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Figure 1: Although the appearance of orange juice is dominated by low-order scattering events, it is not accurately predicted by a single
scattering model alone (lower right). Adding the contribution from high-order multiple scattering using the diffusion dipole (left) still fails
to capture these effects and produces visible color artifacts. Numerical methods such as Monte Carlo path tracing (upper right) or photon
mapping are accurate, but do not provide an explicit model of the BSSRDF and require long rendering times. Our proposed model is compact,
efficient to render and can accurately express the complex spatial- and directionally-dependent appearance of these types of materials.

Abstract

We present a new model of the homogeneous BSSRDF based on
large-scale simulations. Our model captures the appearance of
materials that are not accurately represented using existing single
scattering models or multiple isotropic scattering models (e.g. the
diffusion approximation). We use an analytic function to model
the 2D hemispherical distribution of exitant light at a point on the
surface, and a table of parameter values of this function computed
at uniformly sampled locations over the remaining dimensions of
the BSSRDF domain. This analytic function is expressed in elliptic
coordinates and has six parameters which vary smoothly with sur-
face position, incident angle, and the underlying optical properties
of the material (albedo, mean free path length, phase function and
the relative index of refraction). Our model agrees well with mea-
sured data, and is compact, requiring only 250MB to represent the
full spatial- and angular-distribution of light across a wide spectrum
of materials. In practice, rendering a single material requires only
about 100KB to represent the BSSRDF.

1 Introduction

Light propagates into and scatters within all non-metallic materi-
als. This subsurface scattering is common in many liquids—such
as orange juice, coffee or milk, and in solids—such as gemstones,
leaves, wax, plastics and skin. It gives materials their characteristic
colors, and provides a soft, translucent appearance. Accurate and
compact models of the way light interacts with these materials are
necessary to efficiently render them.

Light scattering in translucent materials is described by the bidi-
rectional scattering surface reflectance distribution function S (the
BSSRDF [Nicodemus et al. 1977]). The BSSRDF defines the gen-
eral transport of light between two points and directions as the ratio
of the radiance Lo(~xo,~ωo) exiting at position ~xo in direction ~ωo to
the radiant flux Φi(~xi,~ωi) incident at~xi from direction ~ωi:

dLo(~xo,~ωo)
dΦi(~xi,~ωi)

= S(~xi,~ωi;~xo,~ωo|σs, σa, g, η), (1)

where S depends on the optical properties of the material—the scat-
tering and absorption coefficients σs and σa, the relative index of
refraction η , and g ∈ [−1 : 1] which parameterizes the anisotropy
of the phase function.

1.1 Related Work

Numerical techniques such as Monte Carlo path tracing [Kajiya
1986; Jensen et al. 1999] are capable of simulating general BSS-
RDFs. However, these methods are expensive, often requiring
hours to days of processing. Scattering equations may also be used
in this context [Pharr and Hanrahan 2000], but are computationally



expensive to evaluate. Photon mapping [Jensen 1996] can render
many BSSRDFs but becomes expensive in both time and space
for highly scattering materials. Furthermore, these techniques do
not explicitly model the BSSRDF. Rather, determining the fraction
of light that is transported between any pair of points requires a
complete simulation.

A related set of techniques focus on simulating participating media
(see Cerezo et al. [2005] for a survey), though many have diffi-
culty handling refraction at an interface. In particular, Premoze et
al. [2003] use an approximate path integral formulation to identify
the most probable paths of light through a medium to efficiently
render a wide range of scattering materials. More similar to our
work, Premoze et al. [2004] analyze light transport in materials
based on Monte Carlo simulations. They use the path integral
technique to compute the contribution of collimated beams by first
precomputing the reduced intensity within the scattering volume,
and blurring this response using gaussian point spread functions
to approximate the spatial and angular spread of light. As before,
these methods do not give an explicit representation of the BSSRDF
which is the focus of this paper.

Existing analytic models of the BSSRDF only apply to two classes
of materials. When light scatters exactly once and at a single point,
this single scattering has a closed-form analytic solution [Blinn
1982; Hanrahan and Krueger 1993]. Such models produce highly
directional effects since the exitant light is assumed to be scattered
directly from propagating beams of light. At the other end of the
spectrum are highly scattering materials. The BSSRDF in these
cases is often modeled as the superposition of a single scattering
term and a diffuse term [Jensen et al. 2001]. This diffusion ap-
proximation [Stam 1995] is common and can be applied on its own
to materials that have negligible low-order scattering [Jensen and
Buhler 2002; Donner and Jensen 2005]. However, this approxi-
mation assumes light is scattered isotropically and produces incor-
rect predictions when low-order scattering is significant, such as in
materials like orange juice (see Figure 1). These materials exhibit
significant absorption of the light as it propagates through the ma-
terial, so much of the energy is scattered back into the environment
near the point of incidence. This light exits in areas and directions
outside of the single scattering regime, but not in the high-order
multiple scattering regime. As a result, the angular distribution of
exitant light is not predicted well by single scattering, diffusion, or
their sum.

