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Abstract

This paper describes a technique for animating the behavior
of viscoelastic fluids, such as mucus, liquid soap, pudding,
toothpaste, or clay, that exhibit a combination of both fluid
and solid characteristics. The technique builds upon prior
Eulerian methods for animating incompressible fluids with
free surfaces by including additional elastic terms in the basic
Navier-Stokes equations. The elastic terms are computed by
integrating and advecting strain-rate throughout the fluid.
Transition from elastic resistance to viscous flow is controlled
by von Mises’s yield condition, and subsequent behavior is
then governed by a quasi-linear plasticity model.

Keywords: Natural phenomena, physically based an-
imation, computational fluid dynamics, viscoelastic fluids,
elastoplastic, viscous fluids, goop, glop.

CR Categories: I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling—Physically based
modeling; I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.6.8 [Simulation and
Modeling]: Types of Simulation—Animation.

1 Introduction

In this paper we describe a technique for animating the be-
havior of materials, such as the one shown in Figure 1, that
exhibit a combination of both fluid and solid characteris-
tics. Often referred to as viscoelastic fluids, these materials
initially respond to strain elastically like a solid, but when
subjected to increasingly large stresses they flow like a fluid.
A tremendous variety of materials exhibit this type of be-
havior, and a few common examples include: mucus, egg
white, dough, gelatin, unset cement, liquid acrylic, tooth-
paste, gels, clay, and liquid soap. Like a solid, these ma-
terials can bounce and jiggle, but they will also flow like
a fluid. For some of these materials, such as egg white or
clay, the combination of elastic and fluid behavior is quite
apparent. For others, such as liquid soap, the elastic behav-
ior manifests less obviously as predominately fluid behavior
that differs subtly from that of a simply viscous fluid.

The technique we present builds on prior Eulerian meth-
ods for animating incompressible fluids with free surfaces.
As evidenced by their widespread use, these methods can
efficiently produce results that are realistic enough for ap-
plications in the demanding visual effects industry.

Our method computes viscoelastic fluid behavior by sup-
plementing the basic Navier-Stokes equations with addi-
tional terms for elastic body forces. These terms can be
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Figure 1: A sequence of images showing a splash in a visco-
elastic fluid.

readily computed on rectilinear grids using a staggered dis-
cretization scheme, and the use of an Eulerian formulation
easily accommodates modeling large flows. These elastic
terms require computing the material strain throughout the
fluid. Because the fluid simulations do not make use of an
explicit reference configuration, strain is computed by inte-
grating strain-rate and advecting the results. The transition
from elastic resistance to viscous flow is controlled by von
Mises’s yield condition, and subsequent behavior is then gov-
erned by a quasi-linear plasticity model.

2 Fluids, Solids, and the In-between

While the mechanics describing the behaviors exhibited by
solids and fluids may seem distinct, they are actually quite
similar. First, both resist changes to their volume. The
physical reasons for why they conserve volume may differ,
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but the mathematical expressions capturing the behaviors
are essentially the same. Furthermore, many fluid methods
assume incompressibility and most solid methods assume
that volume changes will be negligible. Second, the internal
damping force for a solid and the viscous force for a fluid are
not just similar, they are identical. One can easily start with
the expression for strain-rate-proportional damping and de-
rive the viscous terms of the Navier-Stokes equations. The
key difference between an ideal solid and an ideal fluid is
the presence or absence of an elastic term that attempts to
restore the material to its original shape.

Many materials cannot be classified clearly as a solid or
fluid. These materials elastically resist deformation up to a
certain point after which they begin to flow. In fact, even
materials that are clearly solids behave this way: they act
elastically over some regime and then begin to flow plasti-
cally (or perhaps fracture). Similarly, some materials that
are clearly fluids can withstand very small strains elastically.
The continuous variable that spans the space between solid
and fluid materials is this limit on how much stress can
be tolerated before flow occurs. Other properties such as
damping/viscosity, density, and elastic stiffness are largely
orthogonal. When the elastic limit is set to a high value, the
material behaves like a solid, when it is zero the material
behaves like a fluid, and intermediate values correspond to
materials like mucus, liquid soap, toothpaste, or clay. These
intermediate materials are often referred to as viscoelastic
fluids or as elastoplastic solids, depending on whether their
behavior is closer to that of an ideal fluid or ideal solid.

