations will be up-
dated allows some flexibility in specializing the algorithm’s behav-
ior for particular applications. For example, an offline simulation
may use a constant error threshold to ensure a level of quality even
if the work per frame varies over the course of the simulation. Con-
versely, a real-time simulation may instead opt to update only as
many elements as possible given the available time, thereby main-
taining a constant frame rate with variable quality. When elements
with large errors are not updated, we can determine which elements

might cause stability problems and selectively damp them to pre-
serve stability.

4.1 A Warp-Canceling Formulation

We combine per-node and per-element rotations into a single sys-
tem where the system matrix A is bracketed by the orthonormal
matrices of per-node rotations, as in (4), and we also apply a per-
element rotation to the sub-matrices Ke and Ce that are assembled
to form A. However, we modify (3) so that the rotations applied to
each element also cancel out the per-node rotations. The modified
element stiffness matrix is

K̃e =

RT
1Re

RT
2Re

RT
3Re

RT
4Re

Ke

RT
eR1

RT
eR2

RT
eR3

RT
eR4

 ,

(5)
and the modified element damping matrix C̃e is defined likewise,
by replacing Ke with Ce. These matrices are assembled to form
the system matrix A in (4).

When the system is initially assembled with the correct per-node
and per-element rotations, all of the per-node rotations cancel and
the system behaves identically to the standard corotational method.
However, if the system subsequently deforms but parts of A are
not updated, then the differences between the out-of-date matrix
and the correct matrix are approximated by the per-node rotations.
Note that the rest of (4), including each Ri and all terms on the
right-hand side, are updated every time step. Only A is allowed to
become stale.

For solid objects the per-element rotations typically vary slowly
over the mesh, so the per-node rotations usually approximate them
well. However, for thin structures we find that the per-node rota-
tions may change abruptly near wrinkles and creases. When this
circumstance occurs, the large differences between the per-node
rotations for the nodes of a single element may cause excessive
unbalanced forces that can be destabilizing. In these cases, forcing
the per-node rotations to the identity, effectively disabling stiffness
warping, creates larger linearization errors but improves stability.

4.2 Error Estimation

When parts of A have not been updated, we can estimate the ex-
pected time-integration error, which arises because the per-node ro-
tations only imperfectly approximate the missing updates to the
per-element rotations. With respect to the left-hand side of (4),
this error is proportional to both the error in the rotations and
the local nodal velocities. For each element e we compute fe =

Rn(Me + ∆tC̃e + ∆t2K̃e)RT
nẋ

t
e with both the correct values of

C̃e and K̃e and the values that were last updated in A. This oper-
ation produces a correct force estimate fe,cor, and an approximate
one fe,apx. The error is ||fe,cor − fe,apx||.

For elements that have excessively large errors, we can perform
local updates to A. The rows and columns of A that depend on
these elements’ nodes are reassembled using the correct, updated
values for K̃e and C̃e. These adjustments are incorporated into
the system matrix A in a manner that cancels out the correspond-
ing per-node rotations in the linear system (4), and our method
is locally restored to the exact corotational formulation. (See Sec-
tion 4.4 for details about selecting which elements to update.)

ACM Transactions on Graphics, Vol. 31, No. 5, Article 123, Publication date: August 2012.

123:6 • Florian Hecht, Yeon Jin Lee, Jonathan R. Shewchuk, and James F. O’Brien

} }

Factor Block

Update Block

(a) (b)

Fig. 3: The Cholesky factor L retains the same hierarchical block pattern (a)
that was induced in the system matrix A by reordering. The supernode for
a block in the matrix includes the dependent subblocks from its ancestors
in the dissection tree. The relevant subblocks for the yellow leaf-block are
outlined in orange. These subblocks are compacted (b) to form the factor
and update blocks.

4.3 Incremental Cholesky Factor Updates

An update to the system matrix A requires a corresponding update
to the Cholesky factor L. Rather than recompute L from scratch,
we instead perform an incremental update that does work in accor-
dance with the amount that A has changed.

As part of nested dissection, recursive bisection finds a separator
that disconnects the mesh into two subdomains of roughly equal
sizes. These subdomains are bisected in turn, yielding a hierarchy
of separators with small subdomains at the leaves of the dissection
tree. (See Fig. 2.) Nested dissection orders the rows and columns
of A and L according to a postorder traversal of the hierarchy, with
each subdomain and separator preceding its ancestors and with the
root separator coming last.

This reordering creates a sparse blocked, or “arrowhead,” struc-
ture in A. The Cholesky factor L encodes a process of Gaussian
elimination that eliminates degrees of freedom according to this
reordering. Consideration of this structure in the context of the
standard Cholesky-Crout or Cholesky-Banachiewicz algorithms re-
veals that the lower-left half of this symmetric arrowhead structure
is preserved in L. (See Fig. 3.) Furthermore, the computation of
each leaf block in L depends only on the corresponding leaf block
in A, and the computation of an interior separator block in L de-
pends only on the corresponding block in A and its children in the
dissection tree. If an update to A changes only a few blocks, then
only the corresponding blocks and their ancestors in L need to be
recomputed.

Our implementation of this incremental update strategy is built
on the software TAUCS [Toledo 2003]. To gain efficiency by us-
ing optimized BLAS and LAPACK routines, TAUCS divides the
columns of L into dense matrix subblocks, termed supernodes. Al-
though not all of the entries in these subblocks are nonzero, there
is a net gain in speed from using dense matrix libraries despite the
loss from performing unnecessary computation on zeros. Typically,
there is one supernode for each leaf subdomain and one for each
separator, although sometimes a large subdomain or separator is
represented by several supernodes to attain better cache behavior.
The columns in a supernode are compacted into a factor block that
omits all-zero rows and is stored in a dense matrix representation.
The factor blocks are conjoined with update blocks that store the

factor blocks’ contribution to supernodes further up in the hierar-
chy. (See Fig. 3.)