Hybrid methods attempt to combine the simplicity of diffusion
with the accuracy of general numerical techniques. Donner and
Jensen [2007] introduce a method to model asymmetric diffuse re-
flectance by sampling beams of light using diffusion sources seeded
by single-step photon tracing. This method assumes that the ma-
terial is highly scattering and neglects near-source and directional
effects. Li et al. [2005] couple path tracing with the diffusion ap-
proximation for long path lengths, but in materials with moderate
scattering or non-trivial absorption the path tracing step becomes
computationally intensive. Furthermore, since these methods rely
on numerical simulation, they too fail to provide an explicit model
of the BSSRDF.

Measuring the appearance of translucent materials is also a diffi-
cult task. Goesele et al. [2004], Tong et al. [2005], and Peers et
al. [2006] measure point-to-point transport, but ignore the angular
distribution of the exitant light. Also, their data is only suitable
for reproducing the particular materials measured. Narasimhan et
al. [2006] use dilution to measure the optical properties of a variety
of scattering materials, but rely on general numerical techniques
for rendering. Instead of measuring a range of materials, we opt to
simulate them instead and derive an analytic model based on these
simulations. In this regard, our approach is similar to the virtual

gonioreflectometry technique of Westin et al. [1992] for analyzing
the reflectance of complex opaque surfaces.

Bouthors et al. [2008] adopted a similar empirical approach to ours
to study the light transport within slabs of clouds using simulations
that assume a fixed albedo and phase function. They propose a set
of analytic functions to model the aggregate reflectance observed
in these simulations, which allows efficiently rendering clouds with
arbitrary shapes. Although we also use a large-scale Monte Carlo
simulation to study the internal scattering of materials, we propose
an explicit representation of the full BSSRDF that characterizes the
transport between arbitrary pairs of surface locations over a large
range of materials, and considers refraction at the material bound-
ary.

1.2 Our Approach

We propose an analytic model of the BSSRDF that applies to a wide
range of materials. Our model is phenomenological and derived
from a large-scale simulation of the subsurface light transport for a
range of optical properties and geometric configurations. Although
our approach was inspired by data-driven reflectance models [Ward
1992; Dana et al. 1999; Matusik et al. 2003], our choice to simulate
these effects avoids a difficult acquisition task and provides greater
control over the materials we consider. Further, we validate our
simulation and final model using measured data.

Although the full BSSRDF in Equation 1 is a 12D function (4 spa-
tial parameters, 4 angular parameters and 4 optical parameters),
we make the common assumption of a spatially uniform, homo-
geneous semi-infinite material. This reduces the dimensionality
of the BSSRDF to 8D (discussed in the next section) and makes
exploring this space more feasible.1 We use an efficient photon
tracing technique and a cluster of computers to reconstruct the 2D
hemispherical distribution of exitant light over a dense sampling of
the remaining geometric and optical variables (a 6D space). This
dataset captures the complete spatial and angular appearance of a
wide range of translucent materials. Although this required many
months of processing, it only needs to be created once and is an
important contribution of this work.

Based on an analysis of this simulated data, we propose an analytic
function expressed in elliptic coordinates with six fit parameters
that accurately captures the features of these hemispherical distribu-
tion functions. We demonstrate that this function fits the simulated
data well and, in turn, agrees with measured data, including highly
scattering materials such as milk and wax which exhibit clear non-
diffuse and anisotropic behaviors. Importantly, the parameters of
this function vary smoothly over the 6D space of remaining geomet-
ric and optical parameters. This allows tabulating and interpolating
them away from the samples we considered in our simulation to
provide a continuous representation of the full BSSRDF. Our final
model consists of a table of parameter settings of this elliptic func-
tion (approx. 250MB of space, though in practice only a fraction
of the data is needed at one time) that can be used directly for ren-
dering. We present images rendered using this model that show
complex directional effects such as glows around beams that would
be impossible to render with existing diffusion-based techniques.

2 Simulating the Space of BSSRDFs

We used a Monte Carlo photon tracing algorithm to reconstruct
slices of the BSSRDF. Similar to Hanrahan and Krueger [1993], we
trace photons into a semi-infinite slab and record how much energy

1 As we assume the material is homogeneous, for any fixed set of optical
parameters, the function that is evaluated during rendering is only 3D.



they deposit at the surface. We discretize the hemisphere of outgo-
ing light based on the exit trajectory of the photons. This requires
significantly more photons and storage than a standard diffuse trace.

Assumptions and Parameterization: Recall that we assume a ho-
mogeneous, semi-infinite material which allows reducing the 12D
BSSRDF in Equation 1 to an 8D function. Table 1 summarizes our
notation and the geometry of our setup is illustrated in Figure 2.

Since the scattering and absorption coefficients σs and σa have in-
finite range, we choose to parameterize the BSSRDF in terms of
the albedo α = σs/(σs + σa). Note that α ∈ [0..1]. All materi-
als with the same albedo have the same exitant response up to a
distance scale which is determined by the mean free path length
` = 1/(σs + σa). For example, two materials with optical coef-
ficients (σs, σa) and (2σs, 2σa) differ only in terms of ` and `/2.
Although technically there is a chance a photon may exit the ma-
terial at any distance from the incident beam, overall exitant in-
tensity falls-off rapidly with increasing distance from the source.
Therefore, we can consider only the local region around ~xi with-
out missing a significant portion of the BSSRDF. These choices
allow replacing the optical properties (σs, σa, g, η) with (α, g, η)
and provide a finite usable range for all parameters that is suitable
for sampling.

