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(a) Our Method
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(d) Our Method
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Figure 1: (a) Our method using an average of only 4 samples per pixel over the image. A static rendering of the scene is inset in the lower right and closeups
are shown in (b-e). Strati�ed sampling in (b) is very noisy atthis low sample count. Multidimensional Adaptive Sampling[Hachisuka et al. 2008] in (c)
performs much better, but still has some noise, especially in fast-moving high-frequency textures, such as the mural (top) and ground (bottom closeup). Our
technique in (d) produces a high-quality image with minimalnoise that closely matches ground truth (e). Figure 7 shows details for our sheared �lter.

Abstract

Motion blur is crucial for high-quality rendering, but is also very
expensive. Our �rst contribution is a frequency analysis of motion-
blurred scenes, including moving objects, specular re�ections, and
shadows. We show that motion induces a shear in the frequency
domain, and that the spectrum of moving scenes can be approxi-
mated by a wedge. This allows us to compute adaptive space-time
sampling rates, to accelerate rendering. For uniform velocities and
standard axis-aligned reconstruction, we show that the product of
spatial and temporal bandlimits or sampling rates is constant, in-
dependent of velocity. Our second contribution is a novel sheared
reconstruction �lter that is aligned to the �rst-order direction of mo-
tion and enables even lower sampling rates. We present a rendering
algorithm that computes a sheared reconstruction �lter per pixel,
without any intermediate Fourier representation. This often per-
mits synthesis of motion-blurred images with far fewer rendering
samples than standard techniques require.

Keywords: motion blur, frequency analysis, space-time, light
transport, anti-aliasing, reconstruction, �lter, sampling

� e-mail:ktegan@cs.columbia.edu

1 Introduction

Motion blur is important for creating synthetic images that match
physical cameras, and for eliminating temporal aliasing in anima-
tions. As the velocity increases, more samples are usually required
to render motion-blurred images. This is frustrating since the com-
plexity and spatial frequencies in the �nal image actuallydecrease
due to the blurring or �ltering from motion (see Figures 1 and 2).

We seek to accelerate the rendering of motion-blurred scenes by
a combination of adaptive sampling and a new sheared �lter. Our
main contribution is an analysis of the frequency content of scenes
in space-time. This theoretical analysis enables us to derive the
bandwidth, required sampling rate, and reconstruction �lters for ac-
curate rendering. We make the following contributions:

Space-Time Fourier Theory: We develop our frequency anal-
ysis in Sec. 3 with three key visual e� ects: movement of objects
and surface texture, rotations of the BRDF and lighting, and mov-
ing shadows. We �nd similar mathematical forms in all cases: the
�nal motion-blurred signal undergoes ashearin space-time and a
corresponding shear in the frequency domain. For a given range of
velocities, the Fourier spectrum can be approximated by a wedge.

Spatial and Temporal Bandlimits and Sampling Rates: This
analysis allows us to derive required spatial and temporal sampling
rates (Sec. 4), enabling adaptive sampling. In fact, we show that,
using a conventional (axis-aligned) aliasing and shutter �lter, and
for uniform velocities, the product of spatial and temporal sampling
rates is essentially constant, independent of the speed of motion.

Sheared Reconstruction Filter: We further demonstrate that
we can sample more sparsely and pack frequency replicas much
tighter if we use a new sheared (not axis-aligned) reconstruction
�lter, which conforms to the frequency wedge (Sec. 5), and follows
the �rst-order direction of motion in the primal domain.
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Practical Space-Time Rendering Algorithm: Our motion-blur
rendering method (Sec. 6) �rst estimates frequency bounds by
sparsely sampling the scene. The algorithm then computes per-
pixel sheared �lters and sampling rates, without requiring any ex-
plicit computation of Fourier spectra. As shown in Figure 1, it can
produce high-quality results with low sample counts.

2 Related Work

Motion Blur Rendering: Motion-blur rendering often relies on
sampling the shutter interval, e.g. [Korein and Badler 1983; Cook
et al. 1984; Haeberli and Akeley 1990; Cammarano and Jensen
2002; Akenine-M̈oller et al. 2007] and high-quality sampling pat-
terns can improve results [Mitchell 1991]. The Reyes architec-
ture [Cook et al. 1987] reduces costs by shading at one time instant
but densely sampling visibility through time. The Maya render-
ing system computes shading and visibility separately to capture
changing illumination and reduce noise [Sung et al. 2002].

Closest to our work is the general Multi-Dimensional Adaptive
Sampling (MDAS) method [Hachisuka et al. 2008], which adap-
tively samples based on contrast in the multi-dimensional integrand.
They approximate anisotropic �lters with �nite di� erences and a
modi�ed nearest-neighbor. In contrast, we predict local frequency
information with each sample and utilize sheared reconstruction �l-
ters. A comparison of the practical results is made in Sec. 6.4; our
method is somewhat better on fast-moving high-frequency signals,
as in Figure 1. Furthermore, our paper makes important theoretical
contributions by analyzing motion blur in the frequency domain,
which leads to key insights for sampling rates and anisotropic �l-
ters that may be relevant to MDAS as well.

Multi-dimensional lightcuts [Walter et al. 2006] groups point light
sources and shading samples, including samples in time for motion
blur, into hierarchical graphs. This method is orthogonal to ours,
since they reuse similar surface and lighting samples within one
pixel, while we consider sheared reconstruction �lters that can span
multiple pixels.

Image-space solutions blur based on the motion �eld at a single in-
stant [Potmesil and Chakravarty 1983; Max and Lerner 1985]. They
can be e� cient but often require segmentation into layers, provide
only an approximation, and are prone to artifacts. Our sheared re-
construction is related but operates on the full space-time domain
and adapts to the content to yield accurate results.

Other methods have used modi�ed �lters for motion blur. Cat-
mull [1984] suggests scaling the pixel anti-aliasing �lter to
match the motion, but it relies on analytic �ltering of polygons.
Anisotropic texture �ltering has also been used in real-time render-
ing [Loviscach 2005]. Both of these methods de�ne a stretched
space-only �lter instead of our sheared space-time �lter.

Light Transport Analysis: Our analysis builds on plenoptic
sampling [Chai et al. 2000; Isaksen et al. 2000], and the frequency
and gradient analysis of light transport [Durand et al. 2005; Soler
et al. 2009; Ramamoorthi et al. 2007]. In particular, we use the con-
cept of light transport shears in the frequency domain [Durand et al.
2005] and a wedge for the �nal spectrum [Chai et al. 2000]. We ex-
tend these space-angle methods to consider motion and space-time.
Other work has touched on the sheared space-time spectra of trans-
lating signals, although not for rendering [Christmas 1998; Levin
et al. 2008]. We go further in deriving explicit sampling rates, a the-
orem showing that the total sampling rate (in space and time) is ap-
proximately constant for axis-aligned �lters, developing a sheared
reconstruction �lter, and in considering specularities and shadows.

g(x; y) 2D spatial signal (such as a planar texture)
f (x; y;t) Time-Varying signal (moving object or texture)
h(x; y;t) Time-Varying motion-blurred signal (image)
f (x; t); h(x; t) 1D time-varying signals for simplicity
w(t) Temporal response of shutter

 max

x ; 
 max
t Max spatial, temporal frequencies (ing(x),w(t))


 �
x; 


�
t Spatial, temporal frequency bandlimit


 � Net frequency bandlimit (total samples needed)

Table 1:Notation for the key variables in the paper. The frequency analysis
will use capital letters for Fourier transforms of the quantities shown here
e.g., F(
 x; 
 t) denotes the Fourier transform of f(x; t). Other notation is
introduced in Secs. 3.2-3.3 to discuss BRDF e� ects and shadows.