3 Background

In the field of computer graphics, the technique described
in [Carlson et al., 2002] is perhaps closest in intent to the
method we describe here. Like us, they were interested
in modeling materials with properties intermediate between
solids and fluids using an Eulerian grid-based fluid simula-
tion method. However, they opt to map the continuum be-
tween fluids and solids to varying viscosity. In their system
a solid is simply a fluid with very high viscosity. This ap-
proach ignores the elastic behavior demonstrated by many
materials. Nevertheless, they do generate nice results for
highly viscous fluids, and they describe an implicit integra-
tion method for coping with stability issues arising from very
high viscosities.

Other graphics researchers have used particle-based meth-
ods for modeling highly viscous fluids and for modeling fluids
with some form of elasticity. In [Terzopoulos et al., 1989] the
authors modeled melting thermoelastic materials. The par-
ticles exerted cohesive, viscous, and volume-preserving forces
on their neighbors. While solid, each particle was connected
to a fixed set of neighbors using elastic springs. As the mate-
rial would become more fluid-like, the springs would weaken,
and eventually disappear. By varying the elastic properties
of the materials, this method could model a range of be-
haviors, but without plasticity, it could not model materi-
als, like clay, that flow into a new configuration and then
resist changes from that configuration. Similar approaches
using different particle formulations have appeared in [Des-
brun and Gascuel, 1995], [Desbrun and Cani, 1996], [Cani
and Desbrun, 1997], and [Stora et al., 1999]. The method
appearing in [Desbrun and Gascuel, 1995] used elastic forces
with dynamically determined neighbors to allow behavior
that is similar to plastic flow.

Perhaps the greatest limitation on the level of realism
achievable by these particle methods was the relatively small
number of particles used. However, as processor speeds have
increased, particle-based methods have been able to achieve
increasingly impressive results. Compelling real-time results

for modestly sized systems appear in [Müller et al., 2003],
and [Premože et al., 2003] demonstrates off-line results that
are comparable to the current best grid-based methods. Al-
though both of these recent methods focus on strictly liquid
behavior, they could be extended along lines similar to what
we propose here.

Some methods for modeling solids have dealt with lim-
ited amounts of plastic flow. Both [Terzopoulos and Fleis-
cher, 1988a] and [Terzopoulos and Fleischer, 1988b] describe
transition to plastic flow based on von Mises’s yield con-
dition, and [O’Brien et al., 2002] used a similar plasticity
model for ductile fracture behavior. We use the same yield
condition of von Mises, but we do not assume that plastic
flow occurs instantaneously. Instead we use a more complex
model that accommodates phenomena such as creep. Addi-
tionally, these prior methods used Lagrangian meshes with
largely fixed topology, and so they would have encountered
“tangling” difficulties, such as inverting elements, for large
amounts of plastic flow.

Another, rather interesting, approach to combining solid
and fluid behaviors appears in [Nixon and Lobb, 2002]. They
surround a fluid simulation with an elastic membrane. The
result is an object that behaves somewhat like a water bal-
loon.

Our work builds directly on previous grid-based, Eulerian
methods for animating fluids with free surfaces. Details on
these methods can be found in [Foster and Metaxas, 1996],
[Stam, 1999], [Foster and Fedkiw, 2001], and [Enright et al.,
2002]. In particular, our work essentially extends [Enright
et al., 2002] to include the behavior of viscoelastic fluids.

Outside the graphics field, viscoelastic materials have
been studied extensively. We refer the reader to the
texts [Fung, 1965], [Han and Reddy, 1999], and [Bird et al.,
1987] for detailed descriptions of several different models for
viscoelastic and elastoplastic materials.