The hierarchy of subdomains and separators implies a hierar-
chy of supernodes. An update to a supernode necessitates updates
of all its ancestor supernodes, propagating up to the root. During
TAUCS’s standard supernodal Cholesky factorization, the update
blocks are discarded after they are used, but we preserve them so
that the factorization can be restarted at any supernode in the hi-
erarchy. They consume some storage space, but allow us to update
a Cholesky factor considerably faster than we could if we recom-
puted them. The update cost of our method is determined by the
amount of the Cholesky factor that is modified, but at worst it is the
same as the cost of the original factorization.

This procedure relies on the separators being small enough to
make reasonably sized supernodes. A d-dimensional n-node mesh
generally has a separator of size Θ(n(d−1)/d), which is sublin-
ear and typically small for two- and three-dimensional structures.
Moreover, many interesting physical structures contain natural sep-
arators that are substantially smaller than the theoretical worst case.

4.4 Scheduling Matrix Updates

Initially A is exact, and our method exactly reproduces stan-
dard corotational behavior. However, as the simulation progresses,
blocks in A become incorrect and introduce error. Updating A has
a small cost, but we cannot update A without corresponding, po-
tentially costly, updates to L. We therefore need a criterion for
deciding which elements to update during a time step, which en-
tails choosing a trade-off between correctness and speed. A fea-
ture of our approach is that different criteria can be developed for
the needs of different applications. Here we describe two criteria:
target-quality and target-time update schedules.

Because the unit of recomputation we work with is a supernode,
when we update a single element in a supernode we also update all
the other elements in that supernode. The badness of a supernode
is the maximum error over all the elements in that supernode.

The computations required to update a given supernode are fixed
and do not depend on the particular numerical values of A. We can
therefore expect that the time required to update a given supern-
ode will be roughly the same every time, with small variations due
to cache occupancy and other machine-specific behavior. When we
compute the initial factorization we record the time required to fac-
tor each supernode. This measurement provides an estimate of how
long it would take to update that supernode. We refer to this time
estimate as the supernode’s cost. It is refined each time the supern-
ode is updated using an exponentially weighted moving average.

For target-quality updates we examine each supernode and com-
pare its badness score with a threshold τ . Every supernode above
the threshold is marked for update, as are its ancestors in the dis-
section tree. Once the supernodes have been marked, we perform a
postorder tree traversal and update the marked supernodes as they
are visited.

For target-time updates we specify a total time budget for the
update. We sort the supernodes by badness and compute the total
update cost for each supernode, which is the sum of its update cost
and the cost of all its ancestors that have not already been marked
for update. Then the supernodes are examined in order of their bad-
ness, starting with the worst. If a supernode’s total update cost is
below the remaining budget, then it and all its ancestors are marked
for update and the remaining budget is decreased by the supern-
ode’s total update cost. For each supernode freshly marked for up-
date, the total update costs of its descendants are updated to reflect
that the marked supernode and its ancestors have already been paid

ACM Transactions on Graphics, Vol. 31, No. 5, Article 123, Publication date: August 2012.

Updated Sparse Cholesky Factors for Corotational Elastodynamics • 123:7

Images copyright Hecht, Lee, Shewchuk, and O’Brien.

Fig. 4: The images in the left column are taken from an animation of a de-
formable dragon model dropped onto a flat surface. The dragon compresses
and then bounces. The images in the right column indicate in orange the
locations of the elements that are being updated.

for. Supernode marking continues until no unmarked supernode fits
in the remaining budget, at which point we perform a postorder tree
traversal and update the marked supernodes as they are visited. To
be effective, this update schedule requires that there is no supern-
ode whose update cost exceeds the total budget.

A potential drawback of the target-time approach is that the
worst uncorrected error could be arbitrarily bad, and extremely bad
elements can cause stability problems. One solution is a hybrid ap-
proach where the target-quality algorithm is used with a very high
badness threshold to mark supernodes that cannot be ignored. The
target-time algorithm is then allowed to mark additional nodes us-
ing any remaining time budget.

A second solution is to apply selective damping to excessively
bad elements that cannot be updated. This damping can be imple-
mented by multiplying the nodal velocities of the offending ele-
ments by a scale factor less than one, which becomes smaller for
larger errors. This type of damping is very inexpensive but cre-
ates strong visual artifacts. A slightly more expensive approach that
tends to look better is to damp offending supernodes towards a local
rigid-body motion chosen by shape matching [Müller et al. 2005].

Images copyright Hecht, Lee, Shewchuk, and O’Brien.

Fig. 5: The left image is taken from an animation in which a deformable
bear model is compressed between the ground plane and a rigid cylinder.
Many of the elements under the cylinder are forced into degenerate or in-
verted configurations, but the simulation remains stable and the object re-
turns to its original configuration when the cylinder is removed. The right
image indicates the locations of updates to the system matrix.

5. RESULTS AND DISCUSSION

We have implemented our algorithm for warp-canceling corotation
with incremental Cholesky updates and tested it with several physi-
cal scenarios. We compare it with the most widely used alternative,
the conjugate gradient method with a Jacobi preconditioner. Ani-
mations rendered from these simulations appear in the supplemen-
tal video.

Fig. 4 shows frames from an animation of the Stanford Dragon
being dropped onto a rigid ground plane. The nested dissection hi-
erarchy for this model is shown in Fig. 1 with the sparse structure
of the reordered system matrix. For this target-quality simulation,
the number of updates varies widely from frame to frame, as the
right column of Fig. 4 shows.