3 Space-Time and Fourier Theory

We analyze the key visual e� ects in motion blur. We �rst examine
the frequency content of a moving signal and show that it yields
a space-time shear. General light transport involves shearing, con-
volution and other operations on spectra [Durand et al. 2005], and
it is beyond the scope of this paper to generalize all of them to
the time domain. Instead, we focus on the three most common
phenomena—object motion, BRDF re�ection, and moving shad-
ows. We show that, in space-time, all three e� ects have strikingly
similar mathematical forms, which allows for a general treatment
of motion blur as ashearin the space-time and Fourier domain.

For simplicity, most of the analysis is done for a 1D scanline, but
the main insights carry over to 2D images and 3D space-time (with
anisotropic shears following the direction of motion). An index of
notation for the most important symbols is in Table 1.

3.1 Moving Object: Translating Signal

Consider a 2D signalg(x; y), which can be thought of as a texture.
The concept of “texture” here is general, and can also include ge-
ometric e� ects like silhouette boundaries. This signal is translated
through time byx0(t) andy0(t),

f (x; y;t) = g(x � x0(t); y � y0(t)): (1)

The motion-blurred signal or image is then given by

h(x; y;t) =
Z 1

�1
f (x; y;t0)w(t � t0) dt0; (2)

wherew(t) is the shutter response over time, responsible for motion
blur. For Fourier analysis, it is useful to de�ne all integrals over the
in�nite temporal domain. We considerh to be a continuous signal
for analysis—in practice, the �nal rendering step will point-sample
h in time to generate individual motion-blurred frames.

We �rst study the canonical case of translation with uniform veloc-
ities, so thatx0(t) = at andy0(t) = bt,

f (x; y;t) = g(x � at; y � bt): (3)

For simplicity, consider a 1D scanline as in Figure 2(a):

f (x; t) = g(x � at)

h(x; t) =
Z

f (x; t0)w(t � t0)dt0: (4)

The basic setup is as shown in the top row of Figure 2, with Fig-
ure 2(b) being the �nal motion-blurred image. Figure 2(c) is a
space-time diagram for a static scene (a = 0). In this case, there
is no variation along the time (vertical) dimension. In Figure 2(d),
we see the time-varying e� ects of motion. As is expected from
Equations 3 and 4, this is ashearalong the spatialx direction. The
e� ects of the shutter in Figure 2(e) are a blurring or �ltering across
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Figure 2: Space-Time and Fourier domain plots for a moving object. (a)Original signalg(x; y); the scanline used for graphs (c), (d), and (e) is outlined inred.
(b) (below (a)) h(x; y;t) for a single instant in time; this is our �nal motion-blurredimage. (c) A graph of f(x; t) with zero velocity (a static image). In this case,
there is no variation along the time or vertical axis. (d) f(x; t) with positive uniform velocity, leading to a shearing alongthe spatial dimension. (e) h(x; y;t) is
obtained by applying a vertical blur along the time axis corresponding to the shutter �lter. (f), (g) and (h) are the respective Fourier transforms of (c), (d) and
(e). Note that (h) has frequencies in time restricted to
 t 2 [� 
 max

t ; 
 max
t ] based on the shutter �lter. (i) Because of perspective, the velocities change across

space. (j) Because of perspective, velocities change across time. The frequency spectra span a wedge based on the minimum and maximum velocities.

the vertical time dimension. Figure 2(f-h), shows the corresponding
frequency spectra, which we now derive analytically.

Fourier Analysis: To calculate the Fourier transform
F ( f (x; y;t)), we �rst transform alongx andy axes (denotedFx;y)
to obtain an intermediateFt(
 x; 
 y; t), and then transform along
the time dimension. Therefore, we �rst calculate

Ft(
 x; 
 y; t) = Fx;y
�
g(x � x0(t); y � y0(t))

�
: (5)

Sincex0(t) andy0(t) depend only on time, they can be treated as
constant shifts for the spatial Fourier transform above. By the
standard theory of shifted Fourier transforms,Ft relates closely to
G(
 x; 
 y) which is the Fourier transform ofg,

Ft(
 x; 
 y; t) = e� i2� (
 xx0(t)+
 yy0(t))G(
 x; 
 y): (6)

Now consider translation with a uniform velocitya andb in the x
andy directions, as per Equation 3. Applying the Fourier transform
along the time axis

F(
 x; 
 y; 
 t) = G(
 x; 
 y)
Z

e� i2� t(
 xa+
 yb+
 t) dt

= G(
 x; 
 y)� (
 xa + 
 yb + 
 t): (7)

By translating the 2D signal (corresponding to a spatial shear in the
space-time domain), we have sheared the signal along the temporal
axis in the frequency domain (all non-zero frequencies lie on the
plane
 xa + 
 yb + 
 t = 0 in 3D Fourier space). This result also
shows the coupling of spatial and temporal dimensions.

While our analysis applies fully to 2D signals, it is easier to expose
with a single spatial dimension or a 1D signal per Equation 4,

F(
 x; 
 t) = G(
 x)� (
 xa + 
 t); (8)

restricting the frequency spectrum to a single line
 xa + 
 t = 0, as
seen in Figure 2(g). Note that Figure 2(g) is obtained by shearing
the Fourier spectrum in Figure 2(f) along the time dimension, with
the amount of shear given by the velocitya.

Finally, from Equation 4, we know thath(x; t) is obtained from
f (x; t) simply by convolving withw(t), which becomes a multipli-
cation in the temporal frequency domain,

H(
 x; 
 t) = G(
 x)� (
 xa + 
 t)W(
 t): (9)

As seen in Figure 2(h), the high temporal frequencies in Figure 2(g)
are attenuated or removed, becauseW is the frequency spectrum of
the low-pass shutter �lter (in principle, only an in�nite sinc function
can be an exact low-pass �lter, but most �lters like gaussians allow
one to de�ne a practical threshold, such as capturing 99% of the
energy).

Non-Uniform Velocities: For typical shutter speeds that cover
a short time window, a uniform velocity is often a good approxi-
mation. However, there are cases where perspective, acceleration
and occlusion e� ects cause variations in speed and spatially non-
uniform velocities. An analytic Fourier transform cannot be ob-
tained in these cases, but we can approximate its range, based on the
non-negative minimum and maximum velocitiesa 2 [amin; amax].

Figure 2(i) shows a tilted quad moving to the right, where veloci-
ties change across space because of perspective. Analogously, Fig-
ure 2(j) shows a quad moving right and away from the camera, with
velocities changing across time because of perspective. While the
spectra are complicated, we �nd that most of the energy lies in the
wedge bounded by shears corresponding to minimumamin and max-
imum amax velocities (Figures 2(i),2(j),6(a)). This is similar to the
use of minimum and maximum depths to bound the frequency spec-
trum for image-based rendering [Chai et al. 2000].

