
Spacetime Stereo: A Unifying Framework
for Depth from Triangulation

James Davis, Member, IEEE, Diego Nehab,
Ravi Ramamoorthi, and

Szymon Rusinkiewicz, Member,
IEEE Computer Society

Abstract—Depth from triangulation has traditionally been investigated in a number

of independent threads of research, with methods such as stereo, laser scanning,

and coded structured light considered separately. In this paper, we propose a

common framework called spacetime stereo that unifies and generalizes many of

these previous methods. To show the practical utility of the framework, we develop

two new algorithms for depth estimation: depth from unstructured illumination

change and depth estimation in dynamic scenes. Based on our analysis, we show

that methods derived from the spacetime stereo framework can be used to recover

depth in situations in which existing methods perform poorly.

Index Terms—Depth from triangulation, stereo, spacetime stereo.

�

1 INTRODUCTION

THIS paper considers methods that obtain depth via triangulation.
Within this general family, a number of methods have been
proposed including stereo [15], [28], laser stripe scanning [3], [12],
[13], [18], and time or color-coded structured light [2], [8], [16], [17],
[29]. Although a deep relationship exists between these methods,
as illustrated in the classification of Fig. 1, they have been
developed primarily in independent threads of the academic
literature, and are usually discussed as if they were separate
techniques. This paper presents a general framework called
spacetime stereo for understanding and classifying methods of
depth from triangulation. By viewing each technique as an
instance of a more general framework, solutions to some of the
traditional limitations within each subspace become apparent.

Most previous surveys classify triangulation techniques into
active and passive methods [3], [11], [24], [31]. Active techniques,
such as laser scanning and structured light, intentionally project
illumination into the scene in order to construct easily identifiable
features and minimize the difficulty involved in determining
correspondence. In contrast, passive stereo algorithms attempt to
find matching image features between a pair of general images
about which nothing is known a priori. This classification has
become so pervasive that we believe it is artificially constraining
the range of techniques proposed by the research community.

This paper proposes a different classification of algorithms for

depth from triangulation. We characterize methods by the domain

in which corresponding features are located. Techniques such as

traditional laser scanning and passive stereo typically identify

features purely in the spatial domain, i.e., correspondence is found

by determining similarity of pixels in the image plane. Methods

such as time-coded structured light and temporal laser scanning

make use of features which lie predominantly in the temporal

domain. That is, pixels with similar appearance over time are

considered to be corresponding. Most existing methods locate

features wholly within either the spatial or temporal domains.

However, it is possible, and this paper will argue desirable, to

locate features within both the space and time domains using the

general framework of spacetime stereo.
The insight that triangulation methods can be unified into a

single framework is the primary contribution of this work. The
success of a proposed framework can be measured by its simplicity
and its power to bring new insights. We believe that this framework
is sufficiently simple that most readers will find it intuitive and
almost obvious in retrospect. To illustrate the framework’s power to
provide insight, we introduce two new methods for recovering
depth that have not been previously explored in the literature.

The first new method applies temporal processing to scenes in
which geometry is static but illumination undergoes uncontrolled
variation. We call this condition unstructured light, to distinguish it
both from structured light methods in which lighting variation is
strictly calibrated, and from passive stereo in which lighting
variation is typically ignored. In our experiments, this variation is
produced by the light and shadows from a handheld flashlight. The
secondnewmethod applies spacetimeprocessing to scenes inwhich
the object moves. In addition to demonstrating the method, we
analyze the necessity of spacetime processing, and show that
optimal reconstruction is possible only by simultaneously using
both the space and time domains.

This paper is a considerably expanded version of a previous
conferencepaper [14] and includesnewresults on shape recovery for
dynamic scenes, as well as a discussion of optimal spacetime
windows in that context. We are not alone in proposing that spatio-
temporal information may be useful. Zhang et al. have simulta-
neously developedmethods similar to ours, focusing on recovery of
dynamic scenes rather than on constructing an organizing frame-
work [33]. Other applications have been explored as well. For
example, Shechtman et al. suggest that a spatio-temporal framework
will be useful for increasing the resolution of video sequences [30].