5.1 Numerical Robustness

A significant advantage of the corotational formulation is that when
the per-element rotations are computed accurately the simulation
becomes robust to element inversion and remains stable even for
extreme deformations. In Fig. 5, a deformable bear is compressed
between the ground plane and a cylindrical piston, and many of the
trapped elements become degenerate or inverted. Nevertheless, the
simulation remains well-behaved and the bear returns to its original
shape when the piston rises.

Another way in which a direct solver is more robust than an iter-
ative solver is that the solution time does not depend on the condi-
tioning of the system matrix. Useful motion can be obtained even
when the input mesh contains very poor quality elements, severe
grading, or widely varying material properties, all of which can
cause a poorly conditioned system matrix.

The 1 m× 1 m sheet shown atop Fig. 6 is modeled with a tetra-
hedral mesh that is only 0.1 mm thick. The in-plane width of the
elements averages roughly 2 cm, which is 200 times their out-of-
plane thickness. Although each element in the mesh is nearly de-
generate, the system behaves well, with the sheet draping realisti-
cally around the sphere. Because the mesh has a small but nonzero
thickness, it exhibits correct bending behavior and, unlike a triangu-
lated surface, does not require special treatment of bending forces.
The object’s resistance to bending arises naturally because out-of-
plane bending induces expansion and compression through the lay-
ers of the sheet. The bottom half of Fig. 6 shows tetrahedral meshes
of similar design used to model a trampoline and a hanging sheet.

ACM Transactions on Graphics, Vol. 31, No. 5, Article 123, Publication date: August 2012.

123:8 • Florian Hecht, Yeon Jin Lee, Jonathan R. Shewchuk, and James F. O’Brien

Images copyright Hecht, Lee, Shewchuk, and O’Brien.

Fig. 6: The top image shows a sheet draping over an immobile sphere.
Although the sheet appears to be two-dimensional, it is actually three-
dimensional and modeled by a mesh of extremely flat tetrahedra. Despite
the elements’ poor aspect ratios, the simulation remains stable and exhibits
proper bending behavior. In the bottom image, tetrahedral meshes model
a trampoline and a hanging sheet, both of which are struck by a moving
projectile.

The trampoline is fixed along its edges, and the hanging sheet is
fixed along its top edge. A rigid ball is launched onto the trampo-
line, bounces into the hanging sheet, and slides down it, causing the
sheet to curl and swing.

The draping and swinging sheets are examples where the wrin-
kles can cause large differences in the per-node rotations across a
single element. The consequent large force imbalance can be desta-
bilizing, so as discussed in Section 4.1, we force the per-node rota-
tions to the identity. Without the incremental updates, this solution
would exhibit severe linearization artifacts. However, with our up-
date scheme the linearization errors never grow to the point where
they are noticeable.

The mesh for the spider example in Fig. 7 has very thin structures
that model the legs and support thread. These thin structures con-
tain poorly shaped tetrahedral elements that contribute to a poorly
conditioned system matrix. The poor conditioning is further exac-
erbated because the legs and body are made of a material roughly
300 times stiffer than the materials for the joints and thread. De-
spite the poor conditioning, the solver produces correct behaviors.

Image copyright Hecht, Lee, Shewchuk, and O’Brien.

Fig. 7: A frame from an animation of a toy spider on the end of an elastic
line. The spider contains thin structures such as legs and a thread that are
modeled with tetrahedral elements having very high aspect ratios. The parts
of the spider are made of different materials, with the legs and the body
being about 300 times stiffer than the joints and the thread.

For both the sheet and spider animations, the preconditioned con-
jugate gradient solver behaves poorly. It takes an exceedingly large
number of iterations to converge to a reasonable error, and quite of-
ten it fails and the time integrator blows up. A better preconditioner
might mitigate this problem, but a strong preconditioner would in-
cur a substantially higher computational cost.

The capability to use meshes with poor elements provides two
important advantages. First, tetrahedral meshes whose elements all
have good quality are hard to generate; tolerance of a few bad el-
ements eases the task substantially. Second, structures including
solids, membranes, and thin threads can be modeled in a unified
framework without explicit bending or torsion forces. For objects
that can be obviously categorized as one- or two-dimensional struc-
tures, this generality comes at some cost compared to specialized
methods [Bridson et al. 2003; Grinspun et al. 2003; Bergou et al.
2008]. However, as Martin et al. [2010] point out, in many contexts
the flexibility to model all these structures in a unified framework
may be worth a small loss in efficiency.

5.2 Running Times and Scalability

To assess the speed of our method, we ran several simulations
with different choices of parameters and measured the running
times. Our implementation uses double precision floating-point
arithmetic for all computations. The measurements were performed
on a Linux machine with 32 GB of RAM and two quad-core Intel
Xeon X5450 processors running at 3.0 GHz. The timing numbers
we present were measured with 8 execution threads enabled.

Fig. 8 shows a geometric sculpture discretized at three differ-
ent resolutions. We simulated the sculpture dropping and bouncing
on the ground plane several times, with 300 frames of animation
per simulation. We ran this test with both a Jacobi preconditioned
conjugate gradient (CG) solver and our warp-canceling method for
each of the three resolutions and for materials of three different
stiffnesses. For both CG and our method, we selected the error tol-
erance so that the resulting motion was visually indistinguishable
from a reference motion computed with a full Cholesky factoriza-

ACM Transactions on Graphics, Vol. 31, No. 5, Article 123, Publication date: August 2012.

