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Exposing Digital Forgeries in Ballistic Motion

Valentina Conotter, James F. O’Brien, and Hany Farid

Abstract—We describe a geometric technique to detect physi-
cally implausible trajectories of objects in video sequences. This
technique explicitly models the three-dimensional ballistic motion
of objects in free-flight and the two-dimensional projection of the
trajectory into the image plane of a static or moving camera.
Deviations from this model provide evidence of manipulation.
The technique assumes that the object’s trajectory is substantially
influenced only by gravity, that the image of the object’s center
of mass can be determined from the images, and requires that
any camera motion can be estimated from background elements.
The computational requirements of the algorithm are modest,
and any detected inconsistencies can be illustrated in an intuitive,
geometric fashion. We demonstrate the efficacy of this analysis
on videos of our own creation and on videos obtained from video-
sharing web-sites.

Index Terms—Digital Forensics, Video Forensics

I. INTRODUCTION

Increasingly sophisticated video editing and special effects
software has made it possible to create forged video sequences
that appear to contain realistic dynamic motion. For example,
video sharing websites are littered with titles like “Seriously
Amazing Best Beer Pong Shots,” “Dude Perfect Amazing Bas-
ketball Shots,” and “Epic Pool Jump.” These videos appear to
show spectacular basketball shots, gravity-defying acrobatics,
and the bone-crushing results of daredevil leaps and jumps.
Some of these videos are real, but many are fake. In this paper
we describe a forensic technique that is tailored to determine
if video of a purportedly ballistic motion, such as a ball being
thrown or a person jumping through the air, or a motorcycle
soaring off of a ramp, is consistent with the geometry and
physics of a free-falling projectile.

Posted videos are often of low-quality and typically have
undergone a variety of post-processing and re-compression. As
such, statistical techniques that focus on double-compression
artifacts [1]-[3], interlaced and de-interlaced correlations [4],
or sensor noise patterns [5]-[7] are unlikely to apply. In
addition, forensic techniques based on detecting frame or
region duplication [8], [9] will only apply when some form of
duplication was necessary to create the fake.
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Fig. 1. An authentic (top) and fake video (bottom) each shown as a time-lapse
composite. The small red dots specify the tracked position of the ball, and
the larger yellow dots and solid lines denote the best fit model of a ballistic
trajectory. A discrepancy between the model and the ball’s actual positions in
the lower image provides proof that the depicted motion is fake.

In contrast to these statistical techniques, we propose a
geometric forensic technique that is largely insensitive to reso-
lution, post-processing, compression, and re-compression. We
begin by describing a plausible, albeit somewhat simplified,
physical model for the expected trajectory of a projectile
motion, and a basic imaging model for a static or moving
camera. We then describe a technique to determine if the image
of the trajectory of a projectile motion is consistent with this
physical model. This technique makes minimal assumptions
about the nature of the trajectory and camera, and requires only
limited manual input. The core computational requirements of
the algorithm are modest, and the analysis can be presented
as a simple, intuitive geometric construction. We demonstrate
the efficacy of this analysis on videos of our own creation and
several obtained from video-sharing websites.

II. RELATED WORK

The analysis of projectiles in video has not previously been
considered in the forensic community. It has, however, been
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addressed in the robotics and computer vision communities.
Most notably, in the development of ball-catching robots [10]-
[12] and in the analysis of sporting events (e.g., soccer,
football, basketball) [13]-[16]. Unlike the approach described
here, these techniques either require a stereo camera pair or
require additional information about the scene geometry.

A more closely related approach considers the estimation
of a projectile’s trajectory from a single camera [17]. That
approach, however, requires a calibrated camera and is only
applicable when the camera is stationary. In contrast, the
approach described here does not require a calibrated camera
and is applicable to a stationary or moving camera (with
unknown camera motion).