Just as with isotropic BRDFs, we assume that the angular depen-
dence of the BSSRDF depends on only 3 variables (θi, θo, φo). Sim-
ilarly, for a homogeneous BSSRDF the amount of light exchanged
between two surface points~xi and~xo depends only on their relative
positions. This allows parameterization of the spatial dimensions
using 2D polar coordinates with the angle θs and radial distance
r = ||~xo −~xi||. Note that r is measured in mean free path lengths.
Under the above assumptions, we simplify the BSSRDF as:

S(~xi,~ωi;~xo,~ωo|σs, σa, g, η) ≈ S(θi, r, θs, θo, φo|α, g, η). (2)
We next describe a photon tracing algorithm for reconstructing
slices of this form of the BSSRDF. In Section 4 we introduce our
new BSSRDF model.

2.1 Simulation Method

Our photon tracing algorithm relies on sampling the probable paths
of light within a material. We discretize the exitant direction of each
photon at the surface and accumulate its power into bins. However,
to accurately resolve the complete hemispherical distribution of
outgoing light a large number (∼1012) of photons are required, par-
ticularly in the case of strong anisotropic scattering (i.e., |g| > 0.5).
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r
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Figure 2: Geometric setup for our simulation and model. A colli-
mated beam of light arriving at point ~xi from direction ~ωi (shown
in red) makes angle θi with the surface normal. A photon from this
beam that arrives at point~xp propagating in direction~ωp has an ex-
itant trajectory ~d towards the point xo = (r, θs) on the surface. This
particular photon path exits the material in direction ~ωo = (θo, φo).

S BSSRDF
~xi Surface location of incident light (source)
~ni Surface normal at~xi
~ωi Incident direction

θi,φi Incident elevation and azimuthal angles
Φi Incident radiant flux at~xi
~xo Surface location of exitant light
~no Surface normal at~xo
r,θs Polar coordinates of xo w.r.t. source
~ωo Exitant direction

θo,φo Exitant elevation and azimuthal angles
~xp Location of a scattering event inside material
~ωp Direction of incoming photon at xp
Φp Power of photon arriving at~xp
Φe Power of photon leaving~xp arriving at~xo
~d Unit vector from~xp to~xo
ŝ Single scattering plane

σs Scattering coefficient
σa Absorption coefficient
α Albedo
p Phase function
g Anisotropy factor in phase function
` Mean free path length
η Relative index of refraction
Ft Fresnel transmittance

xd ,yd Projection of ~ωo onto unit disc
ν ,µ Elliptic coordinates of (xd ,yd)

~ωpeak Direction of maximum exitant intensity
ŝp Plane of symmetry of exitant distribution
H Proposed analytic distribution function

a±,b± Focal points in elliptic coordinate system
ks, ke, kc Parameters in analytic distribution function

Table 1: Notation used in this paper.

We emit photons along a collimated beam incident on the slab from
direction −~ωi, such that it makes angle θi with the surface normal
~n (see Figure 2). These photons refract into the material and prop-
agate a distance d before being scattered or absorbed:

d =
−log ξ

σs + σa
, (3)

where ξ ∈ [0..1] is a uniformly distributed random number.

Reusing Photon Paths: To reduce the number of photons traced,
and thus increase the speed of our simulation, we compute the
power Φe that a photon propagating in direction ~ωp incident on po-
sition~xp would contribute at the surface point~xo, if it were scattered
directly there (see Figure 2):

Φe = α p
(
~d ·~ωp; g

)
e−(σs+σa) ||~xo−~xp||Ft(~ωo; η) Φp, (4)

where Φp is the power of the photon at ~xp, ~d = ~xo−~xp

||~xo−~xp|| is the nor-
malized vector from ~xp to ~xo, p is the phase function, and Ft is the
Fresnel transmittance at the surface. If internal reflection occurs,2
then the photon makes no contribution. Otherwise, Φe is added to
the exitant radiance at ~xo. We compute the contribution of each
photon path to every exitant point we consider during our simula-
tion. This results in a consistent estimate of the exitant radiance.
To normalize the final radiance values, the power of each photon is
scaled by the inverse of the number of photons traced.

2 Internal reflection occurs when the exitant trajectory of the photon (rel-
ative to the normal) is greater than the critical angle: ~d ·~no > sin−1

η ,
where ~no is the surface normal at ~xo and η is the ratio of the indices of
refraction. Note that sin−1

η is the critical angle, and η < 1 from the
point of view of the photon.
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Figure 3: Slices of the 2D hemisphere of exitant light at different surface positions and different angles of incidence for wax (left) and
50% diluted skim milk (right). A diffusion approximation predicts a flat, diffuse response over the camera angle, whereas our simulated
data and model agree well with measurements. We approximated the optical properties of milk as σs = 1.165, σa = 0.0007 (α ∼ 0.99, ` =
0.86mm), g = 0.7, η = 1.35 [Joshi et al. 2006], and of wax as σs = 1, σa = 0.5 (α = 0.67, ` = 0.67mm), g = 0, η = 1.4.