3.2 BRDF Effects and Shading

We now consider the motion of re�ections (and shadows in
Sec. 3.3). We will obtain very similar mathematical forms as those
just seen for moving objects. This is illustrated in Figure 3, which
shows the shearing in spatial and frequency domains, analogous to
Figure 2. Some readers may wish to skip the derivations on a �rst
reading, and can move directly to Sec. 4 without loss of continuity.
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Figure 3: (a) A moving surface, in this case a sphere, with a rotating en-
vironment map. As the object moves, the specular re�ectionsare motion-
blurred. (b) A moving shadow from blockers, in this case a tree. As the oc-
cluder moves, so does the occluded region, leading to motion-blurred shad-
ows on the receiver. We obtain space-time and frequency-domain shears
based on the e� ective pixel velocities. (Note that since our analysis is local,
curved global paths for specular highlights and shadows arenot an issue.)

For simplicity, we consider �atland or 2D re�ections, similar
to [Durand et al. 2005; Ramamoorthi et al. 2007]. A diagram is
shown in Figure 4. We write the standard re�ection equation for
f (x; t), but extend it by considering its time-varying nature,

f (x; t) =
Z

l(�; t)r(2n(x; t) � � ) d�; (10)

wherel(�; t) is the (time-varying) incident lighting1 andr is a ra-
dially symmetric BRDF (like Lambertian or Phong), including the
cosine term. As shown in Figure 4, we consider a single overhead
view, so that the angle between lighting and re�ected directions is
given by 2n � � wheren is the normal.

There are two sources of time-dependence or motion blur. First,
the lighting may vary with time—for concreteness, we consider
moving the lights. For distant illumination, this corresponds to a
rotation, with� being the angular velocity. We can also linearize
motions of local sources to a rotation and angular velocity,

l(�; t) = l(� � � 0(t)) = l(� � � t): (11)

1The lighting can canonically be thought of as a distant environment
map, but can also correspond to the local environment atx = 0 (assuming
the spatial variation of lighting is moderate, such as mid-range illumination).

view normal

incoming
lighting

q

2n
n

lighting l (q, t) a

b

re!ected view

moving
receiver

rotation speed

Figure 4: BRDF e� ects and shading with motion blur. The basic (planar
or �atland 2D) setup shows a complex lighting environment l(�; t) that can
rotate with angular velocity� . The surface can also move with speed� .

Next, consider normaln(x; t). If the object is translating,

n(x; t) = n(x � x0(t)) = n(x � � t); (12)

where we now use� for the velocity of motion (to distinguish from
a used previously). Finally, the normal can be locally linearized so
thatn(x) = � x + � , with � related to the surface curvature,2

n(x � � t) = � (x � � t) + � = � x � �� t + �: (13)

Now, substituting Equations 11 and 13 into Equation 10 and using
� 0 = 2� and� 0 = 2� to account for the factor of 2n(�),

f (x; t) =
Z

l(� � � t)r(� 0x � �� 0t � � + � 0) d�; (14)

The above equation can be integrated by substituting! = � � � t,

f (x; t) =
Z

l(! )r
��

� 0x � (� + �� 0)t + � 0� � !
�

d!: (15)

The right-hand side of the above equation is a convolution. De�ning
 = � + �� 0—where is the relative angular velocity of lighting and
surface—and using
 for convolution,

f (x; t) = (l 
 r) (� 0x �  t + � 0); (16)

where the result is evaluated at (� 0x �  t + � 0).

It is possible to bring Equation 16 into the same form as Equa-
tion 4, unifying two seemingly quite di� erent phenomena—
motion-blurred texture/geometry and specular re�ections. To do so,
we simply need to de�neg = l 
 r, so that in analogy to Equation 4,

f (x; t) = g
 
� 0

"
x �


� 0

t +
� 0

� 0

#!

h(x; t) =
Z

f (x; t0)w(t � t0)dt0: (17)

In this case, the e� ective velocitya from Equation 4 is simply=� 0,
which is the e� ective spatial rate of motion (relative angular veloc-
ity divided by curvature). The� 0=�0 term is only a constant o� set,
which will become a simple phase shift in Fourier space. The cur-
vature� 0 multipliesx to convert from spatial to angular coordinates.

Fourier Analysis: The convolution of lighting and BRDF in
Equation 16 leads to a product in Fourier space,

F(
 x; 
 t) = L
 

 x

� 0

!
R

 

 x

� 0

!
ei2� 
 x� 0=�0�

�

 x


� 0

+ 
 t

�
: (18)

The scale of� 0 in the arguments of Equations 16 and 17 leads to the
Fourier scale factors of 1=�0. Equation 18 is essentially identical
to Equation 8 for moving objects, if we de�ne e� ective velocity
a = =� 0, andG(
 x) = (LR)(
 x=�0). In both cases, the signal is a
shear in both space-time and Fourier domains.

2Since the surface may be tilted with respect to the image scanline along
which the spatial dimensionx is measured,� is actually the screen-space
curvature, and di� ers by a cosine factor from the geometric curvature.
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Figure 5: Schematic for analysis of motion-blurred shadows. The lighting
can move with angular velocity� . The occluder can also move with speed
� , leading to a change in the extremal angle� (x) for visibility.

3.3 Visibility and Cast Shadows

We follow previous work [Soler and Sillion 1998; Ramamoorthi
et al. 2004; Mahajan et al. 2007], which shows that canonical
shadow e� ects are often described by convolutions.

We �rst de�ne the binary visibility functionv(x; � ) as

v(x; � ) = s(� (x) � � ); (19)

wheresis the Heaviside step function, and� (x) is an extremal angle
that de�nes the boundary between blocked and continuous regions,
as shown in Figure 5. For simplicity, we consider only a single
visibility discontinuity for eachx, but a linear combination of func-
tions can be used for general visibility [Ramamoorthi et al. 2007].
Consider relative motion� between the blocker and receiver,

s(� (x � x0(t)) � � ) = s(� (x � � t) � � ): (20)

We now locally linearize� (x) � � x [Ramamoorthi et al. 2004]. In
general,j � j� cos�= D, whereD is the distance to the blocker,

s(� (x � � t) � � ) = s(� � (x � � t) � � ) = s(� x � �� t � � ): (21)

Finally, we de�nel(�; t) = l(� � � t) as in the BRDF case—e� ective
values for angular velocity� can be computed for point and area
lights, or environment maps. If we ignore the BRDF signal for the
moment (cases with multiple surface, BRDF, and shadow signals
are discussed later), we can write the re�ection equation as

f (x; t) =
Z

l(� � � t)s(� x � �� t � � ) d�: (22)

This has exactly the same form as Equation 14, only usings instead
of the BRDFr, and� instead of the curvature� 0. If we similarly
de�ne  = � + �� , we obtain analogous to Equation 16,

f (x; t) = (l 
 s) (� x �  t): (23)

This can be put in the same form as the specularity and motion case
(e.g., Equation 17), with e� ective velocitya = =� .