Because a projectile’s motion is influenced by gravity,
the vertical component of acceleration is roughly constant
(assuming negligible air resistance or other external forces).
In principle a human observer binocularly viewing a projectile
could use this information to estimate the absolute size and
distance to the projectile [18]. In practice, however, most
observers do not consciously take advantage of this informa-
tion [19]. These studies suggest that if observers are not able
to take advantage of such constraints in a three-dimensional
setting, then it is most likely that they will not be able to
accurately reason about the two-dimensional projection of a
projectile. It follows that relying on the visual system to
authenticate a projectile’s motion becomes even more unlikely
when the camera moves along an arbitrary and unknown path.

III. METHODS

Our approach to exposing inauthentic motion relies on four
explicit assumptions:

1) The motion of the object in three-dimensional space is
ballistic (i.e., only gravitational acceleration) so that the
trajectory of the object’s center of mass will describe a
simple parabola.

2) The moving object is sufficiently well-known so that the
location of its center of mass can be estimated for each
frame.

3) The scene is imaged under linear perspective projection.

4) Any movement or changes in the camera parameters
during the sequence can be computed from the scene
background so that all frames can be placed into a
common coordinate system.

With regard to notation, scalars are denoted with lower-case
italic letters s, vectors are denoted with lower-case bold-face
letters v, and matrices are denoted with upper-case bold-face
letters M. Image coordinates are denoted as p, and world and
camera coordinates are denoted as p. Superscripts are used to
denote the components of a vector v = [v* oY 7] or the
rows of a matrix: m* is the k*" row of matrix M. Subscripts
are most commonly used to denote position as a function of
time, p.

A. Trajectory Geometry

The center of mass of a projectile, in the absence of air
resistance or any other external forces, follows a ballistic

trajectory that can be described in three dimensions with a
time-parametrized parabolic curve:

pr = po+vr+iar? (1)

where 7 denotes time, po is the initial position, v is the
initial velocity, and a is the acceleration (due to gravity).
In the absence of any other external forces, the path of the
projectile is planar. Assuming linear perspective projection
under a pinhole camera model, the image of a projectile’s
trajectory, in homogeneous coordinates, is:

Hp-, 2

where H is a 3 x 3 matrix embodying the planar perspective
projection (i.e., a homography).

Consider the special case where the optical axis of the
camera is orthogonal to the plane of motion, the focal length
is unit length, and the principal point is the image center. In
this case, the z-component of the velocity is zero, and the x-
and z-components of the acceleration are zero. The trajectory,
Equation (1), then simplifies to:
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where g is gravity and the world coordinate system is defined
such that the z-axis is the optical axis and the positive y-axis
points upward. In addition, the world to image transformation
is simply q; = p, (e, H = I). In non-homogeneous
coordinates, this yields:
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Note that in this special case the projectile’s path maps to a
parabola in image coordinates, which can be seen more clearly
by rewriting the above equations as:
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However under an arbitrary homography the image of a pro-
jectile’s path will not necessarily be a parabola. Specifically:

hy hy hs
617' = HpT = hy hs he Pr, (N
h7 hg hg

In non-homogeneous image coordinates, the projectile takes
the form:

&= h'-p, _ h'-(po+vr+jar’) ®)
" h3 . p. h3 - (po + v7 + 3ar?)
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where - is inner product and h? is the i*" row of the homog-
raphy H. Note that these image coordinates follow a rational
parabola described by a ratio of second-order polynomials, and
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Fig. 2. For a stationary camera (a), a ballistic trajectory will appear as a rational parabola in the image plane (red dots). Lines from the center of projection c
(black dot) through these points q- on the image plane will intersect the object’s true parabolic trajectory through space p, (yellow dots). A scale ambiguity
appears because any slice through the generalized cone formed by the lines would also produce a parabolic arc if that slice is parallel to the object’s true
parabolic trajectory. With a moving camera (b), the lines from the moving center of projection c- (black points) through observed locations for the object do
not form a cone, but they must still intersect the object’s parabolic trajectory through space. In general, other slices through the lines will not form parabolae
unless the camera’s path is also a quadratic curve as shown in (c). In that case any isoparametric slice through the lines will also produce a parabolic trajectory.
The scale ambiguity for a stationary camera is a special case of the parametric ambiguity for a camera on a quadratic path. For clarity, the image planes for

each camera location in (b) and (c) are not shown.

cannot be expressed as a single second-order polynomial as in
Equation (6).