Variance Reduction: We use Russian Roulette to determine
whether this photon, having just traveled the distance d, is scat-
tered or absorbed. If it is scattered, then we compute its new
trajectory by importance sampling the Henyey-Greenstein phase
function [Jensen 2001]. Therefore, we do not modify the weight or
power of a photon unless it probabilistically reaches the surface, at
which point it is internally reflected after having applied the Fresnel
term. We continue to trace each photon until it is absorbed.

2.2 A Database of BSSRDFs

Our photon tracing algorithm allows simulating the full 8D BSS-
RDF in Equation 2 to construct a database we will use to develop
and validate our model. To accurately resolve near-source and
directional effects, we densely sample the 2D exitant hemisphere
(θo, φo) at ∼ 6200 uniformly distributed directions at each exitant
location (r, θs) on the surface. Since the response of a material type
does not depend on the the mean free path length `, we fix ` = 1mm
in all of our simulations. During rendering, we account for the true
mean free path length of a specific material by simply applying
the appropriate scale factor (Section 5). We sample the remaining
BSSRDF dimensions as follows:

θi ∈ {0, 15, 30, 45, 60, 70, 80, 88}
r ∈ {.01, .05, .1, .2, .4, .6, .8, 1, 2, 4, 8, 10}|

θs ∈ {0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180}
α ∈ {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99}
g ∈ {−0.9,−0.7,−0.5,−0.3, 0, 0.3, 0.5, 0.7, 0.9, 0.95, 0.99}
η ∈ {1, 1.1, 1.2, 1.3, 1.4}

Note that r, the distance in mean free paths from the incident beam,
increases at an exponential rate to account for the fact that the total
exitant intensity diminishes along a similar trend. The other pat-
terns provide a mostly uniform sampling of the remaining dimen-
sions. Note that we sample this space more finely near extremely
low and high albedo and for very high forward scattering.

These sampling patterns produce about 750, 000 exitant hemi-
spheres, for a total of ∼4.7× 109 points in this 8D space. Generat-
ing this amount of data poses a significant challenge since obtaining
acceptable noise levels for just one hemispherical slice can require
many hours of processing time. We performed these simulations on
15 Dual-Socket Quad-Core 2.33GHz Intel R© Xeon R© machines, for
a total of 120 processing cores. Reconstructing the exitant hemi-

spherical distribution for a single set of optical properties requires
about 60MB of storage–the entire database is roughly 36GB.

2.3 Validation

To verify the accuracy of our simulation and the model we propose
in Section 3, we measured the distribution of exitant light for two
materials: diluted milk and wax. These materials were illuminated
using a red (635nm) laser dot of diameter ∼1mm at a fixed angle
of θi = 20◦ and were imaged using a monochromatic QImaging
Retiga 4000R camera with a 60mm lens attached to a motorized
gantry with an angular precision of ∼0.01◦. We moved the camera
along an arc at a fixed stand-off distance of 1.5m from the sample
and recorded a high-dynamic range image every 5◦ over the range
θo ∈ [−75◦, 75◦]. This set of images provides 1D angular slices
of the exitant hemispherical distributions for many points on the
material surface. We repeated this procedure for two arcs: one
parallel to the plane of incident light and one perpendicular to this
plane. The camera was photometrically calibrated and the resulting
images were aligned using standard chart-based calibration tech-
niques [Zhang 1999].

Figure 3 compares measured slices of the exitant light to predic-
tions made by our simulation (Section 2.1), a standard diffusion
approximation [Jensen et al. 2001] and our proposed model (we
discuss the “Model Fit” curves in Section 4.1). Note that due to the
angles involved in the measurement, the plane of single scattering
was explicitly excluded. The optical properties we used in these
simulations are reported in the caption. Note that because the dif-
fusion approximation predicts a diffuse response, modulated only
by Fresnel transmittance, it does not capture the clear asymmetry
in these distributions. Our simulation closely follows the measured
data. At these distances from the source there is some visible noise
in the simulations as the paths are relatively long for high-albedo
materials. Unfortunately, since the size of the laser dot is large rela-
tive to the mean free path of these materials, it was difficult to obtain
accurate measurements very close to the source. Although these
plots show only two configurations of r and θs, they are represen-
tative of the close agreement we observed over the entire material
surface.
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Figure 4: Representative 2D slices of S(θi, r, θs, θo, φo|α, g, η) defined over θo and φo. The left column lists the optical properties (α, g, η),
the geometric setup (θi, r, θs), and the RMS error of the fit. The second column contains diagrams that show the incident beam in solid red,
the propagating beam inside the material in dashed red, and the simulated distribution of the exitant radiance. The last two columns show
false-color plots of these hemispherical distributions projected onto the disc according to Equation 5. The “Simulated Distribution” plots
were produced with our photon tracing algorithm and the “Model Fit” plots correspond to our proposed analytic model. To aid comparison,
all plots are normalized to unity. The single scattering plane ŝ is shown in the cases where the lobe is symmetric about this plane. Note that
all of these distributions, except for (e), exhibit this type of symmetry while (e) is symmetric about the plane formed by~xi −~xo and the surface
normal~n.