2 SPACETIME STEREO

In this section, we introduce our spacetime stereo framework for
characterizing depth-from-triangulation algorithms.

The spacetime stereo framework can most naturally be under-

stood as a generalization of traditional passive stereo methods that

operate entirely within the spatial (image) domain. Traditional

stereo depth reconstruction proceeds by considering two view-

points in known positions and attempting to find corresponding

pixels in the two images. This search for correspondence can

proceed either by searching for specific features such as corners in

each of the images, or more typically via matching of arbitrary

spatial windows in the first image to corresponding regions along

the epipolar line in the second image. More specifically, stereo finds

correspondences by minimizing a matching function, which in its

simplest form is

�
�I1ðVsðx1ÞÞ � I2ðVsðx2ÞÞ

�
�
2
: ð1Þ

Here, I1 is the intensity in image 1, I2 is the intensity in image 2,
and Vs is a vector of pixels in a spatial neighborhood close to x1 (or
x2). This is the standard minimization of sum of squared
differences to find the best matching pixel x2.

There is no reason to restrict the matching vector to lie entirely in

a single spatial image plane. By considering multiple frames across

time, we can extend the matching window into the temporal

domain, as shown in Fig. 2. In general, the matching vector can be

constructed from an arbitrary spatio-temporal region around the

pixel in question. In the case of rectangular regions, awindowof size

N �M � T can be chosen,whereN andM are the spatial sizes of the
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window and T is the dimension along the time axis. In this general

case, we would seek to optimize the matching function,

�
�I1ðVstðx1; t0ÞÞ � I2ðVstðx2; t0ÞÞ

�
�
2
: ð2Þ

It is clear that there is no mathematical distinction between the

spatial and temporal axes. By choosing T ¼ 1, we reduce to

traditional spatial-only stereo matching. By choosing N ¼ M ¼ 1,

we use a purely temporal matching window. Under some

conditions, a temporal matching vector is preferable to the

traditional spatial vector, such as if the lighting in a static scene is

changing over time. In general, the precise lighting and scene

characteristics will determine the optimal size for the spacetime

matching window.

3 PREVIOUS METHODS

Several well-investigated categories of research are in fact special

cases of the general spacetime stereo framework discussed above.

These include traditional stereo, time-coded structured light, and

laser stripe scanning.
Stereo. Traditional stereo matching is a well-studied problem in

computer vision. A number of good surveys exist [15], [28]. As

discussed in Section 2, traditional stereo matches vectors in the
spatial or image domain to determine correspondence.

Surprisingly, no existing stereo methods make use of the
temporal domain. Presumably this is due to the ubiquitous
classification of techniques into passive and active. Passive techni-
ques are assumed to have no lighting variation and, thus, no need for
temporal processing. The framework andexamples presented in this
paper make clear that it is beneficial to extend existing stereo
algorithms to use this additional source of information.

It should be noted that although epipolar analysis includes the
language of “temporal” imaging, that work encodes camera
motion on the temporal axis and is thus more closely related to
multibaseline stereo processing [5].

Most stereo methods can be described as a pipeline of local
matching followed by global regularization. Since the ambiguities
of passive stereo provide poor quality local correspondence, nearly
all state of the art stereo research focuses on methods for global
regularization such as dynamic programming [22] or graph cuts
[9]. In contrast, this paper focuses on improving the local operator
used for matching, using absolutely no method of global
regularization. Many of the global methods for improved matching
in the context of traditional spatial windows could be easily
extended to include spatiotemporal windows.

