
Computer Graphics Proceedings, Annual Conference Series, 2005

Animating Gases with Hybrid Meshes

Bryan E. Feldman James F. O’Brien Bryan M. Klingner

University of California, Berkeley

Abstract

This paper presents a method for animating gases on un-
structured tetrahedral meshes to efficiently model the inter-
action of fluids with irregularly shaped obstacles. Because
our discretization scheme parallels that of the standard stag-
gered grid mesh, we are able to combine tetrahedral cells
with regular hexahedral cells in a single mesh. This hybrid
mesh offers both accuracy near obstacles and efficiency in
open regions.

Keywords: Natural phenomena, physically based anima-
tion, computational fluid dynamics.

CR Categories: I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling—Physically based
modeling; I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.6.8 [Simulation and
Modeling]: Types of Simulation—Animation.

1 Introduction

Over the last few years, simulation-based methods for an-
imating fluids have developed to a mature state where
production-quality results can be reliably obtained using
both commercial and proprietary systems. The majority
of these systems perform computations on regular hexahe-
dral meshes using a standard staggered-grid discretization
scheme that allows high-quality results to be produced us-
ing reasonable amounts of computation. Unfortunately, with
grid-based methods, boundaries typically must be repre-
sented in a voxelized fashion, and as a result animating fluids
in irregularly shaped domains can be awkward.

In this paper we describe a fluid simulation method for use
on unstructured tetrahedral meshes that can be made to con-
form to arbitrary polygonal boundaries so that fluids may
easily be modeled over irregularly shaped domains. The dis-
cretization scheme we employ for tetrahedra is a variation of
the staggered scheme commonly used for regular hexahedral
grids, and it allows natural enforcement of essential bound-
ary conditions. Furthermore, because our tetrahedral dis-
cretization is compatible with the standard staggered-grid
scheme, we can combine unstructured tetrahedral regions
and regular hexahedral grids to efficiently cover a single sim-
ulation domain. This hybrid approach allows easy confor-
mance to polygonal boundaries while still retaining a regular
grid’s efficiency over large open regions.

We have implemented this method and tested its perfor-
mance on a variety of scenarios, such as the one shown in

E-mail: {bfeldman|job|klingner}@eecs.berkeley.edu

From the ACM SIGGRAPH 2005 conference proceedings.
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post
on servers or to redistribute to lists, requires prior specific permission and/or
a fee.
ACM SIGGRAPH 2005, Los Angeles, CA
c© Copyright ACM 2005

Figure 1: A smoke simulation on a tetrahedral mesh inside
the Stanford Dragon model. A small region in the dragon’s
mouth is open so that smoke can flow out around its jaw
into the surrounding volume.

Figure 1, that involve fluids completely filling an irregularly
shaped simulation domain. For simple, rectilinear domains,
the results generated using our hybrid method are compara-
ble, both in visual quality and computational efficiency, to
results obtained from grid-based methods, but our method
can also conform to complex boundaries, and in many con-
texts this facility can be quite useful.

2 Related Work

A substantial amount of work in the field of computer graph-
ics has addressed the problem of realistically animating the
behavior of fluids. Many of the resulting methods make use
of a spatial discretization on regular hexahedral grids, and
some recent examples include [Foster and Metaxas, 1996],
[Foster and Metaxas, 1997], [Stam, 1999], [Yngve et al.,
2000], [Fedkiw et al., 2001], [Foster and Fedkiw, 2001], [En-
right et al., 2002], [Carlson et al., 2002], [Feldman et al.,
2003], [Goktekin et al., 2004], and [Carlson et al., 2004]. In
general, these techniques have progressed to the point where
some fluid phenomena can be modeled well enough that a
näıve viewer may have difficulty distinguishing between real
and simulated footage.

The most commonly used discretization scheme for regu-
lar hexahedral grids is the well known staggered grid method
that was originally developed by [Harlow and Welch, 1965].
By storing velocity components and pressure on mutually
staggered grids, it elegantly avoids the problems that plague
methods which store collocated pressure and velocity val-

904

Computer Graphics Proceedings, Annual Conference Series, 2005

Figure 2: This two-dimensional diagram illustrates how re-
gions of unstructured mesh can be connected to regularly
gridded regions.

ues. The method also provides an easy and natural method
for imposing both open and closed boundary conditions over
surfaces that align with the grid-cell faces.