3 Data Analysis

The simulation method described previously produces 2D slices of
the BSSRDF S(θi, r, θs, θo, φo|α, g, η) over outgoing angles θo and
φo. In this section we describe a number of key observations about
these functions that will serve as the basis of our model presented
in Section 4. Specifically, we are interested in understanding how
these hemispherical functions vary with respect to the optical prop-
erties α, g, and η , along with their dependence on the incident angle
of the beam θi and surface position (r, θs).

Figure 4 visualizes several hemispherical slices produced by our
simulation at different parameter settings. The leftmost column lists
the optical properties, geometric configuration, and RMS error of
our fits (described in the next section). Next to these values is a 3D
visualization of the simulated exitant light, along with the incident
beam (in red) and the path it takes into the material after being re-
fracted at the surface (dashed red). The single scattering plane ŝ is
also shown. This plane traces an arc across the exitant hemisphere,
and is shown as a wedge emanating from the refracted beam. Be-
cause the overall intensity of outgoing light is proportional to the
distance from the surface location~xo these plots are normalized for
visualization purposes. These types of visualizations are helpful in
understanding how the shapes of these distributions are related to
the angular configuration of the setup, and reveal important sym-
metries in the data.

The third column in Figure 4 shows projections of these hemispher-
ical functions onto the unit disc. The color scale, shown at right,
assigns higher intensity values red and lower values blue–this same
scheme is used in the 3D plots as well. We map the hemisphere to
the unit disc using a standard projection:

xd =
2θo

π
cos φo and yd =

2θo

π
sin φo. (5)

The variety of shapes present in these 2D distributions indicates
a complex relationship with the remaining parameters of the BSS-
RDF. Furthermore, the presence of high-frequency features in these
distributions means that they would not be suitable for rendering
directly. Linearly combining these slices in order to interpolate
regions of the BSSRDF domain that were not directly simulated
would produce significant errors. This motivates our goal of pro-
viding a compact analytic function that captures the shape of these
distributions. Interpolating the parameters of this analytic function
provides a reliable and efficient way of modeling the continuous 8D
BSSRDF domain.

3.1 Phenomenological Observations

Based on this collection of simulated data we make the following
key observations:

Anisotropy: The exitant distribution of light is not diffuse. We
observe that even highly scattering materials, such as in Figure 4b,
exhibit a non-diffuse and anisotropic shape. This follows from the
fact that as light is scattered away from the propagating beam of
light it is focused near the single scattering plane. Therefore, the
majority of the exitant energy is due to low-order scattering events
that occur before photons have lost much of their directionality.

Peak Direction and Kurtosis: With a few exceptions discussed in
Section 7, these distributions almost always contain a single peaked
lobe. We also observe that the direction of this peak depends on
θi. We attribute this to the fact that at steeper angles more photons
propagate a further distance across the surface than below the sur-
face before being scattered. The shape of this lobe also depends
on the surface position (r, θs) since points near ŝ will receive a
higher contribution of light. Additionally, the optical properties of
the material clearly affect the shape of these exitant lobes. Higher

values of α produce more scattering and thus a wider lobe. With
larger magnitudes of g, however, light is less likely to scatter outside
the direction of the propagating beam and thus produces a tighter,
sharper peak. This was especially true for forward scattering mate-
rials such as Figure 4c. Finally, since the direction of propagation
of the beam depends on η , it also affects the orientation of the lobe.

Lobe Asymmetry: These lobes are typically not rotationally sym-
metric about their axes and the degree of asymmetry depends pri-
marily on the angle θs. As photons propagate into the material near
the refracted beam and then scatter away towards the surface, points
on the surface receive the strongest contribution from regions near
the propagating beam. The distributions at exitant points further
away from the propagating beam exhibit greater asymmetries since
the photons contributing to these locations have traveled a greater
distance. This asymmetry is particularly visible in Figure 4b.

Lobe Shape: The lobe is often aligned with the single scattering
plane ŝ, as in Figure 4a-d, indicating a strong contribution from low-
order scattering. However, when the single scattering trajectory
exceeds the critical angle (i.e. when ~d ·~n > sin−1

η), total inter-
nal reflection occurs and produces lobes with a wider, less peaked
shape, but ones that are still not entirely diffuse. This is visible in
Figure 4e. Here, the exitant lobe tends to be symmetric about the
plane aligned with θs, as shown.

Elliptical to Circular Isocontours: The black isocontour lines
shown in Figure 4 reveal that these lobes have an elliptical shape
near the peak which transitions to a more circular shape further
away from the peak. We attribute this to the number of times light
was scattered by the material before arriving at these different ex-
itant directions. Light that exits near ŝ has likely only scattered
two or three times giving the exitant distribution a sharp ellipti-
cal contour along the projection of the propagating beam onto the
hemisphere. Photons that travel longer paths contribute less power
and are likely to exit in more uniform directions, resulting in a more
diffuse distribution with circular contours.

4 An Empirical BSSRDF Model

Our goal is to model the 2D distribution of exitant light of the BSS-
RDF over the possible range of geometric and optical parameters.
The observations made in the previous section indicate that func-
tions traditionally used to model BRDFs, such as cosine or Gaus-
sian lobes, are not applicable in this case. Because these lobes also
tend to be sharply peaked, generic basis functions such as spherical
or zonal harmonics are also unsuitable. Note that in this section, pa-
rameters to our empirical function are in bold; vectors are indicated
with hats or arrows.