Updated Sparse Cholesky Factors for Corotational Elastodynamics • 123:9

Mesh E = 5× 106 Pa E = 5× 107 Pa E = 5× 108 Pa
Tets Nodes CG WC CG WC CG WC

7K 2K 34 ms 39 ms 53 ms 25 ms 88 ms 25 ms
115K 23K 2.4 s 740 ms 6.3 s 585 ms 11.7 s 421 ms
329K 65K 6.9 s 2.9 s 18.0 s 2.4 s 34.5 s 1.9 s

Table I. : Comparison of the average per-frame running times for simula-
tions of the sculpture from Fig. 8 dropping onto and bouncing off of a rigid
ground plane. Simulations were run for each of the three different mesh
resolutions with each of three different values for Young’s modulus E. The
sculpture’s density is ρ = 1,000 kg/m3, its radius is 0.8 m, and Poisson’s
ratio is ν = 0.4. Times were measured for both a preconditioned conjugate
gradient solver (CG) and our warp-canceling method (WC). Breakdowns of
the bold entries appear in Table II.

tion at each time step. For CG this was a residual of less than 10−4,
and for our method the badness threshold was τ = 5× 10−3.

The data from these tests are summarized in Table I, which lists
the average of total computation times of the solver. Table II pro-
vides a breakdown for selected examples to show how much time
is used by each step of the algorithms.

Although our method is slightly slower than the preconditioned
conjugate gradient method for very soft materials simulated at low
resolutions, it is more than 15 times faster for larger meshes with
stiffer materials. Higher-resolution meshes have a greater separa-
tion between their lowest-frequency vibrational modes and their
highest-frequency modes, so a conjugate gradient solver requires
more iterations to converge, whereas our warp-canceling method
scales better to large linear systems.

As materials become stiffer, the conditioning of the stiffness ma-
trix worsens and the conjugate gradient solver slows down, but our
warp-canceling method actually becomes faster. This improvement
occurs because updating the system matrix and its Cholesky factor
becomes less expensive with increased stiffness—stiffer objects de-
form less and deform more smoothly, so fewer updates are required.
The speed of the other steps of our algorithm is independent of the
material stiffness. Table II quantifies these observations.

More timing information is provided in Tables IV and V. Ta-
ble IV lists running times of tests where we systematically vary the
update strategy; it is discussed in Section 5.4. Table V contains data
from the other simulations discussed in this article.

We tested the suitability of a low-rank update method by cre-
ating a variant of our simulator in which our Cholesky update is
replaced by the software CHOLMOD, discussed in Section 2. The
term low-rank is relative, but even for moderately-sized meshes the
changes in our formulation typically have rank 1,000 or greater. For
our simulations, we find that updates by CHOLMOD are generally
much slower than recomputing the factorization from scratch. For

Images copyright Hecht, Lee, Shewchuk, and O’Brien.

Fig. 8: A geometric sculpture discretized with three meshes of different
resolutions. From left to right, the meshes contain 6,681, 115,712, and
329,131 tetrahedra.

Dragon Sculpture Sculpture Sculpture
Med Med Stiff Med Stiff Large

CG WC CG WC CG WC CG WC
Elem. Rot. 2 2 10 12 10 13 37 38
Node Rot. 7 29 27 78
Error Est. 13 58 60 167
Mat. Upd. 3 26 12 36
Chol. Upd. 12 281 121 1,002
Assembly 29 141 140 420
RHS 8 8 32 33 34 36 94 95
Solve 199 29 6,117 139 11,508 148 33,867 438
Integration 237 78 6,312 585 11,722 421 34,509 1,862
Total 270 110 6,312 585 11,722 421 34,509 1,862

Table II. : Breakdown of the running time (in milliseconds) spent in differ-
ent stages of the time integrator for both a preconditioned conjugate gradi-
ent solver (CG) and our warp-canceling method (WC). For the CG solver,
the stages are computing per-element rotations, assembling the system ma-
trix, computing the right-hand side (RHS), and solving the system. For our
WC solver, the stages are computing per-element rotations, computing per-
node rotations, estimating the error for each element, updating the system
matrix, updating the Cholesky factorization, computing the right-hand side,
and solving the system. The last rows list the total time for the time inte-
grator and the total time per frame including collision detection and other
overhead. The examples in the table are the dragon drop from Fig. 4 and
the sculpture drop from Fig. 8. The three sculpture examples are the 115K
mesh with E = 107 Pa, the 115K mesh with E = 108 Pa, and the 329K
mesh with E = 108 Pa, corresponding to the bold entries in Table I.

example, on the medium-sized sculpture mesh with 115,712 tetra-
hedra, our method completes the equivalent of a rank-614,844 mod-
ification (51,237 updated elements, 44% of the mesh) in 787 ms
whereas CHOLMOD takes 19.9 min. This time is substantially
slower than refactoring from scratch, which takes 1 s. Even updat-
ing 34 elements (a rank-408 modification) with CHOLMOD takes
1.1 s, longer than refactoring from scratch. We emphasize that these
timings reflect no weakness of CHOLMOD, which excels when a
global change to the matrix can be expressed as a true low-rank
change. Furthermore, CHOLMOD works with any Cholesky factor
and is not limited to those produced by nested dissection. However,
CHOLMOD is not a good fit to our high-rank updates.

5.3 Parallel Scaling

Our implementations of both the preconditioned conjugate gradi-
ent solver and our warp-canceling method are parallelized with
OpenMP and pthreads. Most components of the algorithms, such as
per-element or per-node rotation computations and sparse matrix-
vector multiplications, are easily parallelized with OpenMP. How-
ever, our incremental Cholesky factorization update poses difficul-
ties because the tree structure of the supernodes creates dependen-
cies among the computations. Our factorization implementation
maintains a work queue of supernodes whose dependencies have
been met. This queue is initially filled with the leaf supernodes.
Work progresses up the hierarchy and ends with the root node be-
ing processed last. Every node has a dependency counter, which
is initialized to its number of children. When a supernode’s work
is completed, the dependency counter for its parent is decreased;
when the counter reaches zero, the parent node is placed in the
work queue. The queue is serviced by a pool of worker threads that
each process a single supernode at a time.