Given a composite image from a still camera showing
the path of an object, one could test the authenticity of the
motion by verifying that it can be fit by a rational parabola
using Equations (8) and (9). However that approach does not
explicitly reveal the direction of gravity, provide a trajectory
in world space, or generalize to a moving camera.

B. Projectile Estimation: Static Camera

In the previous section, the projectile was specified in a
world coordinate system, Equation (1), and its projection was
specified in an image coordinate system, Equation (2). In the
following sections, we will specify all coordinates with respect
to a common three-dimensional coordinate system in which
the origin is the camera center, the image plane is f units from
the origin (the focal length), and the optical axis is orthogonal
to the image plane. With this notation, a projectile is specified
as p, in Equation (1), its projection is specified as a three-
vector g, in which the z-component ¢Z = f, and the camera
center, c, is the origin of the three-dimensional coordinate
system. (See Fig. 2(a).)

For each moment in time 7 = 1...n, define a line from the
camera center, c, through the image of the projectile’s center
of mass, q,, as:

I, = (10)
where s, is a parametric variable for the line. If the projectile
p- follows a parabolic trajectory then there exists a value of
the parametric variable at each moment in time that satisfies:
(1)
12)
for some values of s,. Expanding in terms of the individual
components yields:

c+ ST(qT - C),

pPr = 1‘r
po+vr+iar® = c+s.(q; —c)

Py 4+ v + %ag”T2 = " +s.(¢F =) (13)
py+ i+ ia¥r? = Yt si(qd —¢Y) (14)
po 0T+ 3a T = F +s0(qf — ) (15)

This system of equations is linear in terms of both the
nine unknowns that specify the object’s trajectory through
space (pgo, v, and a) and the n unknowns that specify the
object’s parametric location along the line from the camera
(s+). With a sufficient number of frames (n > 5) where the
projectile’s position can be observed, it is possible to solve
for these unknowns by performing a least-squares fit to the
data. However, in the absence of noise, the linear system will
always be rank deficient so that the least-squares solution is
not unique. This deficiency corresponds to a scale ambiguity
in the solution: any solution could be scaled about the origin
and still satisfy the constraints, Fig. 2(a).

Before describing a robust solution that copes with both
this ambiguity and noise, we will first discuss the situation
for a moving camera. Our solution treats both still and moving
cameras using the same framework.

C. Projectile Estimation: Moving Camera

In the previous section we described the estimation of a
projectile that was being imaged by a static camera. In that
case, the projection of the projectile was a parabola subjected
to a planar homography. However, if the camera is not station-
ary, then the projection of the projectile can take an arbitrary
path in the image plane that results from combining image
coordinates from different local coordinate systems. If the
camera motion can be estimated, then these image coordinates
can be described in a single common coordinate system.
The resulting estimation of projectile motion then becomes
equivalent to the static camera case with the difference being
that the location of the camera center varies over time. We
will arbitrarily use the coordinate system of the initial frame
in a sequence as our common coordinate system.

Consider a camera undergoing a rigid-body transformation
(rotation and translation) with fixed intrinsic parameters (focal
length, principal point, etc.)!. The image of a projectile’s
trajectory can be expressed with respect to the common

't is possible to contend with a varying focal length over time, but for
notational simplicity we assume that the focal length is fixed.
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coordinate system as R.q, + t,, where q, is the image of
the projectile in the camera’s local coordinate system, and R,
and t. are respectively the 3 x 3 rotation matrix and 3 x 1
translation vector that define the transformation between the
local and common coordinate systems. The camera center is
expressed with respect to the common coordinate system as
c: + t,, where c, is the location of the camera center in the
local coordinate system.