Indeed, the shape, position and size of the dominant lobe of exitant
light has a complex relationship with the underlying optical and
geometric properties. An important observation, however, is that
cross-sectional contours of these lobes change from elliptical to
circular away from the peak direction. This motivates our choice to
define a function for these lobes in elliptic coordinates (µ, ν) [Korn
and Korn 2000]. This coordinate system defines a set of confocal
ellipses that have high eccentricity near the origin and slowly be-
come more circular further away (see Figure 5).

The coordinates µ and ν are related to (xd , yd), the projection of ~ωo
onto the unit disc given in Equation 5, according to:

xd =

{
a+cosh µ cos ν, xd ≥ 0
a−cosh µ cos ν, xd < 0

, yd =

{
b+sinh µ sin ν, yd ≥ 0
b−sinh µ sin ν, yd < 0

(6)

and
xd

a±
+ i

yd

b±
= cosh(µ + i ν). (7)
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Figure 5: The elliptic coordinates describe a set of confocal el-
lipses. They provide a convenient system for representing our em-
pirical BSSRDF model.

Although a+, a−, b+ and b− are typically equal, allowing them
to vary independently provides greater control over the shape of
a lobe defined with respect to these coordinates. Note that when
µ = 0, a+ and a− define the distances of the elliptical focal points
from the origin.

Isocontours and Alignment: Elliptic coordinates are well suited
for capturing the “elliptical-to-circular” trend we observed in our
simulations. Considering the projection of these slices onto the
disc, we place the origin of this coordinate system at the peak di-
rection~ωpeak (location of maximum exitant intensity) and define the
x-axis to lie along the plane of symmetry ŝp. This plane is either the
single scattering plane ŝ, or the plane defined by~xi −~xo and the sur-
face normal ~n for distributions dominated by internal reflection as
previously discussed. We propose the following analytic function
of these 2D exitant distributions:

H(~ωo ;~ωpeak , ŝp , ks|Γ ) = ks e−keµ − kc χ Ft(~ωo, η) , (8)

where Ft is the Fresnel transmittance in the outgoing direction ~ωo,

χ =
√

x2
d + y2

d is the distance on the unit disc from the origin ~ωpeak,
ks is the overall scale of the distribution, defined such that the fit
intensity matches the data at~ωpeak, and Γ = {a+, a−, b+, b−, ke, kc}
is a 6D vector that collects the free parameters in this function.
These control the lobe’s shape, degree of asymmetry, anisotropy
and kurtosis as explained below.

Asymmetry and Anisotropy: The parameters a+, a−, b+, and
b− determine the asymmetry of the elliptical contours. When they
are small, the lobe is focused; as they increase, the lobe becomes
more diffuse. When they are unequal, the lobe is asymmetric and
anisotropic.

Lobe Shape: The parameters ke and kc determine the shape of the
cross-section of the lobe (i.e., capturing the transition from elliptical
to circular). The parameter ke controlls the falloff along the plane
of symmetry ŝp. Distributions with long, high peaks have lower
ke, while tightly focused peaks require larger values. The radially
symmetric shape is determined by kc. Although these parameters
are correlated to one another, especially further from the peak di-
rection, maintaining these degrees of freedom provides finer control
over the precise shape of the lobe near ~ωpeak, where most of the
exitant light is focused.

4.1 Fitting the Model to Simulated Data

We fit the six parameters in Γ to 2D slices produced by our simu-
lation for each configuration of the optical and geometry properties
using direct analysis. We found that general non-linear optimiza-
tion routines were unnecessarily complex and often produced noisy
fits which undermines our goal of smoothly interpolating these val-
ues over the full BSSRDF domain.

Our fitting procedure is iterative. We first record values of the
exitant distribution along a set of isocontour levels, e.g. c1 =
10%, c2 = 20%, . . . , c8 = 80%, and c9 = 90% of the peak value.
For simplicity, we only examine points along the xd−axis as this
simplifies the relationship between cartesian and elliptic coordi-
nates (since ν = 0 when yd = 0):

µ = cosh−1
( xd

a±
)

, yd = 0. (9)

At each contour sample, we calculate µ using Equation 9. The
values of xd at these samples are readily obtained. More than two
samples results in an overconstrained linear system computed by
partially inverting Equation 8:

− log
(

ci H(~ωpeak)
Ft(~ωpeak)

)
= ke cosh−1

(
x±d
a±

)
+ kcx±d (10)

We solve this system to obtain values of ke and kc that best fit these
contour samples in the least squares sense. We repeat this procedure
along the positive and negative sides of the xd−axis, and retain the
smaller of the two values for both ke and kc.

Given these values for ke and kc it is straightforward to solve for
a± and b± from Equation 10. For example, for x±d :

a± =
x±d

cosh

 x±d kc − log( ciH(~ωpeak)
Ft (~ωx)

)

ke

 . (11)

The expression for y±d is similar. We solve for these values at each
contour level, and choose the set of a± and b± which minimizes
the total L2 error over the hemisphere with respect to the original
exitant distribution. We then re-estimate ke and kc using these new
values of the other parameters and repeat this process ten times or
until we observe the error change by less than 1%.