Methods for improving the local matching metric in stereo have
also been proposed, such as adaptive windows [23] and robust
matching metrics [4]. In this work, we use very simple matching in
order to isolate the importance of using the spacetime domain. In
particular, we use constant size rectangular windows and accept
the disparity that minimizes the SSD as shown in (2). More
sophisticated matching metrics will of course improve the results
beyond those shown in this paper.

Some stereo implementations do make use of actively projected
texture in order to aid the correspondence search. For example,
Kang et al. project an uncalibrated sinusoidal pattern and
reconstruct depth using a real-time multibaseline solution [20].
We group techniques such as this with traditional stereo, rather
than with the coded structured light methods discussed in the next
section, because the correspondence search is inherently spatial
rather than temporal.

Time-coded structured light. Time-coded structured light
methods determine depth by triangulating between projected light
patterns and an observing camera viewpoint. A recent survey of
these methods is by Batlle et al. [2]. The projector illuminates a
static scene with a temporally varying pattern of light. The patterns
are arranged such that every projected column of pixels can be
uniquely identified. Thus, the depth at each camera pixel is
uniquely determined based on the particular pattern observed.

These systems rely on strictly controlled lighting and most
existing implementations are very careful to synchronize projec-
tors, use one system at a time, and remove ambient illumination.
The work presented in this paper unifies structured light methods
with stereo matching and, thus, eliminates the need for precise
control over all aspects of scene lighting.

Although depth recovery in these systems is not typically
described in terms of stereo matching, they do fall within the
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Fig. 1. Most existing depth from triangulation techniques are specific instances of
the more general class of spacetime stereo reconstruction. Because these
methods have been developed largely independently, they have often been
artificially constrained to a small range of variation. Understanding that all these
techniques lie in a continuum of possible methods can lead to previously
unexplored modifications and hybrids.

Fig. 2. (a) Comparison of spatial and (b) spacetime stereo. In spatial stereo, the epipolar line is searched for similar spatial neighborhoods. In spacetime stereo, the

search is for similar spatio-temporal variation.



spacetime framework. The camera matching vector is purely
temporal and is matched against a known database of projected
patterns and their associated depths. The matching error metric can
be written as

�
�I1ðVtðx1; t0ÞÞ � P2ðVtðx2; t0ÞÞ

�
�
2
; ð3Þ

which is similar to (2) except that we have replaced the second
image I2 with known projected patterns P2. This is functionally
equivalent to having a virtual second camera collocated with the
projector. The virtual camera has the same viewpoint as the
lightsource, so the virtual image it captures can be assumed
identical to the projected light. By making conceptual use of a
second camera, depth recovery in structured light systems can be
described in terms of correspondence between images, similar to
traditional stereo. It should be noted that the second camera need
not be virtual. Using an additional real camera has a number of
benefits, including improving the robustness of correspondence
determination to variations in object reflectance [10], and generat-
ing high-quality ground truth stereo test images [29].

Laser stripe scanning. Another alternative is laser scanning. A
plane of laser light is generated from a single point of projection
and is moved across the scene. At any given time, the camera can
see the intersection of this plane with the object. Informative
surveys have been provided by Besl [3] and Jarvis [18].

Most commercial laser scanners function in the spatial domain.
The laser sheet has an assumed Gaussian cross section, and the
location of this Gaussian feature is known in the laser frame of
reference. Given a known laser position, the epipolar line in the
camera image is searched for a matching Gaussian feature [27]. This
match determines corresponding rays and, thus, a depth value.
Since the feature set lies only on one line in image space, rather than
densely covering the image plane, only a single stripe of depth
values is recovered. This process is repeated many times with the
laser positioned such that the stripe of features is in a new location.

Laser scanners that function in the temporal domain have also
been built [1], [19], [7]. As the laser sweeps past each pixel, the time
at which the peak intensity is observed is recorded and used to
establish correspondence. Curless and Levoy [12] provide an
analysis of the benefits that temporal correlation provides over the
traditional spatial approach in the context of laser scanning.
Moreover, they show that the optimal matching uses feature vectors
that are not strictly aligned with the time axis, but are “tilted” in
spacetime.