Given the rotation and translation that relates a camera at
each time to the common coordinate system, all coordinates
can be expressed with respect to a single common coordinate
system. As in the static case, for each frame a line is defined
from the camera center, c, (now a function of time), through
the center of mass of the projection of the projectile into the
image plane, q,, as:

I, = (¢ +t:)+s,(Rrqr —¢;) (16)

where s, is the parametric variable. Note the similarity to
Equation (10), with the exception that q, and c, undergo a
coordinate transformation. If the projectile follows a parabolic
trajectory, p,, then there exists a value of the parametric
variable s,, at each moment in time that satisfies:

pr = (¢; +t;)+s-(Rrar —c;) (17

or
pg 4+ v + La"7? (c® +17) + s.(rl - q, — c)18)
py+ YT+ 2a¥7? = (L) + s (v qr — cYX19)
pg VT + 2aP T = (X4 t2) + 5. (12 gy — 2)20)

where - is inner product and r? is the i*" row of the rotation
matrix R.;. Note that, as in the previous section, this system of
equations is linear in the unknown projectile parameters (pg,
v, a), and the parametric variables (s;).

As before, with a sufficient number of frames (n > 5)
where the projectile’s position can be observed, it becomes
possible to solve for these unknowns by performing a least-
squares fit to the data. However, unlike the situation with a still
camera there is no longer a necessary scale ambiguity. Because
the camera now moves arbitrarily, scaling the solution would
also require scaling the camera path as well, but the scale of
that path will have been fixed when the camera’s motion was
estimated.

Nevertheless, specific combinations of camera and projectile
paths may still fail to produce a fully determined system,
Fig. 2(b)-(c). In particular, if the motion of the camera
center is also described by a parabola then any isoparametric
interpolation between the projectile’s true trajectory and the
camera’s trajectory will also be a parabola. These extra solu-
tions correspond to uniform scaling of the vector of s, values
that would produce the true trajectory. This ambiguity is the
general case of the scale ambiguity that appears for a static
camera, and the static camera can be viewed as just a special
case where the camera motion follows the trivial parabola.

D. Extrinsic Camera Calibration

Before continuing, we briefly describe how to estimate the
required extrinsic camera transformations R, and t, needed

to relate each video frame to a common coordinate system.
Modern-day camera calibration techniques consist of three
basic steps: (1) image features are automatically detected in
each video frame; (2) the features are matched across video
frames; and (3) the matched features are used to estimate
the camera parameters: extrinsic (R, t,) and intrinsic (fo-
cal length, principal point). A commonly used and effective
technique for this last step is bundle adjustment [20].

Among the many available software tools for extrinsic
camera calibration, we employ Voodoo Camera Tracker [21].
Within this software, we employ the SIFT operator [22]
to extract image features and the RANSAC algorithm for
matching features.

E. Size Constraints

Although the perspective projection of a parabola makes an
ideal model for representing the image of ballistic trajectory,
the previously mentioned scale ambiguity can lead to bad
behavior when data are noisy or if the underlying motion is not
actually ballistic. In these cases, the solution may be skewed
dramatically in the otherwise unconstrained part of the solution
space. This skew typically manifests as trajectories in planes
that are nearly parallel to the view lines with unreasonably
high velocities and accelerations.

To prevent these degenerate solutions, an optional constraint
can be imposed based on the variation in size of a projectile
over time. With the assumption that the actual projectile is of
constant size, then its projected size in the image is inversely
proportional to the distance between the object and camera
center as measured orthogonal to the image plane. Accord-
ingly, the additional constraints require that the trajectory’s
distance to the image plane vary based on measurements of
the object’s size in the input images.

Consider a spherical projectile with diameter d at position
(1,41, 71) relative to the camera center with the z-axis being
perpendicular to the image plane. The projected size of this
projectile will be d; = fd/z1, where f is the camera focal
length. As the projectile moves to another position (2, y2, 22),
the projected size is dy = fd/ 2. The ratio of these projections
is dy / di = 21 /z2. Note that this ratio does not depend on the
focal length f or diameter d.