4.2 Final Model

For each slice of the BSSRDF computed in our simulation we store
the best fit parameters of our model H in a large table, a total
of ∼ 250MB.3 Because the two dimensions of ~ωo are the most
densely sampled in our simulation this is a significant reduction,
from ∼6200 points on the hemisphere to the set of inputs to H (11
values). Finally, note that in practice only a fraction of this data is
used at any one time during rendering.

4.3 Model Accuracy

Figure 3 compares the best fits of our model to simulated data, mea-
sured data and an approximation of these angular distributions ob-
tained with a standard dipole diffusion model. These results show
strong agreement between measured and simulated data and our
proposed model.

The fourth column of Figure 4 compares fits of our model H to
simulated data for several representative exitant distributions. Al-
though our model does not provide an exact match it successfully

3 This data can be downloaded, along with the raw simulated data and the
measurements used in Figure 3, as auxiliary material from the ACM Dig-
ital Library at http://portal.acm.org.



Path Tracing Our Model Photon Diffusion Diffusion Dipole

Figure 6: A beam of light striking the material surface at a 60◦ angle off the normal. The leftmost image was rendered using path tracing,
and shows the expected glow around the propagating beam. The image rendered using our model closely agrees to the reference path-traced
result. Both photon diffusion and the diffusion dipole incorrectly predict the angular distribution of energy within this material as well as the
spectral distribution of emitted light.

captures the basic trends in these distributions over a wide range of
optical properties and geometric configurations. In particular, note
that H exhibits the characteristic “elliptical-to-circular” pattern.

We also computed the RMS error of our fits over the entire collec-
tion of simulated data. These errors have a mean of 3.2× 10−3 and
standard deviation of 9.0 × 10−4. Note that these values have the
same units as the BSSRDF of [m−2sr−1]. The RMS error of the
fits shown in Figure 5 from (a) to (e) are 9.3 × 10−6, 1.3 × 10−3,
4.2 × 10−6, 3.6 × 10−6, and 4.0 × 10−5, respectively. We also val-
idated the process of interpolating the parameters of H to predict
exitant distributions that were not directly simulated. We computed
the RMS error between each simulated distribution and that pro-
duced by interpolating the parameters of our model using those
values at its nearest neighbors. This is akin to a “leave one out”
cross validation test. These errors had a mean of 4.9 × 10−4 with
a standard deviation of 6.9 × 10−7. We conclude that our model is
capable of fitting individual slices with a high degree of numerical
accuracy and that its parameters can be safely interpolated to recon-
struct a continuous representation of the BSSRDF over the range of
geometric and optical properties considered in our simulations.

As further validation of our model and to compare it to alterna-
tive methods, we produced renderings of a beam of light entering
a material with α = (0.07, 0.53, 0.52) and g = 0 (see Figure 6).
Although all four rendering methods capture single scattering well,
both the diffusion dipole and photon diffusion inaccurately predict
the color and intensity of multiply scattered light. Our method, on
the other hand, captures the correct wavelength-dependence along
with the directional effects of the internally scattered light.

5 Rendering with the Model

We sample the illumination incident on translucent materials using
standard techniques (e.g. [Jensen et al. 2001]). To compute a set of
surface locations with respect to a single shade point, we draw sam-
ples from a probability density function proportional to the exitant
diffuse distribution based on the scale factor ks in H. Alternatively,
we could use a hierarchical point-based approximation of the irra-
diance [Jensen and Buhler 2002] to perform this sampling. This
would decrease rendering times without affecting the model itself.

Interpolation: We first reconstruct the BSSRDF that corresponds
to the optical properties of the material we are interested in ren-
dering. We linearly interpolate the parameters of H based on the
closest neighboring points along the α, g, and η axes. This gives a
compact (∼100KB) 3D reconstruction defined over θi, r, and θs.

For a shade point ~xo and lit point ~xi on the surface we compute r
and θs with respect to an orthogonal coordinate system with x-axis
along X̃ = ~ωi − (~ωi ·~ni)~ni. The surface normal at~xi is~ni which we
assume points up and the z-axis of this coordinate system is defined

as Z̃ = X̃ ×~ni. This construction leaves θs as the rotation:
θi = cos−1 (~ωi ·~ni)
r = (σs + σa) ||~xo −~xi||

θs = tan−1
(

(~xo −~xi) · Z̃
(~xo −~xi) · X̃

)
.

(12)

To determine the interpolated locations along the r dimension we
compute the distance in terms of mean free paths by scaling by the
inverse of the mfp length, i.e. σs + σa.

Handling Non-Planar Geometry: Once we have interpolated the
parameters of our elliptic function as described above, we next de-
termine the values of θo and φo to use when evaluating H. Because
our model is only valid for semi-infinite materials, care must be
taken when rendering arbitrary geometry (Section 7).

We define a separate coordinate system anchored at ~xo using the
normal~no, X̃h = ~no × Z̃ and Z̃h = X̃h ×~no, and derive θo, φo as:

θo = cos−1 (~ωo ·~no)

φo = tan−1
(

(~ωo − (~ωo ·~no)~no) · Z̃
(~ωo − (~ωo ·~no)~no) · X̃

)
.