Fourier Analysis: The Fourier formula in the shadow case is
very similar to that for BRDF e� ects in Equation 18,

F(
 x; 
 t) = L
 

 x

�

!
S

 

 x

�

!
�

�

 x


�

+ 
 t

�
; (24)

which has an identical form to Equations 8 and 18 if we set the
e� ective velocitya = =� andG(
 x) = (LS)(
 x=�). One can also
similarly de�ne the Fourier transform of the motion-blurred signal
H for specularity and shadows, as per Equation 9.

4 Spatial and Temporal BandLimits

We now study the spatial and temporal bandlimits. Since the mathe-
matical form is very similar for all the visual e� ects in Secs. 3.1-3.3
(provided we de�ne an e� ective velocitya), from now on we focus
on Equations 8 and 9. Figure 6 illustrates the main ideas.

Wt
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a) source signal
frequency spectrum

Wx
max

Wt
* = 2Wx

max amax

b) spectrum after
shutter bandlimit

Wt

Wx

Wx
* = 2Wt
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camera shutter
bandlimit

F(Wx, Wt) H(Wx, Wt) Wt

Wx

c) packing spectra
with no overlap

slope = -amax

slope = -amin

Figure 6: (a) Frequency spectrum of source signal F(
 x; 
 t) in space and
time (
 x and
 t). We also mark the highest spatial frequency
 max

x , and the
highest temporal frequency
 �

t , determined by the maximum velocity/shear
amax. (b) The signal is bandlimited in time based on the camera shutter
to temporal frequencies less than
 max

t . For images with medium to large
amounts of motion blur, the spatial frequencies are also correspondingly
�ltered to 
 �

x, depending on the minimum velocity amin. (c) Sampling intro-
duces replicas of the base spectrum F. To achieve a low sampling rate we
must bring the spectra as close as possible without aliasing.

Time-Varying Signal F(
 x; 
 t): In general, the frequency spec-
trum is a wedge bounded by the minimum and maximum ve-
locities/shears, as shown in Figure 6(a). From Equation 8,
the spatial frequencies are bandlimited byG(
 x) so that 
 x 2
[� 
 max

x ; 
 max
x ], where
 max

x is the highest spatial frequency in the
signal g. Therefore, the temporal frequencies lie within
 t 2
[� amax
 max

x ; amax
 max
x ], and the temporal frequency extent
 �

t is


 �
t = 2amax
 max

x : (25)

According to the Nyquist theorem, we need to sample at this tem-
poral rate to properly separate the Fourier domain replicas from
sampling (Figure 6(c)). Otherwise, even after convolution with the
low-pass camera shutter, the result would be inaccurate because of
aliasing into low frequencies.3

Motion-Blurred Result H(
 x; 
 t): Finally, we convolve the
time-varying signal with the camera shutter to obtainh(x; t) and
its associated Fourier transform per Equations 4 and 9. This leads
to a low-pass �lter along the vertical (time) axis as in Figure 6(b).
Therefore,
 t 2 [� 
 max

t ; 
 max
t ], where
 max

t is the maximum fre-
quency in the Fourier transform of the camera shutterW(
 t). In-
terestingly, the spatial frequencies are also bandlimited, since they
must lie on the line
 xa + 
 t = 0. Hence, it holds that:


 �
x = 2


 max
t

amin
(26)

Not surprisingly, the spatial frequency content is much lower due
to motion blur.

The above result needs a small modi�cation in the quasi-static case.
If the velocityamin is su� ciently small, the temporal frequencies
 �

t
in Equation 25 is less than the �ltering e� ect of the shutter response.
Therefore, the motion blur �lter has minimal impact on the signal
(much as motion blur does not a� ect a static scene). In this case,
we simply have
 �

x = 2
 max
x . In general,


 �
x = 2 min

 

 max

t

amin
; 
 max

x

!
: (27)

3It is possible to pack the replicas slightly closer together, using a separa-
tion between
 �

t and
 �
t =2. This leads to aliasing inF, but avoids aliasing in

the �nal lower-frequency motion-blurred resultH. For simplicity, we avoid
that discussion here, which only corresponds to a factor of at most 2. The
sheared �lter in Sec. 5 focuses primarily on non-axis-aligned reconstruction,
but does also exploit this small factor.
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we can reconstruct a correct image using a sparse sampling rate.

Sampling Theorem: Sampling the time-varying signalf leads
to replicas ofF(
 x; 
 t) in the Fourier domain as shown in Fig-
ure 6(c). We must separate the replicas enough to avoid overlap
or aliasing in reconstructing the motion-blurred signalH. Figure 7
shows this idea in both the space-time and frequency domains.

The exact separation of replicas needed depends on the recon-
struction �lter, and for now we consider a standard rectangular
axis-aligned �lter in the Fourier domain (Figures 7(A,B)). It is in-
structive to consider the product of spatial and temporal frequency
ranges. By the Nyquist theorem, the number of samples needed is
also proportional to these bandlimits. For simplicity, we use Equa-
tions 25 and 26 (ignoring for now the special case in Equation 27),


 � = (
 �
x)(


�
t ) = 4

amax

amin

 max

x 
 max
t : (28)

In the limit where we have a uniform velocity withamax = amin, the
space-time sampling rate becomes
 � = 4
 max

x 
 max
t , independent

of the velocity a. This indicates that as the motiona gets faster,
the needed temporal sampling rate
 �

t = 2a
 max
x increases, but the

spatial sampling rate needed (2=a)
 max
t decreases correspondingly

due to the spatial �ltering or blurring of moving objects and texture.

5 Sheared Reconstruction Filter

We have taken a �rst step in �nding spatial and temporal bandlim-
its. These bandlimits can directly be used to accelerate motion-blur
rendering by adaptive sampling. We may sparsely sample in space
and time according to Equations 25 and 27, then scale the standard
one pixel wide axis-aligned reconstruction (spatial antialiasing and
temporal shutter response) �lter to reconstruct the sparse data.

However, Figure 6(c) and Figure 7(A) show the corresponding
packing of replicas in Fourier space and illustrate that they still have
a lot of free space between them. We seek to achieve sparse sam-
pling, which means bringing the replicas tighter together. Packing
replicas too tightly while using an axis-aligned will cause alias-
ing (Figure 7(B)). We now introduce a sheared �lter that allows
for much tighter packing of replicas and lower sampling densities
(Sec. 5.1). It is based on two important observations: the shape of
the spectrum is slanted and is best matched by a sheared �lter, and
we need to prevent overlap only in the central part of the wedge
that is within the shutter bandwidth. Finally, we take a critical step
towards a practical algorithm by deriving the sheared �lter in the
primal space-time domain (Sec. 5.2). This is done simply by appro-
priately transforming a standard axis-aligned �lter (Figure 8(d)).

5.1 Sheared Filter and Sampling

As can be seen in Figure 8(a), we are really interested in the central
wedge of frequencies forH(
 x; 
 t). Given the spectrum's wedge
shape, it is best to separate the central spectrum from the replicas by
using a non-axis-aligned parallelogram as the reconstruction �lter,
as shown in Figure 7(C) and Figure 8(a). Figures 8(b) and (c) show
two ways of tightly packing the replicas, which we discuss next.
Note that the frequency spectra forF(
 x; 
 t) do in fact alias in this
reconstruction (shown in red). However, the �nal low-pass �ltered
form from motion blurH(
 x; 
 t) does not. The amount of free
space in the Fourier domain is considerably reduced, compared to
Figure 6(c), enabling lower sampling rates.