As with coded structured light, laser scanning can be framed as
standard stereo matching by replacing the calibrated laser optics

with a second calibrated camera. With this modification, the laser
stripe functions as the high frequency texture desirable for stereo
matching, though since the variation only occurs in a small region,
only a small amount (one stripe’s worth) of valid data is returned at
each frame. Two-camera implementations have been built that find
correspondence in both the spatial [6], [13], [21] and temporal [25]
domains.

Partial spacetime methods. As we have seen, most previous
triangulation systems can be thought of as operating either in the
purely-spatial or purely-temporal domains. Recently, however,
researchers have begun to investigate structured light systems that
make use of both space and time, though typically with many
restrictions. One such system uses primarily temporal coding,
adding a small spatial window to consider stripe boundaries (i.e.,
adjacent pairs of stripes) [16], [26]. Another approach uses a
primarily spatial coding, adding a small temporal window to
better locate stripes [32]. Still another approach considers “tilted”
space-time windows that have extent in both space and time, but
are only a single pixel thick [12].

Thus, as shown in Fig. 3, some previous methods have begun to
explore the benefits of windows that are not purely spatial or
temporal. However these methods were limited in the class of
matching windows they considered, and expanding the domain of
methods to encompass arbitrary space-time windows leads to
improvements in robustness and flexibility.

4 DEPTH FROM UNSTRUCTURED ILLUMINATION

CHANGE

Consider the class of scenes which includes static objects
illuminated by unstructured but variable lighting. This class
includes scenes for which existing methods perform poorly, such
as textureless geometry lit by uncontrolled natural illumination,
such as sunlight. Traditional spatial stereo methods will not be able
to recover any depth information in the textureless areas without
resorting to global smoothness assumptions. On the other hand,
active methods are not applicable since the illumination does not
include the carefully controlled lighting on which they depend.

Spacetime stereo is able to recover high quality depth maps for
this class of scenes. By analyzing error across the full range of
possible spacetime window sizes, we can select the best para-
meters for reconstructing scenes in this class, which turns out to be
purely temporal processing or temporal stereo. To illustrate the
gains from this analysis, we present visual results showing that
temporal stereo is capable of recovering depth with far greater
accuracy than traditional spatial-only analysis. The reader should
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Fig. 3. Previous triangulation methods can be considered to be special cases of the framework of spacetime stereo. Most methods use purely-spatial or purely-temporal

matching windows, while a few others use other, restricted, classes of window shapes.



keep in mind that although temporal stereo is straightforward in
light of the spacetime framework, it represents a truly new
algorithm which has not been investigated previously.

Experimental setup. We used two scenes to evaluate our
method, pictured in Fig. 4. One consists of blocks of wood, while
the other contains a sculpture of a cat and a teapot. Stereo pairs were
acquired using a single camcorder and mirrors to produce two
viewpoints. The working volume is approximately 50cm3, and the
viewpoints have a baseline separation of approximately 60 degrees.
Each viewpoint was manually calibrated using a target.

We have experimented with a variety of different lighting
configurations, moving a flashlight manually across the objects,
moving a hand in front of a light source to cast a sequence of
shadows, and using a hand-held laser pointer to illuminate the
scene with a moving line. We have found that we are able to
produce good reconstructions using spacetime stereo, under a
variety of illumination conditions.

Spatiotemporal matching. In order to characterize the perfor-
mance of spacetime stereo, we choose a single data set and
investigate all possible spatio-temporal window sizes. In this
section, we present results of our analysis of the sequence in which
wooden blocks are illuminated by a flashlight.

For each spacetime window, we computed the average depth
error. Since ground truth is unavailable, we approximate “truth” as
the visually estimated best result obtained from processing our
other data sets of the same scene. Error is computed as the mean

absolute Euclidean distance between a given test reconstruction and
“ground truth.”