Table III summarizes the speedup obtained by our implementa-
tion as the number of allocated threads varies. Some operations,
such as computing per-node and per-element rotations, scale fairly
well. Others, such as the linear system solution, scale poorly; the

ACM Transactions on Graphics, Vol. 31, No. 5, Article 123, Publication date: August 2012.

123:10 • Florian Hecht, Yeon Jin Lee, Jonathan R. Shewchuk, and James F. O’Brien

Number of Threads
1 2 4 8

Element Rotations 55 28 2.0× 14 3.9× 11 5.0×
Node Rotations 24 14 1.7× 7 3.4× 6 4.0×
Error Estimation 184 122 1.5× 69 2.7× 61 3.0×
Matrix Update (A) 201 122 1.6× 72 2.8× 52 3.9×
Cholesky Update (L) 1419 832 1.7× 520 2.7× 399 3.6×
Right-Hand Side 70 59 1.2× 34 2.1× 35 2.0×
Linear Solution 255 174 1.5× 149 1.7× 149 1.7×
Total 2257 1385 1.6× 885 2.6× 728 3.1×

Table III. : Running times in milliseconds for different stages of the time in-
tegrator with a varying number of execution threads for the dropped sculp-
ture simulation with a 115K tetrahedron mesh and E = 106 Pa.

forward and back substitution threads run out of parallel tasks as
they near the root of the supernode hierarchy. Away from the root,
the amount of work per supernode is relatively small. The same
problem occurs for the more expensive factor update, but the solver
touches the entire tree while the the factor update only touches the
parts of the tree that need to be recomputed. With eight threads,
our implementation becomes more strongly impacted by memory
latency. We believe that with additional effort, perhaps by start-
ing from scratch instead of adapting TAUCS, better parallel scaling
could be realized.

5.4 Effects of the Update Strategy

We ran a series of experiments where an object with the topology
of a three-torus was dropped onto a fixed cylinder and ground plane
(Fig. 9). The three-torus has 19,172 tetrahedral elements and 5,046
nodes. We ran the simulation with both a stiffer (E = 107 Pa)
and a softer (E = 106 Pa) material, with several different solver
schemes. The data from these simulations appear in Table IV.

For the stiffer material, the conjugate gradient solver is slower
than both full Cholesky factorization and our warp-canceling
method, with our method being about three times faster than conju-
gate gradients. For the softer material, the conjugate gradient solver
is faster than full Cholesky, but our method outperforms both.

However, our method can be further accelerated by limiting the
maximum budget allowed for updates. This cost reduction comes
at a cost of greater error relative to the reference simulation pro-
duced by the full Cholesky solver, but the results are nonetheless
plausible and our solver remains stable. When the maximum bud-
get is reduced to 33% of that required for a full factorization, our
method is roughly twice as fast as conjugate gradients even for this
compliant material. If Cholesky updates are completely disabled,
our method becomes a variant of stiffness warping, and damping
is needed to preserve its stability. Specifically, we damp elements
with badness greater than 5 × 10−1 toward a local rigid body mo-
tion. Although disabling updates improves the speed somewhat, the
damping is visually apparent as sluggish motion.

The control that update scheduling affords our method enables
a trade-off between accuracy and speed that was not previously
possible with direct solvers. Iterative methods have always enabled
some ability to trade accuracy for speed by limiting the number of
iterations or increasing the residual tolerance, but if too much error
is permitted the time integration method becomes unstable.

The simulation of a bowl of colliding bears in Fig. 10 uses a
compliant material (E = 3 × 106 Pa) and includes many colli-
sions. There are 25 bears in the simulation, comprising a total of
244,625 tetrahedral elements and 55,400 nodes. Simulations like
these are inherently chaotic because of the many collisions be-
tween the objects. Even small differences in the numerical solu-

tion of the linear system lead to very different final configurations.
This sensitivity means that even with small error tolerances, all
three methods—conjugate gradients, full Cholesky, and our warp-
canceling method—produce simulations that have very different
rest configurations but nevertheless look plausible.

Both conjugate gradients and our warp-canceling method can be
sped up for this example. For conjugate gradients, we were able to
increase the residual tolerance to 101. For our method, we increased
the badness threshold to τ = 101 and we limited the update budget
to 20% of the cost of a complete factorization. As Table IV shows,
these changes speed up both conjugate gradients and our method
by more than a factor of two (compare the low-tolerance and high-
tolerance timings). However, our method outperforms conjugate
gradients by a substantial margin for both accuracy settings.

6. CONCLUSIONS, LIMITATIONS, FUTURE WORK

Direct solvers, such as Cholesky factorization, have strong advan-
tages: they are robust against ill-conditioned matrices, and solving
by using the factorization is much faster than an iterative solver like
conjugate gradients. Their weakness, of course, is that computing
the factorization is quite slow, and is therefore problematic for sim-
ulations in which the linear system matrix changes every time step,
as it does with corotational finite element methods. Our method di-
rectly addresses this weakness by allowing an existing factorization
to be incrementally updated as the simulation progresses.

The advantage of our warp-canceling method over the conju-
gate gradient method grows as the materials become stiffer and the
meshes larger. Our solution time improves moderately with stiffer
materials, whereas the conjugate gradient method slows down dra-
matically. Our method enables a trade-off between correctness and
speed, and attains good results over a wide range of elastic materi-
als and objects. Its errors are far less visible than those of stiffness
warping.

Our method can simulate everything the exact corotational
method can, usually considerably faster, but the exact method still
has a place in simulation. We discuss here four limitations of our
method: the fact that it is approximate, its memory use, the effort
required to implement it, and the difficulty of incorporating implicit
constraints or a varying time step.