The general approaches we use for introducing elastic
forces into the Navier-Stokes equations, and integrating and
advecting strain are not completely novel. Some recent ex-
amples of fluid simulation outside the graphics literature
that involve elastic forces include [Gerritsma, 1996], [Tomé
et al., 2002], and [Bonito et al., 2003]. A detailed analysis
of two-dimensional simulations of viscoelastic fluids on stag-
gered rectilinear grids appears in [Gerritsma, 1996]. The
three-dimensional method we use for storing rank-two ten-
sor quantities on a staggered grid is a generalization of their
two-dimensional method. In [Bonito et al., 2003] a combi-
nation of rectilinear grids and finite elements are used with
a volume-of-fluid method to model three-dimensional fluids
with elastic properties. They do not include plasticity and
they store all quantities at cell centers. The marker-and-
cell based method in [Tomé et al., 2002] is another example
solving viscoelastic free-surface flows. They address issues
relating to elastic-stress based boundary conditions at rigid-
body and free-surfaces. Although they use a staggered grid
for the velocity field, they still store their tensor values at
cell centers.

4 Simulation Methods

The framework we use for fluid simulation is based on the
method described in [Enright et al., 2002]. This framework
consists of two primary components which work together to
produce useful results. The first is a rectilinear grid that
stores the values that define the fluid’s state. The values
on the grid change as forces act on the fluid, and they also
change as the fluid moves through the space delineated by
the grid. The second component is a function whose level-
set at zero locates the boundaries of the fluid. The function
is represented using a combination of particles and values
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Figure 2: This figure demonstrates some effects achieved by varying α and γ. Each image shows a cube of material that
has been dropped onto a hard surface inside an invisible box. The rightmost images show a low viscosity simple fluid and an
extremely viscous simple fluid for comparison. The viscoelastic examples have the same viscosity as the low viscosity fluid.
Observe that for appropriate values of α and γ the viscoelastic fluid actually bounces.

defined on a second rectilinear grid. The particles and grid
values evolve based on the motion of the fluid. A full de-
scription of this type of system is beyond the scope of this
paper, so we focus on the changes we make to accommodate
viscoelastic behavior. We suggest the following references
for a more complete description of this simulation method-
ology: [Foster and Metaxas, 1996], [Stam, 1999], [Foster and
Fedkiw, 2001], and [Enright et al., 2002].

4.1 Governing Equations

Behavior of the viscoelastic fluid is governed by a modified
version of the Navier-Stokes equations that includes an ad-
ditional term for elastic stress. At any point in the fluid the
fluid’s acceleration is determined by

∂u

∂t
= −

(
uT∇

)
u− ∇p

ρ
+

µv

ρ

(
∇T∇

)
u+

µe

ρ
∇Tε+

f

ρ
(1)

where u is the fluid’s velocity at a point in space, p its pres-
sure, ρ its density, µv its coefficient of viscosity, µe its elastic
modulus, ε the elastic strain tensor at that point in space,
and f includes any other forces such as gravity or vortic-
ity confinement. The symbol ∇ denotes the vector of dif-
ferential operators ∇ = [∂/∂x, ∂/∂y, ∂/∂z]T, and we have
implicitly assumed that µv and µe are constant throughout
the material. By omitting elastic and viscous terms relating
to dilation, we have also assumed that the fluid is incom-
pressible.

Because the fluid is incompressible, the velocity field
within the fluid volume is subject to the constraint that

∇Tu = 0 . (2)

This condition is enforced by adjusting the pressure field at
each integration step. Additionally, we do not use the first
term of Equation (1) (the advection term) directly. Instead,
we use a semi-Lagrangian method to advect field values. We
refer the reader to [Stam, 1999] and [Foster and Fedkiw,
2001] for a discussion on efficiently modeling the above equa-
tions.

4.2 Elastic, Plastic, and Total Strain

The fourth term of Equation (1) computes acceleration due
to elastic forces and it requires knowing the elastic strain
throughout the fluid. If we had an explicit deformation
function then we could use its spatial derivatives to com-
pute strain. However, with the Eulerian formulation we are
using there is no deformation function available. Further-
more, the large deformation and flow experienced by the
material makes tracking deformation impractical. Instead
we compute strain by integrating strain-rate. Because we
do not wish to model a perfectly elastic material, we also
require rules concerning how the elastic strain changes due
to plastic yielding.