Recently, [Losasso et al., 2004] described an octree-based
method that retains many of the advantages of regular stag-
gered grids while also providing the additional advantage
that simulation detail may be focused only in desired re-
gions. A powerful application of this method is for tracking
moving boundaries (free surfaces) at high resolution. To
some extent, octrees also provide a method for dealing with
the fixed boundaries of an irregular domain. However, forced
octree refinement near fixed boundaries may not always be
desirable.

While the above fluid methods make use of Eulerian grids
on regular domains, other meshless methods use Lagrangian
particles and can operate easily with irregular boundaries.
Some examples of these methods include [Terzopoulos et al.,
1989], [Desbrun and Cani, 1996], [Cani and Desbrun, 1997],
[Stora et al., 1999] [Müller et al., 2003], [Premože et al.,
2003], and [Müller et al., 2004]. These methods have not yet
demonstrated the same level of realism as current grid-based
methods, but this situation is likely temporary as researchers
continue to develop and adapt these simulation methods for
graphics use.

The differential operators used in formulating fluid flow
problems have been discretized for triangle and tetrahedral
meshes in [Tong et al., 2003]. They used the method to
perform decomposition and manipulation tasks on already
computed vector fields. Building on that work, [Shi and Yu,
2004] showed that those differential operators could actually
be used to simulate fluids on triangular meshes. Addition-
ally, [Botta and Hempel, 1996] describe an equivalent tri-
angular discretization for simulating fluids. However, they
found the scheme less than ideal because of its difficulty
with boundary constraints. They addressed the problem to
some extent by adding extra degrees of freedom at boundary
nodes.

A different discretization scheme for triangle meshes ap-
pears in [Rida et al., 1997]. Similar to the one presented
in this paper, their scheme adapts the staggered method for
regular grids to triangular meshes. However, in order to
obtain second-order accuracy they adopted the restriction
that the triangles in a mesh must contain their own circum-
center. While that restriction is somewhat reasonable for
triangle meshes, it is not at all practical for tetrahedral ones
because very few meshes could meet the requirement.

Concurrently with our work, [Elcott et al., 2005] have
also developed a staggered tetrahedral discretization scheme
nearly identical to ours. The fluid quantities are stored in
the same manner, and they provide a different derivation of
equivalent derivative operators. Two key differences are that
they use a different interpolation method and do not discuss

Figure 3: Storage scheme for velocity components and pres-
sure. The 2D diagram illustrates how scalars, such as pres-
sure, are stored in cell centers, while velocity is stored by
recording only the normal component at the center of each
cell face. The 3D diagram shows the scheme applied to tetra-
hedral (blue) and regular hexahedral (red) cells. The appro-
priate faces of transition (green) cells are split to allow them
to interface with the triangular faces of tetrahedra. For clar-
ity, the second tetrahedron that would adjoin the transition
cell has not been shown.

combining tetrahedral and regular hexahedral girds within
a single mesh. They do, however, provide an interesting
circulation-based alternative to standard semi-Lagrangian
advection.

3 Methods
The techniques we describe here provide a method for ani-
mating the behavior of fluids that completely fill a domain
tiled by a combination of tetrahedra and axis-aligned, reg-
ular hexahedra. The details of and applications for this
method are largely the same as for the method described
in [Fedkiw et al., 2001]. The key distinction is that by in-
cluding tetrahedral cells we can easily conform to complex
domain boundaries.

While simulation on tetrahedral meshes provides substan-
tial flexibility for matching boundaries, it does so at a mod-
erate computational cost. To avoid paying this cost unnec-
essarily, we continue to use regular grids over large open
areas. The resulting domain meshes are hybrid ones with
regular grids smoothly joined to irregular tetrahedra. A
two-dimensional diagram shown in Figure 2 illustrates the
general concept. However, in three dimensions, we will see
that the grid cells immediately adjacent to tetrahedra re-
quire special treatment.

The fluid’s motion is governed according to the standard
inviscid Euler equations:

∂u

∂t
= − (u · ∇)u− ∇p

ρ
+

f

ρ
(1)

subject to the mass conservation constraint for incompress-
ible fluids:

∇ · u = 0 . (2)

In these equations u is the fluid velocity, t time, p pressure,
ρ density, and f any external forces. The symbol ∇ denotes
the vector of differential operators ∇ = [∂/∂x, ∂/∂y, ∂/∂z]T.