The central premise of our method is to trade accuracy away for
speed in the context of a direct solver, and it is inherently an approx-
imate method. We have demonstrated substantial speedups com-
pared to both full Cholesky factorization and the conjugate gradient
method, at the cost of incurring errors. For a carefully chosen trade-
off between speed and accuracy, these errors are not visible. Even
when the errors are large enough to become visible, our method
remains well behaved unlike conjugate gradient solvers, which can
become unstable when run with a high error tolerance.

The memory occupied by a Cholesky factor is large, and we use
additional storage space to save the update blocks, further reduc-
ing the size of mesh that can be treated in memory. For very large
problems, over 300,000 tetrahedra, the memory overhead slows our
implementation down enough that its advantage over a conjugate
gradient solver lessens for very soft materials, though it remains
superior for stiff materials. For example, the full system matrices
for the small, medium, and large sculpture require 1.5 MB, 22 MB,
and 62 MB, respectively. The sizes of the corresponding Cholesky
factors are 7.8 MB, 268,MB, and 956 MB, respectively. As we re-
tain the update blocks, we need to store additionally 14.8,MB,
884,MB, and 3,406,MB. A standard supernodal Cholesky factor-
ization would only need to store a small subset of these update

ACM Transactions on Graphics, Vol. 31, No. 5, Article 123, Publication date: August 2012.

Updated Sparse Cholesky Factors for Corotational Elastodynamics • 123:11

Images copyright Hecht, Lee, Shewchuk, and O’Brien.

Fig. 9: Frames from an animation of an elastic three-torus dropping onto an immobile cylinder. In the top row, the mesh is rendered as a wireframe overlay. In
the bottom row, the object is rendered transparent with the elements being updated in each frame highlighted in red.

Object Method Minimum Maximum Average
3-Torus (stiff) Full Cholesky 126 ms 237 ms 157 ms
3-Torus (stiff) CG 50 ms 577 ms 307 ms
3-Torus (stiff) WC (unlimited) 37 ms 207 ms 107 ms

3-Torus (soft) Full Cholesky 123 ms 271 ms 146 ms
3-Torus (soft) CG 43 ms 171 ms 121 ms
3-Torus (soft) WC (unlimited) 36 ms 194 ms 87 ms
3-Torus (soft) WC (66% limit) 35 ms 172 ms 72 ms
3-Torus (soft) WC (33% limit) 33 ms 127 ms 65 ms
3-Torus (soft) Damped SW 34 ms 111 ms 52 ms

Bowl of Bears Full Cholesky 2,032 ms 2,214 ms 2,085 ms
Bowl of Bears CG Low Tol 4,322 ms 5,536 ms 4,689 ms
Bowl of Bears CG High Tol 1,586 ms 2,136 ms 1,895 ms
Bowl of Bears WC Low Tol 556 ms 1,693 ms 1,594 ms
Bowl of Bears WC High Tol 488 ms 861 ms 728 ms

Table IV. : Running times for two different simulations computed by dif-
ferent solvers and variations of update scheduling. Images from the simu-
lations appear in Figs. 9 and 10. Times were measured for a full Cholesky
solver, a conjugate gradient solver (CG), and our warp-canceling method
(WC). The residual tolerance for CG was 101 for the high-tolerance Bowl
of Bears and 10−4 for all other CG simulations. The badness threshold for
WC was 101 for the high-tolerance Bowl of Bears and 5×10−3 for all other
WC simulations. For the 3-torus with a stiffer material, the WC method had
no budget limit. The 3-torus with a softer material was run multiple times
with the WC method; the budget limit was a percentage of the time required
for a full Cholesky factorization. When this budget is zero, our method is a
modified version of stiffness warping (SW), which we damp for stability.

blocks at any one time, but during the computation it would up-
date the same amount of memory.

The supernodal direct solver and updates are substantially more
complicated to understand and implement than the conjugate gra-
dient method. However, with help from readily available optimized
dense matrix subroutines, the implementation is less difficult than
it might appear. Given the existing Cholesky solver in TAUCS, our
greatest effort was to add new code to update the matrices.

The need to preserve the linearized system matrix from time step
to time step prevents us from using time steps of varying lengths,
which can improve the stability of some simulations. It also makes

Object Tets Nodes τ Min Max Average
Bear Squash 30,490 7,361 10−2 61 ms 355 ms 157 ms
Cloth Drop 15,000 5,202 10−4 25 ms 209 ms 77 ms
Trampoline 22,500 7,854 10−5 39 ms 219 ms 92 ms
Spider 12,683 3,991 10−4 29 ms 183 ms 79 ms

Table V. : Running times for our simulations not covered by other tables
(Figs. 5, 6, and 7). For each scenario, our warp-canceling method had no
limit on the update budget. The badness threshold is τ .

Images copyright Hecht, Lee, Shewchuk, and O’Brien.

Fig. 10: The left image shows deformable bears dropping into a glass bowl.
Their final rest configuration appears at right.

it difficult to incorporate either implicitly integrated penalties or
Lagrangian constraints. The exact corotational method easily incor-
porates implicitly integrated forces, which robustly simulate large
impulses, because the system matrix is computed from scratch at
every time step. Lagrangian constraints typically produce an indef-
inite system which is incompatible with Cholesky factorization. We
do not want to make large transient changes to the matrix and its
Cholesky factors, so we instead use explicitly integrated collision
forces, which are less stable and harder to choose parameters for.

In future work, we hope to address this constraint limitation. We
believe that implicit constraints can be enforced with an additional
block around the system matrix, which is included in the forward
and back substitution and is updated and refactored whenever the
constraints change.

ACM Transactions on Graphics, Vol. 31, No. 5, Article 123, Publication date: August 2012.