Intuitive Sampling Strategy 1—Pack Space Replicas First:
The �rst sampling method we examine packs replicas tightly in
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 x, then in
 t, as shown in Figure 8(b1-b2). This technique more
closely follows Sec. 4 and is useful for developing our intuition
for the bene�ts obtained from the sheared �lter. Our practical algo-
rithm uses the second sampling strategy, developed next, of packing
the time replicas �rst.

First we compute the spatial sampling rate or bandlimit
 �
x. From

simple trigonometry, Figure 8(b1), and Equation 26,


 �
x = 
 max

t

 
1

amin
�

1
amax

!
; (29)

which is a signi�cantly lower frequency (and hence sampling rate)
than in Equation 26 whenamin is close toamax. Indeed, for nearly
uniform velocity amin � amax, we obtain
 �

x ! 0 (assuming the
reconstruction �lter extends in�nitely far in space-time). As seen in
Figure 8(b2), we must next pack the temporal replicas to determine

 �

t , and can then compute an overall bandlimit,
 � = 
 �
x


�
t .

Practical Sampling Strategy 2—Pack Time Replicas First: It
is also possible to proceed the other way, �rst packing along the
temporal axis and then along the spatial axis (an illustration is in
Figures 8(c1) and (c2)). This formulation gives essentially the same
overall sampling rate
 � as the �rst sampling strategy above, and
has advantages in practical applications where we usually want the
spatial samples denser than the temporal samples—with very few
time samples required for high-quality motion blur. Having dense
spatial sampling makes it easier to �nd high-frequency spatial dis-
continuities that can be caused by static occluders. Note that the
sheared �lter itself is the same in both cases.

From the geometry of Figures 8(c1) and (c2), we can derive


 �
t = 
 max

t

 
amax

amin
� 1

!

 �

x = 
 max
x +


 max
t

amin
; (30)

with the product being given by


 � = 
 �
x


�
t =

 
amax

amin
� 1

!

 max

x 
 max
t +

 
amax

amin
� 1

! �

 max

t
�2

amin
; (31)

which is also proportional to the total number of samples needed.

With motion greater than 1 pixel per frameamin
 max
x > 
 max

t , and
the �rst term above will be dominant. Equation 31 is now


 � �
 
amax

amin
� 1

!

 max

x 
 max
t : (32)

The crucial bene�t over Equation 28 is the use ofamax=amin � 1 in-
stead ofamax=amin. If maximum and minimum velocities at a pixel
for a given frame are similar, sheared reconstruction can be signi�-
cantly more e� cient. On the other hand, for pixels with signi�cant
occlusions or large velocity changes soamax=amin � 1, we cannot
do much better than falling back to a standard rectilinear �lter.

5.2 Sheared Filter in Primal Domain

So far, we have considered frequency analysis, but practical render-
ing algorithms do not directly compute frequency spectra. Fortu-
nately, we can create a sheared reconstruction �lter directly in the
space-time domain. We simply apply the corresponding transforms
to any standard axis-aligned �lter composed of a spatial antialiasing
�lter and the temporal shutter response (see Figure 8(d)).

Speci�cally, the original axis-aligned �lter has some spatial ban-
dlimit 
 max

pix (� 0:5 wavelengths per pixel) that we scaled (Fig-
ure 8(a)) to a diameter of
 max

t (1=amin � 1=amax). Based on Fourier
theory, we must scale by the inverse in the primal domain:

Scale=

0
BBBBB@


 max
t

2
 max
pix

 
1

amin
�

1
amax

!1CCCCCA

� 1

: (33)

The shear of the �lter in the Fourier domain is based on the �lter
intercepts
 max

t =amin and 
 max
t =amax (Figure 8(a)). In the Fourier

domain the shear in
 x per unit 
 t is the average of� 1=amin and
� 1=amax. Again, based on Fourier theory, we need to apply the
opposite shear in the primal domain (shearing in time per unitx):

Shear=
1
2

 
1

amax
+

1
amin

!
: (34)

The shear corresponds to the direction of average motion in the
space-time domain, with the �lter “following the motion.” The
scale depends on the complexity of motion—the �lter is larger (with
a corresponding low sampling rate), the closeramin andamax are.

6 Algorithm and Results

We describe one approach for using these theoretical results—a
simple practical method that uses sheared reconstruction �lters to
greatly reduce sample counts. While the analysis is in the Fourier
domain, the actual practical algorithm need not explicitly compute
spectra, and operates directly on space-time image samples.
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Figure 9: Illustration of our three-stage algorithm. The scene is shown in Figure 1. In Step 1, we do an initial sampling to compute velocities[amin; amax]
and maximum spatial frequencies
 max

x . These are visualized in (a,b) and (c) respectively. Note that areas of the image where amin � amax will require very
low sample counts as seen in (e). In Step 2, we determine the sheared �lter shape, and the sampling densities at each pixel.The �lter radius is shown in (d);
note the very large �lters for the background. (e) visualizes the total number of samples
 � at a pixel, and is seen to be high only in regions where the motion
is non-uniform, such as the ends of the car (occlusion) and shadows moving over a textured surface (multiple signals). The edges of the image also require
higher sampling. For areas of uniform motion a low sample count (often close to 1 per pixel) su� ces. We also compare with MDAS, which adapts to the
silhouette edges of the car, but has a more uniform sample distribution, and much less anisotropy in the �lters. Finally,Step 3 shows the sheared �lter shape
for representative pixels. In general (i,j,k), sheared �lters of di� erent widths are used, based on the speed of motion. For the special case of a static surface
(sharp with minimal motion blur) like (h), our method gracefully reduces to a 1-pixel axis-aligned �lter as required.

Our method involves a three-stage process, shown in Figure 9. First,
we do an initial sparse sampling to compute the e� ective velocities
[amin; amax] and frequency bounds
 max

x (Sec. 6.1). Second, we de-
termine a single sheared reconstruction �lter for each pixel, along
with spatial and temporal sampling densities
 �

x and
 �
t (Sec. 6.2).

Our third stage involves a �nal round of sampling, and for each
pixel we do a single application of the computed sheared �lter to
reconstruct the pixel's �nal color (Sec. 6.3). There are a few addi-
tional special cases and implementation details in the appendix.

Our sheared reconstruction �lter uses the sampling formulation in
Figure 8(c). This method samples sparsely in time (packing the
replicas tightly in the temporal frequency domain), but densely in
space. For frequencies
 max

t and
 max
x in practical images, we sam-

ple every pixel of the frame at least once, but with many fewer
samples than are required for the same quality output using stan-
dard Monte Carlo sampling. The source code for our program can
be found athttp://www.cs.columbia.edu/cg/mb/ , and we in-
clude a Renderman shader that computes the relevant velocities and
frequency bounds in our supplementary material.