We solve this system using operator splitting as described
by [Stam, 1999] so that we have three distinct steps: add
forces which computes accelerations due to buoyancy or
other forces acting on the fluid, velocity advection which uses
a semi-Lagrangian advection scheme to account for the mo-
tion of the fluid, and pressure correction which enforces in-
compressibility by solving for an appropriate pressure field.

905

ACM SIGGRAPH 2005, Los Angeles, CA, August, 1–4, 2005

Additionally, for rendering purposes we advect a large num-
ber of massless tracker particles.

3.1 Discretization
As shown in Figure 2, the meshes we use decompose the sim-
ulation domain into regions occupied by regular, axis-aligned
hexahedral cells and regions occupied by an unstructured
tetrahedral mesh. Hexahedral cells adjacent to tetrahedra
are transition cells that we treat slightly differently from
other hexahedral cells.

Within the hexahedral region our storage scheme exactly
follows the well established standard staggered grid method
of [Harlow and Welch, 1965]. Scalar values, such as pres-
sure, are stored at the center of each cell. Velocity is stored
by placing at the center of each face the normal velocity
component of the fluid at that location.

For tetrahedra we use essentially the same scheme: pres-
sure in the centers and normal velocity on faces. However,
the tetrahedral faces are not axis aligned or mutually or-
thogonal. As a result, differential operators and velocity
interpolation require special treatment.

To link tetrahedral and grid regions, we designate the hex-
ahedral cells adjacent to tetrahedral cells as transition cells.
The adjacent tetrahedra share vertices with the transitions
cells, and the appropriate faces of the transition cells are
split so that they are compatible with the adjacent tetrahe-
dra. (See Figure 3.) For interpolation purposes, which we
discuss in Section 3.5, hexahedral cells sharing an edge with
a tetrahedral cell are also treated as transition cells.

Computing the pressure correction step requires a diver-
gence operator that can be applied to the velocity field and
a gradient operator that can be applied to the pressure field.
As with regular staggered grids, the divergence values should
be computed at locations collocated with pressure storage,
and gradient components should be computed corresponding
to where matching velocity components are stored.

We form the divergence operator for all types of cells,
(hexahedral, tetrahedral, and transition) by discretizing the
divergence theorem,

∫
V

(∇ · u)dV =
∫

S
(n̂ · u)dS, assuming

that the underlying velocity field is piecewise linear on the
mesh. This construction, borrowed from the Finite Volume
Method, yields the equation:

(∇ · u)j =
1

Vj

∑
facei∈cellj

(n̂i · ui) Ai (3)

where the Vj is the cell’s volume, Ai a face’s area, and the
term (n̂i · ui) is the velocity component stored at a face’s
center. For regular hexahedral cells, this formula reduces to
exactly the one from [Harlow and Welch, 1965]. Transition
cells behave as if they were regular hexahedral cells whose
transition-face velocity was the average of the split values.

For pressure gradients, we do not require the entire gradi-
ent at each face center, only the component of the gradient
normal to the face. We compute this component by tak-
ing the difference in pressure values for the two cells sharing
a face and dividing by the distance between the two cell
centers measured perpendicular to the face. For regularly
shaped hexahedral or transition cell of width h, the perpen-
dicular distance from a face to the cell’s center is simply
1/2h. For tetrahedra, the perpendicular distance between
the center of tetrahedron j and its i’th face is 3Vj/4Ai. In
summary, the gradient component across face i between cells
a and b is given by:

(n̂ · ∇p)i =
pb − pa

(kb + ka)
kj =

{
1/2h, j is hex
1/2h, j is tran
3Vj/4Ai, j is tet

. (4)

Note that care should be taken to maintain proper signing.
The above assumes n̂ is the normal at face i directed outward
from cell a.

These divergence and gradient operators have several nice
properties. In particular, they are simple, have small sup-
port, are cheap to compute, and like regular staggered-grid
methods, they do not lead to interleaved, decoupled so-
lutions during pressure correction projection. They also
generate symmetric projection matrices, as we describe in
Section 3.4. The equivalent derivative operators used in
both [Elcott et al., 2005] and [Losasso et al., 2004] share
all these useful properties, and we refer the reader to those
papers for alternative derivations of those operators.