123:12 • Florian Hecht, Yeon Jin Lee, Jonathan R. Shewchuk, and James F. O’Brien

Although we have realized substantial improvements with our
warp-canceling solver, there is still a large design space that could
be further explored. Our initial tests indicate that our approximate
factorization makes an excellent preconditioner for the conjugate
gradient method, but we find the combination to be slower than
either method alone. Possibly some other variation, such as in-
cremental update of an incomplete Cholesky factorization, would
perform well. We also did not explore iterative refinement [Li and
Demmel 1999]; it is possible that the time spent on iterative re-
finement might yield a net savings by necessitating fewer updates.
We note that our badness metric simply measures expected error;
perhaps some other quantity would allow more selective updates.

It is interesting to ask whether the method can be extended to
support mesh modifications and the corresponding changes to the
sparse structure of the system matrix and its symbolic factoriza-
tion. These capabilities would support effects like fracture, cutting,
extreme plastic flow, and the merging of viscous materials.

It is also interesting to ask whether there are other physical phe-
nomena described by nonlinear partial differential equations whose
structure admits a linearization that changes slowly enough to ben-
efit from our methods, or can be made to change slowly with the
adoption of an extra trick like the use of per-node rotations to ap-
proximate per-element rotations. For example, aerodynamics sim-
ulations can be notoriously nonlinear, but they sometimes reach
quiescent states where the linearized system changes slowly. Look-
ing more broadly, applications other than finite element simulations
might also benefit from the same principles of incremental updates
and partial refactoring.

ACKNOWLEDGMENTS
We thank Xiaoye Li and James Demmel for helpful discussions and
commentary about sparse direct solvers. We thank Martin Wicke
for his suggestion to simulate extremely thin objects with tetra-
hedra. The Stanford Dragon model was provided by the Stanford
Computer Graphics Laboratory’s 3D Scanning Repository.

REFERENCES

BARRETT, R., BERRY, M., CHAN, T., DEMMEL, J., DONATO, J., DON-
GARRA, J., EIJKHOUT, V., POZO, R., ROMINE, C., AND VAN DER

VORST, H. 1993. Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods. Society for Industrial and Applied Mathe-
matics, Philadelphia, Pennsylvania.

BELYTSCHKO, T. AND HSIEH, B. 1979. Application of higher order coro-
tational stretch theories to nonlinear finite element analysis. Computers
& Structures 11, 175–182.

BERGOU, M., WARDETZKY, M., ROBINSON, S., AUDOLY, B., AND

GRINSPUN, E. 2008. Discrete elastic rods. ACM Transactions on Graph-
ics 27, 3 (Aug.), 63:1–63:12.

BOTSCH, M., BOMMES, D., AND KOBBELT, L. 2005. Efficient linear sys-
tem solvers for mesh processing. In IMA Conference on the Mathematics
of Surfaces. Springer, 62–83.

BRIDSON, R., FEDKIW, R., AND MULLER-FISCHER, M. 2006. Fluid
simulation: SIGGRAPH 2006 course notes. In ACM SIGGRAPH 2006
Courses. 1–87.

BRIDSON, R., MARINO, S., AND FEDKIW, R. 2003. Simulation of cloth-
ing with folds and wrinkles. In 2003 Symposium on Computer Animation.
28–36.

CHEN, Y., DAVIS, T. A., HAGER, W. W., AND RAJAMANICKAM, S. 2008.
Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization
and update/downdate. ACM Transactions on Mathematical Software 35,
22:1–22:14.

CHENTANEZ, N., ALTEROVITZ, R., RITCHIE, D., CHO, L., HAUSER,
K. K., GOLDBERG, K., SHEWCHUK, J. R., AND O’BRIEN, J. F. 2009.
Interactive simulation of surgical needle insertion and steering. ACM
Transactions on Graphics 28, 3 (Aug.), 88.1–88.10. Special issue on
Proceedings of SIGGRAPH 2009.

CHOI, M. G. AND KO, H.-S. 2005. Modal warping: Real-time simulation
of large rotational deformation and manipulation. IEEE Transactions on
Visualization and Computer Graphics 11, 1, 91–101.

CHOLESKY, A.-L. 1910. Sur la résolution numérique des systèmes
d’équations linéaires. Manuscript. Subsequently published in Bulletin
de la Sabix 39, 81–95, 2005.

COURTECUISSE, H., ALLARD, J., DURIEZ, C., AND COTIN, S. 2010.
Asynchronous preconditioners for efficient solving of non-linear defor-
mations. In Seventh Workshop on Virtual Reality Interaction and Physical
Simulation. 59–68.

DAVIS, T. A. 2006. Direct Methods for Sparse Linear Systems. Fundamen-
tals of Algorithms, vol. 2. SIAM.

DAVIS, T. A. AND HAGER, W. W. 1999. Modifying a sparse Cholesky
factorization. SIAM Journal on Matrix Analysis and Applications 20, 3,
606–627.

DAVIS, T. A. AND HAGER, W. W. 2009. Dynamic supernodes in sparse
Cholesky update/downdate and triangular solves. ACM Transactions on
Mathematical Software 35, 4.

ETZMUSS, O., KECKEISEN, M., AND STRASSER, W. 2003. A fast finite
element solution for cloth modelling. In Proceedings of the 11th Pacific
Conference on Computer Graphics and Applications. 244–251.

FELIPPA, C. 2007. Introduction to finite element methods.
http://www.colorado.edu/engineering/cas/courses.d/NFEM.d.
Course notes published as web pages.

GEORGE, A. 1973. Nested Dissection of a Regular Finite Element Mesh.
SIAM Journal on Numerical Analysis 10, 2 (Apr.), 345–363.

GIBSON, S. F. F. AND MIRTICH, B. 1997. A survey of deformable mod-
eling in computer graphics. Tech. Rep. TR97-19, Mitsubishi Electric
Research Laboratory. Nov.