6.1 Stage 1: Velocity/Frequency Bounds

We start by sparsely computing local frequency information at each
pixel. We sample the scene withN samples per pixel (our imple-
mentation usesN = 2). This cost is minimal, since it is less than
what we would need to render a single antialiased image of a static
scene. Moreover, only velocity information is required from the
samples; all shading is computed in a separate pass in step 3. At
each sample we compute the image space signal direction, velocity
bounds [amin; amax], and signal bandlimit
 max

x .

Computing E� ective Velocities and Bandlimits: We use sur-
face shaders to compute the image-space velocities within the ren-
derer for each of the three key signals: object motion, BRDF shad-
ing, and shadows.

For object motion, the e� ective velocitya is simply the instanta-
neous screen-space velocity for the surface (including projection
and perspective e� ects). Assuming the surfaces use mip-mapping
to bandlimit texture frequencies, we simply set
 max

x to a maximum
frequency of one wavelength per pixel.

The velocities and bandlimits for BRDF shading and shadows are
based on Equations 18 and 24 respectively,

ashading =

� 0

=
�� 0 + �

� 0

 max

x;shading = min(Lmax� 0;Rmax� 0) (35)

ashadow =

�

=
�� + �

�

 max

x;shadow = min(Lmax�; Smax� ) ; (36)

where� is the angular velocity of the lighting,� is the linear ve-
locity of the object or blocker,� 0 = 2� is twice the screen-space
curvature, andj� j� cos�= D, whereD is the distance to the blocker.
These values can be calculated entirely inside the shader if the pro-
grammable shading language supports shader derivatives. Details
on units and computing frequency bandlimits are in the appendix.

Velocity and Frequency Bounds: After initial sampling, we
compute a frequency bound for each pixel that captures frequency
information across the entire frame. [amin; amax] are simply the min-
imum and maximum velocities of all samples inside the pixel. Sim-
ilarly, 
 max

x is simply the maximum frequency of all samples. Val-
ues for the scene in Figure 1 are shown in Figure 9(a,b,c).

Multiple Signals: Our theory focuses on the case where all sig-
nals (object motion, lighting, shadows) that a� ect a given pixel
translate along a single direction. Therefore, in the special case that
any of the frequency samples at a pixel has a direction vector that
di� ers greatly in angle from the others, we conservatively bound the
frequencies by settingamin for that pixel to 0 (the computations of
amax and
 max

x are una� ected). When we are calculating a single fre-
quency sample, a similar adjustment is occasionally required when
multiple signals (more than one of surface texture, BRDF shading
and shadows) have signi�cant amplitude and frequency. Details for
this case are discussed in the appendix.
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Figure 10: A scene of a ballerina with fast and varying motions. The dress
is deforming as the dancer kicks, causing many non-uniform motions that
stress the abilities of any motion-blur algorithm. Note that we focus samples
on the most di� cult areas: occlusion of the bottom of the dress, overlapping
shadows, and areas of the dress that come out of shadow as the dancer
rotates. It is clear from the insets that our method does not blur frequency
content perpendicular to the direction of motion.

6.2 Stage 2: Sheared Filters and Sampling Rates

Based on the velocities and the frequency information from our ini-
tial sampling, we compute sheared reconstruction �lters and sam-
pling densities for each pixel. These are visualized in Figures 9(d)
and (e) for an example scene. To derive properties for sheared �lters
in Sec. 5, we �rst determined the shape of the �lter in Fourier space,
and then determined how tightly we could pack replicas. Similarly,
in our practical implementation, for each pixel, we �rst compute the
widest possible reconstruction �lter, and then determine the lowest
possible sampling rate that avoids aliasing.

Computing the Shape of the Sheared Filter: To create an opti-
mal sheared �lter we use Equations 33 and 34 to scale and shear the
user's preferred axis-aligned reconstruction �lter. In image space,
both the scale and shear operate strictly along the direction of mo-
tion, and the axis perpendicular to motion is una� ected.

To provide intuition, consider the case of nearly constant velocity
whereamin � amax = a. In this case, the space-time shear (Equa-
tion 34) is just 1=a, as expected. The scale tends to in�nity (since
1=amin � 1=amax in Equation 33)—we can use a very wide sheared
�lter in this case, since the velocity is constant. Indeed, very wide
�lters are used in Figure 9(d) for much of the car, and especially the
background, which have nearly uniform velocity.

A special case arises for slow-moving signals (as indicated by
Equation 27), and its handling is discussed in the appendix. The �-
nal computation of �lter widths is also complicated by the fact that
once we select a �lter size, we may include incompatible pixels in-
side the �lter. For instance, in the example above, ifamin � amax,
the scale should be very large, but this wide �lter may contain other
pixels with a greater range of [amin; amax]. Computation of a �nal
�lter shape may require an iterative process where we eventually
use a smaller �lter size. Details are given in the appendix.

Computing Sample Densities: In most cases, we can compute
the sampling rates
 �

x and
 �
t directly from Equation 30. For scenes

with moderate complexity,
 �
x and
 �

t usually require at least one
sample per pixel per frame. To compute the sampling rate for a
2D image we must also include frequencies along the spatial axis
perpendicular to motion. These frequencies should have little or no
velocity, so we use the spatial bandlimit for static signals with an
axis-aligned �lter, (2
 max

x ) (Equation 27):

Pixel Samples= 
 � = (
 �
x)(


�
t )(2
 max

x ): (37)

In practice, we also cap the maximum number of samples for a pixel
(usually to 4� the average number of samples per pixel).

The number of samples depends on both spatial complexity and mo-
tion complexity (how much it di� ers from uniform velocity). More
samples will be given both where the motion varies (amax=amin is
large), and also where there are high spatial frequencies (complex
textures or shadows/highlights with high
 max

x ). Equation 37 pro-
vides a natural way to allocate samples to di� erent visual e� ects.

6.3 Stage 3: Final Sampling and Reconstruction

The �nal sampling density for a pixel is simply the maximum den-
sity required by reconstruction �lters that overlap that pixel. For
sample placement across both space and time within a pixel, we use
a 3D Halton sequence [Halton 1960]. For low sampling densities
(less than 8 samples per pixel), we do not jitter, and we mirror the
Halton sequence at odd pixels. For higher sampling rates, we add
a jittered o� set. We limit our sample points to lie inside the shutter
bounds to show compatibility with traditional rendering pipelines.
Future implementations could �nd gains by sampling across time
and sharing samples between frames of an animation.

We send the computed space-time sample locations to the renderer
for processing, and read back the shaded results for each sample.
Finally, we reconstruct the motion-blurred image using the sheared
�lters computed in step 2. Note that we do only one reconstruc-
tion per pixel, with a single application of the sheared �lter for that
pixel—this �lter combines reconstruction, spatial antialiasing, and
motion-blur integration over time. Figure 9(h,i,j,k) shows these �l-
ters for some representative image pixels. In most cases, these are
sheared, with the size of the �lter determined by the complexity of
the motion (or getting clipped by the camera shutter bounds). In the
special case of static regions (Figure 9(h)), the �lter reduces to an
axis-aligned �lter of 1 pixel width, as it must.
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6.4 Results

We modi�ed the Pixie renderer [Arikan 2009] to use our space-time
sample placement algorithm for ray tracing color information in
stage 3. We now describe the results obtained by our algorithm and
compare to a strati�ed sampling Monte Carlo approach using jit-
tering, and to the recent MDAS technique [Hachisuka et al. 2008].
All images were rendered at a resolution of 512� 512 with a single
core on a 1.8GHz Core 2 Duo processor.