3.2 Accelerations due to Body Forces
Body forces resulting from phenomena such as gravity or
techniques such as vorticity confinement act over the volume
of the fluid. When working with regular grids, the acceler-
ation on a face will be proportional to the average of the
forces acting on adjacent cells. However, with cells of differ-
ing sizes care should be taken to prevent non-conservative
behavior where small cells neighbor large ones. Luckily, the
appropriate integrals reduce to simple volume-weighted av-
eraging. The normal acceleration across face i between cells
a and b is given by:

(n̂ · a)i = n̂ · Vafa + Vbfb
ρ(Va + Vb)

. (5)

3.3 Semi-Lagrangian Integration
A detailed description of semi-Lagrangian integration ap-
pears in [Stam, 1999]. Briefly, one determines the velocity
at a point x at time t + ∆t by tracing backwards from x in
the current flow field to find a point x′. The velocity of x
at t + ∆t is then set to the value found at x′. An impor-
tant consideration is that the method used to determine the
velocity at x′ must not introduce unnecessary smoothing or
else, over the course of multiple integration steps, the simu-
lated result will suffer from undesirable numerical diffusion.
We address this issue in Section 3.5.

3.4 Mass Conservation
The intermediate velocity field, u∗, produced by the advec-
tion step, in general, will not be mass conserving. To make
it so, we enforce a volume-scaled divergence-free condition,
Vj (∇ · u)j = 0 for each cell by computing a correcting pres-
sure field.

Let z be the system-length vector containing the normal
velocities at each face in the mesh, and let D be the ma-
trix that encodes Equation (3) such that Dz yields a vector
containing the resulting divergence in each cell. However,
because we require volume-scaled divergence, we modify D
by omitting the 1/Vi scale factor from Equation (3). Sim-
ilarly, let p be the vector of pressures in each cell, and G
encodes Equation (4) such that Gp yields a vector contain-
ing the normal gradient component at each face. Combining
Equations (2) and (1) with the above matrix operators gives
us the discrete form of Poisson’s Equation that we use to
solve for p:

DGp =
ρ

∆t
Dz∗ (6)

where z∗ is the vector of uncorrected face-normal velocities,
and the corrected velocities are given by z = z∗−(∆t/ρ)Gp.
Equation (6) is a symmetric, positive-definite linear system
that can be efficiently solved for p using a preconditioned
conjugate-gradient solver.

906

Computer Graphics Proceedings, Annual Conference Series, 2005

One of the attractive features of the discretization we use
is that boundary conditions are particularly easy to enforce.
To make a face behave as an open boundary, the gradient
operator (Equation (4)) uses an ambient pressure of 0 on the
side of the boundary face that is outside the mesh and places
it at a distance equal to that of the distance to the pressure
that is in the mesh. Closed boundary conditions are enforced
by setting the pressure outside the mesh, opposite the closed
face, to be equal to the pressure of the tetrahedron that is
in the mesh.

3.5 Interpolation
Although the storage scheme we use produces nice, simple
formulae for computing divergence and gradients, interpo-
lating the velocity field turns out to be somewhat awkward.
Other researchers who have used similar staggered schemes
on triangles, for example [Rida et al., 1997], have not ad-
dressed the issue because they had no need to interpolate
the velocity field. However, the semi-Lagrangian integration
scheme we use does require interpolated velocities. Addi-
tionally, we use many tracker particles for rendering pur-
poses, and advecting these particles also requires interpo-
lated velocities.

We make use of three different interpolation methods. For
regular hexahedral cells we always use standard tri-linear in-
terpolation. However, for tetrahedral and transition cells we
use different methods depending on what the interpolated
values will be used for. For computing the interpolated ve-
locity values that semi-Lagrangian advection will carry for-
ward for the next time step, we use a variation of moving
least-squares interpolation with linear basis functions that is
accurate but somewhat costly. For advecting particles and
for backward tracing during the semi-Lagrangian step, we
use a faster, less accurate method. The faster method first
uses moving least-squares interpolation with constant basis
functions to compute velocities at the mesh vertices, and
then does standard linear interpolation within tetrahedra.

The moving least-squares interpolation we use is part of a
family of interpolation methods commonly used for certain
“meshless” simulation techniques. A comprehensive discus-
sion can be found in [Belytschko et al., 1996], and the par-
ticular method we use has has also been used in graphics
for implicit surface construction. (For example, see [Ohtake
et al., 2003] and particularly [Shen et al., 2004].)