GILL, P. E., GOLUB, G. H., MURRAY, W., AND SAUNDERS, M. A. 1974.
Methods for modifying matrix factorizations. Mathematics of Computa-
tion 28, 126 (Apr.), 505–535.

GOLUB, G. H. AND VAN LOAN, C. F. 1996. Matrix Computations, Third
ed. The Johns Hopkins University Press.

GOULD, N. I. M., SCOTT, J. A., AND HU, Y. 2007. A numerical evalu-
ation of sparse direct solvers for the solution of large sparse symmetric
linear systems of equations. ACM Transaction on Mathematical Soft-
ware 33, 2 (June), 1–32.

GRCAR, J. F. 2011. John von Neumann’s analysis of Gaussian elimination
and the origins of modern numerical analysis. SIAM Review 53, 4 (Nov.),
607–682.

GRINSPUN, E., HIRANI, A. N., DESBRUN, M., AND SCHRÖDER, P. 2003.
Discrete shells. In 2003 Symposium on Computer Animation. 62–67.

HESTENES, M. R. AND STIEFEL, E. 1952. Methods of conjugate gradients
for solving linear systems. Journal of Research of the National Bureau
of Standards 49, 409–436.

HORN, B. K. P. 1987. Closed-form solution of absolute orientation using
unit quaternions. Journal of the Optical Society A 4, 4 (Apr.), 629–642.

IRVING, G., TERAN, J., AND FEDKIW, R. 2004. Invertible finite elements
for robust simulation of large deformation. In Proceedings of the 2004
Symposium on Computer Animation. 131–140.

KARYPIS, G. AND KUMAR, V. 1995. A fast and high quality multilevel
scheme for partitioning irregular graphs. In International Conference on
Parallel Processing. 113–122.

ACM Transactions on Graphics, Vol. 31, No. 5, Article 123, Publication date: August 2012.

http:http://www.colorado.edu/engineering/cas/courses.d/NFEM.d

Updated Sparse Cholesky Factors for Corotational Elastodynamics • 123:13

LI, X. S. AND DEMMEL, J. W. 1999. A scalable sparse direct solver using
static pivoting. In Proceedings of the 9th SIAM Conference on Parallel
Processing for Scientic Computing. San Antonio, Texas, 1–10.

LIPTON, R. J., ROSE, D. J., AND TARJAN, R. E. 1979. Generalized nested
dissection. SIAM Journal on Numerical Analysis 16, 2 (Apr.), 346–358.

MARTIN, S., KAUFMANN, P., BOTSCH, M., GRINSPUN, E., AND GROSS,
M. 2010. Unified simulation of elastic rods, shells, and solids. ACM
Transactions on Graphics 29, 4 (July), 39:1–39:10.

MÜLLER, M., DORSEY, J., MCMILLAN, L., JAGNOW, R., AND CUTLER,
B. 2002. Stable real-time deformations. In Proceedings of the 2002
Symposium on Computer Animation. 49–54.

MÜLLER, M. AND GROSS, M. 2004. Interactive virtual materials. In Pro-
ceedings of Graphics Interface 2004. 239–246.

MÜLLER, M., HEIDELBERGER, B., TESCHNER, M., AND GROSS, M.
2005. Meshless deformations based on shape matching. ACM Trans-
actions on Graphics 24, 3 (July), 471–478.

NEALEN, A., MÜLLER, M., KEISER, R., BOXERMAN, E., AND CARL-
SON, M. 2006. Physically based deformable models in computer graph-
ics. In Computer Graphics Forum 25, 4. 809–836.

NOUR-OMID, B. AND RANKIN, C. C. 1991. Finite rotation analysis and
consistent linearization using projectors. Computer Methods in Applied
Mechanics and Engineering 93, 353–384.

PARKER, E. G. AND O’BRIEN, J. F. 2009. Real-time deformation and
fracture in a game environment. In Proceedings of the 2009 Symposium
on Computer Animation. 156–166.

PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND FLAN-
NERY, B. P. 2002. Numerical Recipes in C++: The Art of Scientific
Computing. Cambridge University Press.

SHEWCHUK, J. R. 1994. An introduction to the conjugate gradient method
without the agonizing pain. Tech. Rep. CMU-CS-94-125, School of
Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylva-
nia. Aug.

SORKINE, O., COHEN-OR, D., IRONY, D., AND TOLEDO, S. 2005.
Geometry-aware bases for shape approximation. IEEE Transactions on
Visualization and Computer Graphics 11, 2 (Mar.), 1–11.

TERZOPOULOS, D., PLATT, J., BARR, A., AND FLEISCHER, K. 1987.
Elastically deformable models. In Proceedings of SIGGRAPH ’87. 205–
214.

TOLEDO, S. 2003. TAUCS: A library of sparse linear solvers.
http://www.tau.ac.il/∼stoledo/taucs.

ZHU, Y., SIFAKIS, E., TERAN, J., AND BRANDT, A. 2010. An effi-
cient multigrid method for the simulation of high-resolution elastic solids.
ACM Transactions on Graphics 29, 2 (Apr.), 16:1–16:18.

Received September 2011; revised February 2012; accepted Febru-
ary 2012

ACM Transactions on Graphics, Vol. 31, No. 5, Article 123, Publication date: August 2012.

	1 Introduction
	2 Background
	3 Finite Element Formulation
	3.1 Corotational Finite Element Methods
	3.2 Cholesky Factorization
	3.3 Stiffness Warping

	4 Warp-Canceling Corotation
	4.1 A Warp-Canceling Formulation
	4.2 Error Estimation
	4.3 Incremental Cholesky Factor Updates
	4.4 Scheduling Matrix Updates

	5 Results and Discussion
	5.1 Numerical Robustness
	5.2 Running Times and Scalability
	5.3 Parallel Scaling
	5.4 Effects of the Update Strategy

	6 Conclusions, Limitations, Future Work