In Fig. 5, we show the accuracy of reconstruction as a function of
both spatial and temporalwindow size. For all spatial window sizes,
we can see that increasing temporal window length is beneficial.
There are no adverse effects from increasing the temporal length and
new information becomes available that increases the probability of
finding the correct match. Another insight, confirmed by the graph,
is that after only a few frames of temporal information become
available, it is no longer desirable to use any spatial extent at all: the
lowest error was obtained using a spatial window of only a single
pixel. This corresponds to the fact that spatial windows behave
poorly near depth discontinuities.

For clarity, only four spatial window sizes are shown. Similar
results were obtained in additional tests of six other spatial window
sizes. Furthermore, we verified that error continues to decrease as
the temporal window grows to span the entire sequence.

It should be noted that the temporal order of frames in the
video sequence was randomly shuffled to negate any effects
caused by the specific path of flashlight motion. This has the effect
of increasing the temporal information available in short temporal
windows, since it removes correlation between neighboring
frames. As a result, using a 1� 1 spatial window becomes optimal
after only four frames of temporal information are available. If we
had not shuffled the frames, the number of frames required to
outperform spatial stereo would have been higher, related to the
speed at which the flashlight moves. The original sequences in this
case had approximately 400 frames, and 50-100 frames would have
been required to obtain a good approximation of depth.

Although an analysis of only one sequence is shown, we have
recovered depth for hundreds of scenes and believe that the
conclusions generalize. In particular, with static scene geometry
and variable illumination it is desirable to use a purely temporal
matching vector.

Comparison of Spatial and Temporal matching. To show the
practical utility of the spacetime stereo framework, we use our
conclusions from the preceding analysis and compare purely spatial
matching, as in standard stereo, with purely temporal matching.
Spatial matching is computed using a 13� 13window; results were
visually similar for other spatial window sizes. Temporal matching
uses a single pixel, with a time neighborhood including the entire
temporal sequence, as per (2). A hand-drawn mask is used to limit
comparison to regions that are visible from both viewpoints.

We first consider the same sequence, in which wood blocks are
illuminated with a flashlight. Fig. 6 compares spatial matching,
with temporal matching. Spatial stereo matching is unreliable
because the wooden blocks have large regions of almost uniform
texture. Hence, the results are uneven and noisy. On the other
hand, lighting variation creates texture in the time domain, making
temporal matching robust. To show that our results generalize to a
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Fig. 4. Sample stereo pairs for the two scenes used in our experiments. The cat is illuminated by a flashlight which was moving slowly over the scene. Note the regions of
uniform texture and lighting which make traditional spatial stereo matching difficult.

Fig. 5. Error as a function of spatio-temporal window size for the wood-block scene
illuminated with a flashlight.



variety of conditions, we repeated the experiment using different
geometry and lighting; a sculpted cat was subjected to shadowing.
The results are similar: temporal matching produces much better
results than spatial matching.

The scene of a white cat in front of a white wall was designed to
be difficult or impossible for spatial stereo. Nevertheless, some
readers may be surprised that spatial stereo produces such poor
depth estimates. Wewould like to reiterate that, in order to compare
only the proposed changes to local matching, no global regulariza-
tion was used in these experiments. The addition of smoothness
constraints would presumably improve the recovered depth
regardless of whether spatial or temporal matching was used.

5 DEPTH OF MOVING SCENES

Scenes with motion represent a new set of challenges. Traditional
passive stereo can process each frame of a sequence, but produces
relatively low-quality results. Active methods can not in general be
applied, since nearly all rely on a static object. The spacetime stereo
framework provides a solution. By subjecting the scene to high
frequency illumination variations, a spacetime window can be
used to recover depth. Although this is a straightforward
application of the spacetime framework, it is unlikely that it
would have been proposed by either the passive or active
triangulation communities. The passive community would not
propose active lighting, and the active community strictly controls
lighting and does not speak in terms of stereo matching.