In our case, we only have velocity normal components
stored at each face, so a constant least-squares velocity fit
would take the form

n̂T
1

n̂T
2

...
n̂T

k

u =

(n̂ · u)1
(n̂ · u)2

...
(n̂ · u)k

 (7)

where n̂i is the face normal at face i and (n̂ · u)i the corre-
sponding normal velocity component. If we name the matrix
used above, we can instead write more compactly:

Nu = z . (8)

Equation (8) can be transformed into an interpolation
method by introducing the diagonal moving-weight matrix,
W(x), defined by

wii(x) =
1

r2
i + ε2

(9)

where ri is the distance between x and the center of face i.
We can then interpolate the velocity at an arbitrary point x

a) c)b)

Figure 4: A comparison of a jet shooting downward onto
an inclined ramp a) using an all-tetrahedral mesh b) using
a hybrid mesh c) using all regular hexahedral cells.

Number Number Simulation time
Grid Type Tetrahedra Hexahedra per frame (mean)
a) All Tet. 85720 0 48.22 sec
b) Hybrid 34839 85155 20.97 sec
c) All Hex. 0 97707 12.68 sec

Table 1: A comparison of different meshes for the inclined
ramp example.

by solving for u with the method of normal equations using
the system:

W(x)Nu = W(x)z . (10)

We construct a higher order moving least-squares inter-
polant by including linear basis functions. The unweighted
least-squares fit in Equation (7) then takes the form:

n̂T
1 x1n̂

T
1 y1n̂

T
1 z1n̂

T
1

n̂T
2 x2n̂

T
2 y2n̂

T
2 z2n̂

T
2

...
n̂T

k xkn̂
T
k ykn̂

T
k zkn̂

T
k

 u0

ux

uy

uz

 =

(n̂ · u)1
(n̂ · u)2

...
(n̂ · u)k

 (11)

where the scalars xi, yi, and zi denote the position coordi-
nates of the i’th face center relative to the evaluation point
x, and the u0, ux, uy, and uz, are the coefficients of the lin-
ear polynomial fit. The procedure for applying the moving
weights to Equation (11) follows as described above. Be-
cause the evaluation point, x, is used as the origin during
the linear fit, we have u(x) = u0.

With either constant or linear fits some care must be
taken when selecting ε. Large values introduce undesirable
smoothing, while too small values can cause conditioning
problems. We have found that adjusting ε so that it is 0.03
times the average edge-length of the cell containing the eval-
uation point works well. Further discussion of moving least-
squares interpolation and fast evaluation techniques can be
found in [Shen et al., 2004].

At each time step, prior to semi-Lagrangian advection, we
use the constant-basis moving least-squares interpolation to
estimate velocities at all vertices of the tetrahedral and hy-
brid portions of the mesh. Only the faces adjacent to a given
vertex are used during the fit. Once we have vertex velocities
we can quickly compute a slightly smoothed velocity esti-
mate anywhere using linear interpolation. This interpolated
velocity field is used for the backward tracing part of semi-
Lagrangian advection. However, once the backward tracing
has determined a point x′ whose interpolated velocity will
be carried forward and projected onto the mesh for the next
timestep, we compute the velocity at that point using linear-
basis moving least-squares interpolation of the original face
velocity components in a two-ring neighborhood of x′. The

907

ACM SIGGRAPH 2005, Los Angeles, CA, August, 1–4, 2005

Figure 5: The leftmost image shows a hollow glass object. The remaining images show the progression of green smoke as it
is injected into the center.

Figure 6: A desk toy filled with high-density fluid at the
top and low-density fluid at the bottom. The fluid between
is neutrally dense. Massless particles are passively advected
in the flow.

process of computing vertex velocities using constant-basis
moving least-squares interpolation is repeated prior to par-
ticle advection, and the particles are then advected using
linearly interpolated vertex velocities. Comparisons of re-
sults rendered using our multiple interpolation method ap-
proach exhibit no visual difference from results computed
using exclusively linear-basis moving least-squares for all in-
terpolation.

4 Results and Discussion

We have implemented the method described above in MAT-
LAB1 and used it to generate several example animations.
The tetrahedral portions of the meshes were generated us-
ing NETGEN2, and our final images were rendered using
PIXIE3. Simulation times varied from approximately four
hours for the dragon example shown in Figure 1 to less than
an hour for the corkscrew in Figure 7. Each of the anima-
tions appear in the accompanying video.