Scenes: Figures 1, 9, and 13 show a scene with a rotating cam-
era, and a moving object (the car). Following a common photo-
graphic technique, the camera follows the car's motion to keep it
sharp (but not completely stationary), while the other areas have
considerable motion blur. The lighting comes from a moderately
distant source. Figure 10 is intended to be a stress test of our sys-
tem, with a deforming dress and multiple non-rigid motions. The
dress has a high-frequency texture, which leads to di� erent patterns
depending on the direction of motion. Moreover, we have mid-�eld
lighting from two sources that cast overlapping moving shadows,
and surfaces moving in and out of shadow as well as self-occluding.

Finally, Figure 11 shows an example with a motion-blurred glossy
re�ection of the moving background (the teapot is shiny with Phong
exponent 100). This scene demonstrates that we can handle curved
motion paths and global illumination e� ects. (Note that calculating
motion-blurred global illumination e� ects requires that the shader
can calculate the movement of indirect lighting.) The scene also
has motion-blurred re�ections of near sources, and sharp shadows
on moving surfaces (shadow of the spout).

Evaluation and Comparison to Strati�ed Monte Carlo: In
Figure 1b, strati�ed Monte Carlo sampling with 4 samples/pixel
leads to considerable noise, especially in the motion-blurred areas
of the background. In contrast, our method (Figures 1(a,d)) pro-
duces a high-quality result even at this very low sample count, with
only minimal noise at di� cult shadow boundaries. It would require
at least an order of magnitude more samples to match it with direct
Monte Carlo. Similar conclusions can be drawn from Figure 10.
Our implementation properly computes motion blur and preserves
high frequencies on the dress perpendicular to the direction of mo-
tion. Our method can also be used directly to produce motion-
blurred sequences, as shown in the supplementary animation (stills
in Figure 10). Note also that proper motion-blurred lighting and
shadows are computed in Figures 1, 10 and 11.

Finally, the sheared �lter can also be used by itself as a light-weight
addition with standard Monte Carlo sampling and rendering (Fig-
ure 12). Applying sheared reconstruction to the standard (non-
adaptive) strati�ed sampling pattern dramatically improves areas of
uniform motion like the dress (Figure 12(b)). Of course, also using
our adaptive sampling enables more samples at the dress silhouette,
leading to a reduction in noise (Figure 12(c)).

Sampling Densities and Filter Widths: The �lter widths and
sampling densities for our method are shown in Figures 9(d,e) and
in Figure 10. Interestingly, in the car scene, very few samples are
needed for much of the image, where motion although fast, is al-
most uniform. Note in Figure 9(e) that an average of close to only
1 sample per pixel su� ces on much of the car body, background
painting, and road. Samples are thus concentrated near the sil-
houette boundaries and edges of cast shadows, where the motions
are very complex (also the case in Figure 10). The widths of the
sheared reconstruction �lter in Figure 9(d) clearly show how large
our sheared �lter can be in regions of nearly uniform motion such as
the background, and much of the car body. Moreover, our method
can gracefully fall back to axis-aligned reconstruction with 1 pixel-
wide �lters, in di� cult or nearly static areas of the car (Figure 9h).

a) our method, 8 samples/pixel
static teapot, moving quad
motion blurred re•ections

c) ground truthb) static d) our method e) moving teapot

Figure 11: Shiny teapot (Phong exponent 100) with glossy re�ections, ren-
dered with an average of 8 samples/pixel. (a) Full image. The insets below
show (b) static image, (c) ground truth, (d) our method, (e) our method
where the teapot is also moving.

Comparison to Multi-Dimensional Adaptive Sampling: For
comparisons on the car scene, we directly used MDAS software
which is a plugin to the PBRT renderer [Pharr and Humphreys
2004]. We did not do this comparison for the ballerina because the
base PBRT renderer does not currently support deforming meshes.

First, consider the sampling rates in Figure 9. MDAS (Figure 9g)
has a much more uniform sampling density, with only a little more
importance given to the edges of the car. Our technique is able to
sample many motions more sparsely, allowing it to properly focus
on di� cult areas. Similarly, while MDAS takes anisotropy into
account (Figure 9f), their kD-tree cells never shear and do not scale
as much as our sheared �lter does. In contrast, our reconstruction
�lter can rotate in any direction in image space and is sheared in
time to better match the direction of motion.

Figure 13 shows what happens as we increase sample count from
an average of 2 per pixel to 8 per pixel (4 samples/pixel is shown
in Figure 1). At low sample counts (top row of Figure 13), we
are already nearly perfect in the background and ground plane be-
cause of our wide sheared reconstruction �lter, while MDAS is
very noisy. On the other hand, MDAS is somewhat less noisy near
shadow boundaries, since our method often needs to fall back to
axis-aligned reconstruction for these complex motions. This is be-
cause MDAS discovers areas of coherence through numerical mea-
surements, whereas we rely on conservative frequency bounds. At
moderate sample counts (bottom row of Figure 13), both methods
are close to converged, but MDAS still has a little noise on the
background mural.

Timings and Overheads: At 8 samples per pixel, the car scene
took our algorithm a total of 3 min, 8 sec, while the ballerina took
3 min, 57 sec. The time for reconstruction using sheared �lters is
about half the total for the car, and one-third for the ballerina. As
one point of comparison, we are competitive with MDAS (a total
of 3 min, 23 sec on the car, with the overhead for reconstruction
being about one third of total running time). Moreover, MDAS has
signi�cant memory overheads. In our tests MDAS required 1GB of
memory to render a 512� 512 image with 8 samples per pixel. Our
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b) Sheared Filter with
Strati•ed Sampling

1 min 52 sec

a) Axis-Aligned Filter with
Strati•ed Sampling

1 min 29 sec

c) Sheared Filter with
Adaptive Sampling

2 min 28 sec

Figure 12: An inset from the left video frame in Figure 10. (a) Stan-
dard Monte Carlo strati�ed sampling exhibits fairly uniform noise. (b)
Monte Carlo strati�ed sampling, combined with our sheared space-time �l-
ter. Noise has been reduced in areas of uniform motion. (c) Our adaptive
method samples densely around di� cult regions so that the noise in (b) at
the silhouette of the dress is reduced.

memory overhead is fairly low. To store all samples in memory for
a 512� 512 image requires 36MB during sparse sampling (N = 2),
and 32MB during �nal sampling (using 8 samples per pixel).

In scenes with more complex shading, our method has much lower
overhead (only 15% of the 25 minute rendering time for Figure 11).
Even with very simple materials, such as Figure 10, we are only
twice as slow as standard Monte Carlo (some of this is from over-
head, and an equal amount from the fact that our ray-tracing phase
focuses on di� cult regions by design, which take more time). A
visual equal quality comparison shows a net wall-clock speedup of
more than 3:5� by our method in Figure 10.