Experimental Setup. Moving objects require significantly high-
er-frequency (but still uncontrolled) lighting variation than do static
objects. In order to accommodate this need we revised our
experimental arrangement. A pair of cameras with a triangulation
angle of approximately 15 degrees are arranged to observe a

working volume of 30cm3. Instead of using a hand-held light source,
an LCD projector is placed outside the camera baseline, but as
nearby as is feasible, as shown on the left in Fig. 7. As before, the
cameras are calibrated and synchronized with respect to one
another, but the light source is completely uncalibrated. Since the
projected image can be varied at 60Hz, arbitrary high-frequency
lighting variation is possible. We simply project random patterns of
stripes onto the scene. Our cameras are capable of capturing at
approximately 40Hz. The middle of Fig. 7 shows a captured stereo
pair. On the right is a reconstructed and rendered view of the object,
captured while stationary. Note that although the lighting was
unknown the resulting accuracy is equivalent to a laser scanner.

In order to evaluate the optimal window size when objects are
moving, it is necessary to obtain ground truth data. Since this is not
possible while an object actually is moving, we created “moving”
data sets using stop motion photography. The frog statue was
moved by hand under both linear and rotational motion and a
single image was taken at each position. When combined these
images simulate actual object motion. In order to obtain ground
truth for a given frame, the frog was left stationary while
additional lighting variation was projected and recorded.

Spatiotemporal matching. For each moving sequence, depth
was computed using all possible combinations of spatiotemporal
window sizes and compared to ground truth. Since depth recovery
of moving scenes is more error prone than is that of static scenes, we
use the percentage of correct disparities as a measure of robustness
rather than L2 norm to evaluate error. For each window size,
robustness is computed as the percentage of pixels for which the
computed and ground truth disparity differ by at most 1.0 pixels.
Computation is limited to those pixels for which ground truth
disparity exists.
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Fig. 6. Comparison of depth reconstruction (shading corresponds to estimated depth) using spatial stereo matching with 13� 13 neighborhoods and temporal stereo. On
the left (a) are the wooden blocks with lighting variation by manually moving a flashlight. On the right (b) is the cat and teapot scene with lighting variation from shadows.
Note that traditional spatial stereo depth estimates are uneven and noisy while temporal stereo is relatively robust and accurate.

Fig. 7. Experimental setup. Two synchronized cameras capture stereo views at 40Hz, while the projector displays random high-frequency patterns at 60Hz.



For sceneswithmotion there is a tradeoff in the temporal domain
between obtaining additional information and introducing con-
founding distortions. If we repeat the analysis performed on static
scenes, we expect U-shaped error curves, in which accuracy first
improves and then decays as the temporal window size increases.

In the first condition, the frogwasmovedalonga linearpathat the
rate of 1 mm per frame. This is equivalent to roughly three to four
pixels ofmotion in the image. Fig. 8a shows the robustness of various
window sizes. As expected, since the object is in motion, it is no
longer preferable to use a very large temporal window. Disambig-
uating information must come from somewhere and since the
temporalwindow is smaller, a single-pixel spatialwindowno longer
provides good results. In this case, we found a 9� 9� 3 spatiotem-
poral window to be optimal. We also computed the optimum
window sizewhen the frogwas subjected to rotation.Whenweused
a rotation speed of 0.3 degrees per frame, the optimal temporal
window size was 8 frames and spatial window size 3� 3. Fig. 8b
shows the robustness under this condition.

It is reasonable to wonder what would happen if the object
moves either faster or slower. We increased the rotation speed by
an order of magnitude to 3.0 degrees per frame (a relatively very
high rate of rotation). Although the plot is not shown, the optimal
temporal window size becomes very short, reducing to two frames.
In this extreme case, object motion is so large that it is essentially
best to treat each frame separately with spatial stereo.