In Figure 4 we compare three animations of the same sce-
nario that were computed on different meshes. In each, a
downward jet exhausts onto an inclined ramp. Figure 4a)
shows a frame from the animation that uses a mesh consist-
ing of all tetrahedra. Figure 4b) uses a hybrid mesh with
tetrahedra near the ramp and regular cells filling the re-
maining open space. Finally, Figure 4c) uses a regular grid

1http://www.mathworks.com
2http://www.hpfem.jku.at/netgen
3http://sourceforge.net/projects/pixie

everywhere. The number of cells used and runtimes appear
in Table 1. The behaviors of the tetrahedral and hybrid sys-
tems are quite similar. In both, the flow spreads naturally
up the ramp. The behavior with the regular grid is less nat-
ural because the ramp must be represented as axis-aligned
faces. Grid-based simulation in general suffers from poor
behavior at curved or angled boundaries while tetrahedral
meshes are naturally suited to these situations.

The images in Figure 1 show the results of an all-
tetrahedral simulation where smoke is generated in the tail
of the Stanford dragon model and forced out of an open-
ing in its mouth. The smoke twists and rolls as it moves
through the body due to the dragon’s undulating cylindrical
shape. A similar example appears in Figure 5. Smoke inside
the closed shape circulates due to the action of a jet at the
center. The smoke accelerates as it moves into the arms of
the object and disperses where the flows from the two arms
collide.

Figure 6 shows a simulation of an executive desk toy. The
simulation is initialized with a region of high density at the
top and a region of low density at the bottom. These regions
are filled with massless tracker particles. The particles are
passively advected as regions of high and low density mix in
the neutrally dense fluid that fills the rest of the toy.

In Figure 7 a jet has been placed below a cylinder contain-
ing a corkscrew shape. The region inside and immediately
around the cylinder contains tetrahedra, while the remainder
of the scene is covered by a regular grid. The flow conforms
well to the corkscrew’s spiral and then disperses and rolls as
it rises through the free space above.

We have presented a method for animating fluids using hy-
brid meshes containing both tetrahedral and regularly grid-
ded regions. Using the technique we can efficiently model
the behavior of fluids as they interact with irregular bound-
aries by tetrahedralizing the regions surrounding the bound-
aries. The computational expense incurred by a single tetra-
hedral cell is larger than that of a grid cell, but our hy-
brid approach allows us to retain the overall efficiency of
grids while still benefiting from the flexibility of a tetrahe-
dral mesh. Although our current implementation is limited
to entirely fluid-filled domains by the lack of a free surface
tracker, contouring methods such as [Bargteil et al., 2005]
are quite flexible and should be easily adaptable for use with
our technique.

Acknowledgments
We thank the other members of the Berkeley Graphics
Group for their helpful criticism and comments. This work
was supported in part by California MICRO 03-067 and 04-
066, and by generous support from Apple Computer, Alias,
Pixar Animation Studios, Intel Corporation, Sony Computer
Entertainment America, the Hellman Family Fund, and the
Alfred P. Sloan Foundation.

908

http://www.mathworks.com
http://www.hpfem.jku.at/netgen
http://sourceforge.net/projects/pixie

Computer Graphics Proceedings, Annual Conference Series, 2005

Figure 7: These images show the result of shooting colored
smoke through a corkscrew cylinder. The image on the right
shows the smoke with the rest of the scene removed.

References
Bargteil, A. W., Goktekin, T. G., O’Brien, J. F., and

Strain, J. A. 2005. A semi-Lagrangian contouring method
for fluid simulation. ACM Transactions on Graphics. To ap-
pear.

Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., and
Krysl, P. 1996. Meshless methods: An overview and recent
developments. Computer Methods in Applied Mechanics and
Engineering 139 , 3–47. Special issue on meshless methods.

Botta, N., and Hempel, D. 1996. A finite volume projection
method for the numerical solution of the incompressible navier-
stokes equations on triangular grids. First International Sym-
posium on Finite Volumes for Complex Applications, 15–18
(July), 355–363.

Cani, M.-P., and Desbrun, M. 1997. Animation of deformable
models using implicit surfaces. IEEE Transactions on Visual-
ization and Computer Graphics 3, 1 (Jan.), 39–50.

Carlson, M., Mucha, P. J., Van Horn III, R. B., and Turk,
G. 2002. Melting and flowing. In the ACM SIGGRAPH 2002
Symposium on Computer Animation, 167–174.

Carlson, M., Mucha, P. J., and Turk, G. 2004. Rigid fluid:
animating the interplay between rigid bodies and fluid. In the
Proceedings of ACM SIGGRAPH 2004, 377–384.