Limitations: Our current implementation uses a line segment as
the anisotropic �lter shape. For highly-curved motion paths this
may lead to over-blurring. Note that we do test all samples inside
a �lter to measure non-linearities in speed (divergence ofamin and
amax) and direction. In particular, we setamin to 0 if any direction
di� ers signi�cantly in angle from the others. These tests will cause
our method to reduce �lter sizes and increase sampling rates near
areas of highly curved motion. With more complete motion infor-
mation from the renderer, future implementations should be able to
�lter along curved paths.

Our method can resort to axis-aligned reconstruction and dense
sampling in di� cult cases, such as a shadow moving over a static
textured surface. However, these areas are also di� cult in most
other motion-blur techniques. Moreover, our method can quickly
converge on simpler parts of the scene, and then focus almost all of
its sample budget on the di� cult regions.

Similar to any practical rendering application, our system makes
approximations during reconstruction that can lead to aliasing,
(such as using a windowed gaussian �lter instead of an in�nitely
wide sinc �lter). Because wide �lters overlap and share informa-
tion, adjacent pixels employing wide �lters will share aliasing data.
The net visual e� ect is usually a small distortion in the image rela-
tive to ground truth. Note that these aliases are low frequency, and
are visually hard to detect, nor do they cause temporal artifacts as
seen in the video. Because of this, our method will often achieve
an excellent visual match with ground truth, but a relatively high
measure of mean squared error.

Like most adaptive techniques, our implementation does an initial
sampling and can therefore miss information from very fast-moving
or thin objects. In the future, we could try using space-time bound-
ing boxes to more conservatively bound occlusions.

Our Method
Multidimensional

Adaptive Sampling

8 
sa

m
pl

es
 p

er
 p

ix
el

2 
sa

m
pl

es
 p

er
 p

ix
el

Figure 13: We show further results for our method and MDAS with 2 sam-
ples per pixel and 8 samples per pixel. For 2 samples per pixelour method
does well for areas with uniform motion (in fact many areas use one sam-
ple per pixel and are in their �nal state), but does poorly forpixels where
we detect a large di� erence between amin and amax. At 8 samples per pixel
our method devotes all of the new samples to the di� cult areas, and many
places such as the shadows improve dramatically. MDAS by comparison
starts out with fairly uniform noise, and then improves evenly over all areas
of the image. The insets show that in areas with fairly uniform motion our
method computes high-quality results at extremely low sample counts.

7 Conclusion

We have presented a frequency-space analysis of time-varying sig-
nals and images, as needed for motion blur. We have shown that
most motion-blur e� ects can be analyzed as shears in the space-
time and Fourier domains. Our analysis gives precise guidelines for
an intuitive observation: integrating over the shutter blurs a moving
signal in the spatial dimension. This analysis in turn leads to a
novel sheared reconstruction �lter that again formalizes an intuitive
notion: a moving sample should contribute not just to the current
spatial location (pixel), but to other pixels at corresponding time
instances, depending on its velocity.

For future work we would like to analyze a larger class of indirect
lighting e� ects, as well as develop a general time-varying frequency
analysis for light transport. We would also like to generalize our
insights to other problems involving sheared signals.

We have developed the �rst time-dependent Fourier theory in ren-
dering. Since the time dimension is of increasing importance in
image synthesis, we consider this a signi�cant step in a key area.
We foresee many future developments that couple new theoretical
advances with novel space-time sampling and �ltering strategies.
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Appendix: Implementation Details and Special Cases

Computing Velocities and Bandlimits (Sec. 6.1): Any angu-
lar/spatial units can be used as long as�; �; Lmax;Rmax;Smax; � and
the corresponding trigonometry functions all use the same units.
Corresponding maximum frequencies or bandlimits are expressed
in inverse pixel and time units. Analogously, all velocities are cal-
culated by the shader in pixel distances per unit time, and account
for projection e� ects. Calculations of frequency bandlimits are spe-
ci�c to the shading model being used and can be done either before
or during rendering. For example, an implementation may dynam-
ically relate the specularity and frequency of a BRDF using an an-
alytic function, but precomputeLmax for an environment map by
running a Fourier transform. For surface points with occlusion,
Smax will usually have in�nite frequencies so we can simply set

 max

x;shadow = Lmax� .

Finally, note that our implementation sparsely samples frequency
information, so we use advection to gather nearby frequency sam-
ples that may overlap with the current pixel at a di� erent moment
in time.
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Multiple Signals (Sec. 6.1): The �nal color for a single sample
is obtained by multiplying the surface texture, BRDF and shadow
signals, so we need to bound the frequencies of that product. Occa-
sionally, samples may have more than one signal (texture, BRDF or
shadow) each with signi�cant amplitude and frequency. In Fourier
space, the product of the signals corresponds to a convolution of
spectra. If all signals have similar velocities, the frequencies will
lie along the same Fourier line, as will the �nal spectrum—we can
simply add the individual signal bandlimits to obtain
 max

x .

However, when two di� erent signals have di� erent e� ective veloc-
ities, we can obtain a spectrum unlike the wedges in Figures 2(i)
and 2(j). One example is a textured surface moving vertically and
a shadow moving horizontally. We can bound this convolved spec-
trum by settingamin = 0, take the maximum value ofamax, and sum
all relevant values of
 max

x .

Low Velocities and Axis-Aligned Filters (Sec. 6.2): From Equa-
tion 34, we know that the applied shear grows large asamin de-
creases. For slow-moving signals there is a crossing point where
using a standard axis-aligned �lter is preferable. In Equation 27,
we saw that the spatial bandlimit
 �

x can be less than
 max
t =amin

whenamin is small. For this reason, we fall back to the standard
axis-aligned �lter when (FreqSpacing+ 
 max

t =amin) > 
 max
x (see be-

low for details).

Filter Width (Sec. 6.2): After computingamax, amin, and 
 max
x

for the samples inside of the current pixel, we can compute a �lter
shape using Equations 33 and 34. However, if this new �lter over-
laps with other pixels we must recomputeamax, amin, and
 max

x for
all pixels inside the �lter. The more samples inside the �lter, the
greateramax, amin, and
 max

x will diverge. For this reason the widest
possible �lter width may be smaller than the width originally com-
puted using samples only inside the current pixel (this is common
when a �lter is close to an occlusion discontinuity). We do a binary
search to �nd the widest possible �lter width, searching between
a scale of 1.0 on the low end, and the scale predicted initially by
samples inside the current pixel on the high end.

In cases where the �nal �lter radius (ActualPrimalRadius) is not as
wide as the ideal size (IdealPrimalRadius), the shear is unchanged
(Equation 34), but the scale is changed (Equation 33). We must
adjust our sampling rates (Equation 30 and Figure 8(c)) to account
for the fact that we have e� ectively added FreqSpacing to the radius
of our reconstruction �lter along the
 x axis in the Fourier domain:

RadiusRatio=IdealPrimalRadius=ActualPrimalRadius
FreqSpacing=(RadiusRatio� 1)
 max

pix =Scale:

When (FreqSpacing+
 max
t =amin) > 
 max

x one corner of the �lter has
passed beyond
 max

x and we switch to using an axis-aligned �lter
(along with Equations 25, 27, and 37). If we are using a sheared
�lter we have


 �
t =

 
FreqSpacing+


 max
t

amin

!
amax � 
 max

t (38)


 �
x =
 max

x +

 max

t

amin
+ FreqSpacing: (39)
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