The optimal window size is a function of the speed of object
motion, the camera frame rate, the spatial texture available and the
rate of temporal lighting variation. Although it is true that
projected lighting will improve any stereo algorithm, we have
shown that for some scenes optimal reconstruction requires the use
of a spatiotemporal window.

When the object moves either very quickly or very slowly a
degenerate form of spacetime stereo is optimal. For fast scenes
spatial-only stereo is desirable, while for static scenes temporal-
only stereo is desirable. Both spatial and temporal texture is
desirable, and this texture should have a frequency roughly
equivalent to the sampling frequency along that dimension.

Capturing motion. In order to demonstrate the capability of
spacetime stereo on real dynamic scenes, we captured the motion
of a deforming face. Rather than use stop motion photography as

in the previous experiments, the cameras captured video at 40Hz,
while the projector displayed stripe patterns at 60Hz. Depth was
recovered at each frame of the sequence using a window size of
7� 1� 7. This window size was chosen because both the
horizontal and temporal dimensions have high-frequency texture
that is useful for matching. The vertical dimension (which is
aligned with our stripe pattern) has relatively little texture, so does
not contribute substantially to matching. This sequence can not be
reconstructed reliably using either spatial-only matching or
temporal-only matching. The recovered depth was triangulated
and several frames are shown rendered with lighting in Fig. 9a.
The complete video is available at http://graphics.stanford.edu/
papers/SpacetimeStereo/.

Rendered images of polygonal models with lighting are
sensitive to the mesh surface normal. Since we show data prior
to regularization it will appear noisy even if the error has low
magnitude. Fig. 9b visualizes the mesh after filling holes and
smoothing the surface normals. These steps are analogous to the
global regularization that is ubiquitously used in traditional stereo.
Fig. 9c shows a plot of the mesh depth along the line indicated
above. Note that the noise level is well below 1 mm.

6 CONCLUSIONS AND FUTURE WORK

This paper has introduced a new classification framework, space-
time stereo, for depth from triangulation. Rather than distinguish
algorithms as active or passive, we classify algorithms based on the
spatial or temporal domain in which they locate corresponding
features. This classification unifies a number of existing techniques,
such as stereo, structured light, and laser scanning into a continuum
of possible solutions, rather than segmenting them into disjoint
methods.

As a demonstration of the utility of the spacetime stereo
framework, we introduce two new hybrid methods: depth from
unstructured illumination, and shape recovery for dynamic scenes
using spacetime windows. We have demonstrated depth recovery
results that are superior to those obtainable using traditional spatial-
only stereo in both cases. Further, we have analyzed the optimal
spacetimewindows and shown that for some classes of scenes space
time windows must be used for optimal reconstruction.
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Fig. 8. (a) Matching error for a linearly moving scene as a function of temporal window size, for a variety of spatial window sizes. The result is a U-shaped curve for which
the error first decreases with more disambiguating information, but then increases as motion makes matching difficult. Hence, a finite temporal window is desirable, and a
9� 9� 3 spacetime window is seen to provide best results in this case. (b) Matching error for a rotating scene, as a function of temporal window size for several spatial
window sizes. The result is a U-shaped curve similar to the linear motion case. In this case, a 3� 3� 8 spatiotemporal window is optimal and is better than either spatial
or temporal matching alone.



In summary, we believe the framework proposed in this paper
provides a useful way of thinking about many triangulation-based
depth extraction methods, and the insights from it will lead to new
applications.
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Fig. 9. (a) Depth estimates of three frames in a dynamic scene (one of the authors smiling), captured at 40 Hz. Note recovery of subtle features like the cheek deformation.
(b) Recovered geometry before and after filling holes and smoothing mesh normals. (c) Plot of the mesh depth along the line indicated above. Note that although noisy
normal estimates are perceptually distracting, the actual mesh geometry is accurate to under a millimeter, evident by visual inspection of the smoothness of this plot.