Desbrun, M., and Cani, M.-P. 1996. Smoothed particles: A new
paradigm for animating highly deformable bodies. In Computer
Animation and Simulation 1996, 61–76.

Elcott, S., Tong, Y., Kanso, E., Schröder, P., and Desbrun,
M. 2005. Discrete, circulation-preserving, and stable simplicial
fluids. Preprint, Caltech.

Enright, D. P., Marschner, S. R., and Fedkiw, R. P. 2002.
Animation and rendering of complex water surfaces. In the
Proceedings of ACM SIGGRAPH 2002, 736–744.

Fedkiw, R., Stam, J., and Jensen, H. W. 2001. Visual simula-
tion of smoke. In the Proceedings of ACM SIGGRAPH 2001,
15–22.

Feldman, B. E., O’Brien, J. F., and Arikan, O. 2003. An-
imating suspended particle explosions. In the Proceedings of
ACM SIGGRAPH 2003, 708–715.

Foster, N., and Fedkiw, R. 2001. Practical animation of liquids.
In the Proceedings of ACM SIGGRAPH 2001, 23–30.

Foster, N., and Metaxas, D. 1996. Realistic animation of
liquids. In Graphics Interface 1996, 204–212.

Foster, N., and Metaxas, D. 1997. Modeling the motion of
a hot, turbulent gas. In the Proceedings of ACM SIGGRAPH
97, 181–188.

Goktekin, T. G., Bargteil, A. W., and O’Brien, J. F. 2004.
A method for animating viscoelastic fluids. In the Proceedings
of ACM SIGGRAPH 2004, 463–468.

Harlow, F., and Welch, J. 1965. Numerical calculation of
time-dependent viscous incompressible flow of fluid with a free
surface. The Physics of Fluids 8 , 2182–2189.

Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water
and smoke with an octree data structure. In the Proceedings
of ACM SIGGRAPH 2004, 457–462.

Müller, M., Charypar, D., and Gross, M. 2003. Particle-
based fluid simulation for interactive applications. In the ACM
SIGGRAPH 2003 Symposium on Computer Animation, 154–
159.

Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M.,
and Alexa, M. 2004. Point based animation of elastic, plastic
and melting objects. In the ACM SIGGRAPH 2004 Sympo-
sium on Computer Animation, 141–151.

Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., and Seidel,
H.-P. 2003. Multi-level partition of unity implicits. In the
Proceedings of ACM SIGGRAPH 2003, 463–470.

Premože, S., Tasdizen, T., Bigler, J., Lefohn, A., and
Whitaker, R. 2003. Particle-based simulation of fluids. Com-
puter Graphics Forum 22, 3 (Sept.), 401–410.

Rida, S., McKenty, F., Meng, F., and Reggio, M. 1997. A
straggered control volume scheme for unstructured triangular
grids. International Journal for Numerical Methods in Fluids
25 , 697–771.

Shen, C., O’Brien, J. F., and Shewchuk, J. R. 2004. Interpo-
lating and approximating implicit surfaces from polygon soup.
In the Proceedings of ACM SIGGRAPH 2004, 896–904.

Shi, L., and Yu, Y. 2004. Inviscid and incompressible fluid sim-
ulation on triangle meshes. Computer Animation and Virtual
Worlds 15, 3-4, 173–181.

Stam, J. 1999. Stable fluids. In the Proceedings of ACM SIG-
GRAPH 99, 121–128.

Stora, D., Agliati, P.-O., Cani, M.-P., Neyret, F., and Gas-
cuel, J.-D. 1999. Animating lava flows. In Graphics Interface
99, 203–210.

Terzopoulos, D., Platt, J., and Fleischer, K. 1989. Heat-
ing and melting deformable models (from goop to glop). In
Graphics Interface 1989, 219–226.

Tong, Y., Lombeyda, S., Hirani, A. N., and Desbrun, M.
2003. Discrete multiscale vector field decomposition. In the
Proceedings of ACM SIGGRAPH 2003, 445–451.

Yngve, G. D., O’Brien, J. F., and Hodgins, J. K. 2000. An-
imating explosions. In the Proceedings of ACM SIGGRAPH
2000, 29–36.

909

	1 Introduction
	2 Related Work
	3 Methods
	3.1 Discretization
	3.2 Accelerations due to Body Forces
	3.3 Semi-Lagrangian Integration
	3.4 Mass Conservation
	3.5 Interpolation

	4 Results and Discussion