We first separate the total strain into an elastic and a
plastic component so that

εTot = εElc + εPlc . (3)

Where εTot, εElc, and εPlc, are respectively the total, elastic,
and plastic strains. (Outside this section we denote elastic
strain as simply ε.) The strain rate is the time derivative of
the total strain, so the total strain at some time t is

εTot = εTot
0 +

∫ t

0

ε̇Tot dt (4)

where εTot
0 is the total strain at time t = 0 and ε̇Tot is the

strain rate given by

ε̇Tot =
(
∇ uT +

(
∇ uT

)T
)

/2 . (5)

Similarly, the plastic strain is given by integrating plastic
flow.

εPlc = εPlc
0 +

∫ t

0

ε̇Plc dt (6)

We use von Mises’s criterion for determining when plastic
flow should occur. This criterion depends on the elastic
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Figure 3: These images, along with the ones shown in Fig-
ure 1, show how splash behavior is affected by elasticity.
The upper-left image shows a fluid example. As expected,
the Worthington column moves in the direction of the im-
pact. In the viscoelastic examples, the column rises verti-
cally (upper-right) or actually rises back toward the impact
direction (lower-left). The lower-right image shows a fluid
with both elasticity and high viscosity.

strain deviation, ε′, which is the elastic strain with any di-
lation removed1

ε′ = εElc −
Tr

(
εElc

)
3

I . (7)

So long as the magnitude (Frobenius norm) of the strain
deviation remains below the yield point, γ, no plastic flow
occurs. When the limit is exceeded, flow occurs at a rate
proportional to the amount the limit has been exceeded by.
So the flow rate for plastic strain is

ε̇Plc = α
ε′

‖ε′‖ max
(
0, ‖ε′‖ − γ

)
, (8)

where α is the material’s elastic decay rate, which determines
the rate of plastic flow.

Assuming that the initial total and plastic strains are both
zero, we can combine the above to compute the time deriva-
tive of the elastic strain which takes into account changes to
both total and plastic strains

ε̇Elc =
(
∇ uT +

(
∇ uT

)T
)

/2− α
ε′

‖ε′‖ max
(
0, ‖ε′‖ − γ

)
(9)

The images shown in Figure 2 illustrate some effects gener-
ated by varying α and γ.

Note that Equation (9) does not take into account the
movement of the material through space. Like velocity or
any other fluid property, the elastic strain must be advected
with the fluid. We use the same semi-Lagrangian advection
scheme that we use for the fluid velocities, and we update
the elastic strain using Equation (9) after our advection step.

4.3 Grid Issues

The well known staggered grid method, originally described
by [Harlow and Welch, 1965], elegantly avoids problems that

1This distinction is a bit pedantic here, because the fluid is
incompressible and so the dilation should always be zero.

Figure 4: Examples of fluid being sprayed into a container.
The way different fluids flow or pile in the container varies
significantly.

plague methods that store collocated pressure and velocity
values. However in addition to scalars (e.g. pressure) and
rank-one tensors (e.g. velocity), we also need to store the
elastic strain, a rank-two tensor, on the simulation grid.

Just as velocity components are stored separately on faces,
the different components of the strain tensor are stored at
different locations. The diagonal entries are stored at the
cell centers. The off-diagonal entries are stored at the center
of edges perpendicular to the component directions. For
example, the xy components are stored on the edges parallel
to the z axis. This approach is a generalization of the 2D
method described in [Gerritsma, 1996], and they describe its
merits in detail.

We use a particle-level-set method for tracking the fluid’s
free surface as described in [Enright et al., 2002], but with
the substantially faster, though less accurate, method de-
tailed in [Enright et al., 2004]. The authors note that the
method is susceptible to volume loss, and we found this be-
havior to be problematic for some of our examples that in-
volve fixed, small amounts of fluid. We were able to ame-
liorate this problem somewhat by using a level-set grid with
twice the fluid grid’s resolution, and that is staggered with
respect to the fluid grid. This scheme places level-set grid
centers on the cell centers, face centers, edge centers, and
nodes of the fluid grid. In addition to helping to prevent vol-
ume loss by locating level-set values where velocity boundary
constraints are enforced, the higher resolution also benefits
the rendered surfaces.

5 Results and Discussion

We have implemented this method for modeling viscoelastic
behavior and used it to generate several example animations.
Most of these examples were selected to illustrate some in-
teresting aspect of viscoelastic fluid behavior. All of the
examples shown in this paper also appear on the accompa-
nying video, which also contains additional examples.