(13)

Using these values, we locate the nearest 8 points in the 3D
dataset, and interpolate the values of the model parameters
(~ωpeak , ŝp , ks|Γ ). Finally, we calculate the value of the BSSRDF
by evaluating H in Equation 8 using these interpolated values.

6 Results

All of the results in this paper were rendered on an Intel R© Xeon R©

2.33GHz Quad-Core processor and those produced with our model
required less than one hour of processing time.

Figure 1 compares renderings of orange juice produced using our
method to those produced with Monte Carlo path tracing and the
diffusion dipole combined with a single scattering term [Jensen
et al. 2001]. We used parameters σs = (0.071, 0.1, 0.042),
σa = (0.093, 0.16, 1.15), g = 0.9, and η = 1.3, which pro-
duces a relatively low spectral albedo of α = (0.43, 0.38, 0.035).
Since orange juice is highly forward scattering, simulating single
scattering alone does not capture its true appearance. High-order
multiple scattering is also not a dominant effect and the image
rendered using the diffusion dipole is too dark. This is because
the dipole model assumes that anisotropic scattering is balanced
by many scattering events. However, the low albedo (i.e. high
absorption) of this material causes most of the light to be absorbed
before reaching this regime. Because our model (center) more
accurately captures these low order scattering events, it matches
the reference path traced image, but requires significantly less time
to compute.

Figure 7 shows a green lozenge with significant translucency. This
material has a spectral albedo of α = (0.16, 0.27, 0.15) and is for-
ward scattering with g = 0.5. The scene has global illumination
which can be seen in the bleeding of green light from the lozenge



Figure 7: A translucent green lozenge with albedo
α = (0.16, 0.27, 0.15). Note the global illumination between
the subsurface scattering as predicted by our empirical BSSRDF
model and the ground plane.

onto the ground plane. With our model, it is possible to efficiently
render a much larger range of translucent materials than previously
possible, even in scenes with global illumination.

To demonstrate the generality of our model we rendered the image
shown in Figure 8 which combines several of the materials mea-
sured by Narasimhan et al. [2006]. These materials have significant
absorption and anisotropic scattering which make them impossi-
ble to render correctly using standard diffusion-based techniques.
The total amount of data required to render this image was about
300KB, as each material requires about 100KB for rendering.

7 Limitations

Our analytic formula of the exitant distribution of light H did fail
to capture the proper response for some of the materials we ob-
served. In particular, materials with strongly anisotropic backscat-
tering (g � 0) can produce two exitant lobes (Figure 9). One is
due to low-order scattering and is in the expected direction, but the
other is caused by higher-order scattering. Clearly, as our model
consists of only a single lobe it cannot handle these cases. How-
ever, because most real-world materials are forward scattering we
concentrated on modeling the more prominent lobe and leave these
cases for future study.

When light arrives at the surface along grazing angles internal re-
fraction becomes more prevalent and our model is less accurate.
Also, our assumption of a semi-infinite and flat surface overesti-
mates the exitant light near corners and thin geometric features.
This limitation is shared by previous work based on the diffusion
dipole. Though in Section 5 we describe an approximate method
for constructing a local coordinate frame based on the incident and
exitant points on the surface, this method is not well-suited for opti-
cally thin materials, and does not account for the changes in internal
scattering due to curved or cornered geometry. In the future we
intend to investigate how best to overcome this limitation, such as
using additional simulations similar to Bouthers et al. [2008]. The
geometry has a significant influence on the appearance, and fur-

Monte Carlo Path Tracing (100 hours)

Our Model + Single Scattering (50 minutes)
Head & Shoulders Espresso Era

Figure 8: Renderings using parameters from [Narasimhan et al.
2006] to show that our model is capable of simulating a diverse
range of materials.
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Figure 9: Our model is not able to represent highly backscattering
materials that produce multiple lobes of scattered light.

ther investigation is needed to study precisely how local geometry
affects the scattering of light, particularly in this regime of mid-
albedo materials.

Further research is also warranted to determine a simpler relation-
ship between the optical and geometric properties of the BSSRDF
and the parameters in the analytic function H. While our own pre-
liminary work in this direction has indicated that this mapping is
complex and non-linear, developing an analytic relationship would
shed further light on this important class of functions and increase
the efficiency and accuracy of simulating these types of materials.

8 Conclusion

We presented an empirical model of the BSSRDF that is valid over
a far wider range of angular configurations and material proper-
ties than existing analytic models. Our model captures both near-
source and directional effects including the important contribution
of low-order scattering. This model was derived from a large-scale
simulation of the hemispherical distribution of light leaving a ma-
terial’s surface over a range of positions from the source, incident
angles and underlying optical properties (scattering and absorption
coefficients, phase function, and index of refraction). We presented
an analytic function to approximate these hemispherical functions
which is expressed in elliptic coordinates and has six parameters.
We estimated the best-fitting parameters for our simulated data. Be-
cause these parameters vary smoothly with respect to the remaining
degrees of freedom they may be interpolated between simulated
locations to provide a compact yet continuous representation over
the full BSSRDF domain. This allows generating realistic images
of translucent materials with notoriously difficult optical proper-



ties. In particular, many of the results we reported would have been
impossible to render using diffusion based methods and much less
efficient with more general numerical integration techniques.
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