Figures 1 and 3 show several splashes that are generated
when a fluid sphere is hurled into a tank containing the same
material. The motion of the pure fluid example differs sub-
stantially from the viscoelastic examples. Additionally, the
surfaces of the viscoelastic examples retain evidence of the
impact even after motion has stopped. Figure 4 shows jets
of different fluids sprayed into a closed container. Again, the
behavior of simple and viscoelastic fluids differ substantially.
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Figure 5: A sequence of images showing a viscoelastic fluid draining from a tank. The stream spirals in a fashion characteristic
of viscoelastic fluids.

Figure 6: These additional examples of viscoelastic fluids
draining from a tank show a range of different behaviors.

Figures 5 and 6 illustrate some of the variation in visco-
elastic fluid behaviors. In Figure 5, fluid draining from a
tank forms a thin stream that forms a spiral pattern as it
piles. The examples in Figure 6 billow up around the down-
ward stream, create a folding pattern, and break apart into
gobs. A simply viscous fluid would merely flow out to fill
the container.

The drip examples in Figures 7 and 8 show the behavior
of a gob of material that has been stuck to the underside of
a horizontal surface. The effect of shape memory created by
the elastic forces can be seen in these images. Some of the
images in Figure 2 show similar behavior that occurs when
cubes of different materials are dropped onto a hard surface.
The examples with high yield strain, i.e. large γ, behave like
deformable solids and bounce.

As shown in Figure 9, we can also model highly de-
formable, sticky objects that interact with each other. When
the spheres collide, their level-set surfaces merge so that
they adhere. The fluid retains its momentum, generating
the resulting spinning and stretching motion. Close exami-
nation shows that the spheres slightly anticipate their colli-
sion. This error occurs because the surfaces begin to interact
through shared ghost cells.

The images in Figure 10 are still images from an animation
we produced using this simulation method. These examples
demonstrate viscoelastic fluids interacting with interesting
geometry.

All of the images were rendered with a standard Newton-
iteration based ray marching algorithm implemented in
the open source renderer Pixie developed by Okan Arikan.
While ray marching produces nice results we think they
might be improved using the method described in [Heckbert,
1987].

Some of our examples suffer from noticeable volume loss.
This occurs because, while the particle level-set method does
a nice job modeling moderately thick volumes of fluids, very
thin surfaces, or strands, still have a tendency to vanish.
These effects are particularly noticeable visually when the
fluid is moving in orderly fashion, as opposed to splashing
about chaotically. It is difficult to say if this behavior is
a deficiency in our implementation or a limitation of the
surface tracking method.

The speed of this simulation method is approximately the
same with and without the addition of elastic forces. For ex-
ample, one of the falling cube examples on a 403 grid requires
about half an hour of computation per second of animation
on a single 3 GHz Pentium 4 processor. We are using an ex-
plicit integration method for the viscous and elastic forces,
so very high viscous or elastic coefficients would probably
cause stability problems and force smaller time steps. If it
became an issue, that difficulty could be ameliorated some-
what with an implicit integration scheme.

The material can be made to adhere to or slip off of bound-
ary surfaces by adjusting the velocity or pressure constraints
enforced along closed boundaries. However, in our current
implementation all fluids will stick to each other because dif-
ferent surface components merge when they collide. For the
fluids we show in our examples, this behavior is a desirable
feature. However, for non-sticky materials, like cold gelatin,
it would be undesirable.

To a large extent, our method for incorporating elastoplas-
tic terms does not depend on the underlying fluid simulation
method, and one could easily adapt the method to other fluid
simulation techniques such as smoothed-particle hydrody-
namics. Furthermore, we found that once we already had a
working fluid simulation, adding the elastoplastic terms was
fairly easy.

Finally, we note that while the method we present can
model a wide range of phenomena, many real materials can
demonstrate behaviors not captured by this model. Bio-
logical fluids, such as blood, can exhibit many interesting
effects that arise from their microscopic structure. Even
relatively simple polymer suspensions can demonstrate be-
havior that can only be roughly captured with this model.
Quoting from [Bird et al., 1987]:

A fluid that’s macromolecular
Is really quite weird — in particular

The abnormal stresses
The fluid possesses

Give rise to effects quite spectacular.
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