For the static camera case, this basic constraint takes the
form:

7 —c Cik

— 5

21

I —c? @h
where ¢* is the z-component of the camera center c, dy and dy,
are the measured sizes of the projectile in the image at times
T7=1and 7 =k, and [§ and [ are the z-components of 1,
and 1 as defined in Equation (10). This constraint expands

to:
Z _ a2 d
S1 {ql ¢ ] — Sk . = 0.

22
= 7 (22)

Note that this constraint is linear in the unknown parametric
variables s; and sj. These linear constraints forall k = 2...n
can be included when solving for the trajectory parameters.
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For the moving camera case, the constraint in Equation (22)
takes the form:

3 z 7
r;-qi —c¢ dp,

! [riql_l} Sk l] =0
k Ak —Cp dy

where r% is the third row of the rotation matrix Ry.

(23)

F. Trajectory Estimation

The constraints from the preceding sections can be assem-
bled into a linear system of equations. For both the static
and moving camera cases, this system will have a similar
structure. This system can be over-constrained, either because
the data cannot be fit by a parabola or because of noise
caused by small measurement errors. This system can also
be under-constrained due to a scale ambiguity, as previously
described in Sections III-B and III-C. The following least-
squares solution contends with all of these cases.

For the static camera case, the unknown parameters, pg, Vv,
a,and s, (7 = 1...n), are gathered into a length n+9 vector:

u = [pf v* a” p§ v¥ a¥ p§ v* a® sy sy (24)

The constraints, Equations (13)-(15), are assembled into a

linear system Mu = b where:

(17200000 0c—gf 0 0 ]
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Mo |00 01mF00 0 0 gl 0
00000 01mZ 0 c—g.. 0
o
172000000 0 0 ..ct—gt
2
000172000 0 0 ¢ — gy
2
00000017 % 0 0 ...c"—q]
(25)
and

-
b=["c "V P] .

For the moving camera case, Equations (18)-(20), the ¢ — q;
in the rows of M are replaced with ¢; — R,q,, and b is
replaced with:

b= [cF+t5 Jt! FHtE . EAtE Aty E ]

If the optional size constraints from Section III-E are used,
then M is extended by appending an additional n — 1 rows
with a corresponding number of zeros appended to b. For a
static camera these rows have the form:

ooooooooogjii —j— 0 ... 0
00000000 0%4=< o -4 0

%—¢ d (26)
00000000 04= o 0o .. —d

q,—¢ dy

For the moving camera case, the q, — ¢ are correspondingly
replaced with R;q; —c;.

The least-squares solution to the system of constraints is
given by u = M*b, where M™ denotes pseudo-inverse
computed as M = VS—1UT, where M = USV is the
singular-value decomposition of M.

Due to the possible scale ambiguity, this solution may not
be unique. This occurs when the smallest-magnitude singular
value in S is zero. Due to small amounts of measurement
noise the smallest singular value may not be identically zero.
We consider the smallest singular value to be zero if it is less
than 0.1 times the second-smallest singular value.

If there is no zero singular value then M™b is our final
solution. Otherwise the ambiguity is resolved by finding the
solution where ||al| = 9.8m/s?. Let u* be the column of V
corresponding to the zero singular value. The final solution is
u = MTb+au* where « is selected by solving the quadratic
equation:

2
H[Oﬂar 00a?00a*0---0]" - (M*b + au*) ‘ =982 .
27

In the case of a static camera, this quadratic constraint on
the acceleration will give us the scaling that corresponds to
its size in the physical world. More importantly it also avoids
the trivial solution of u = 0 when b = 0.

In the case of a moving camera where both the camera
and the projectile follow a parabolic path, any linear blend
between the two paths will satisfy Equation (17). Like a scale
ambiguity, this situation will manifest as a zero singular value
in S and can be handled with the quadratic acceleration con-
straint as described above. If the camera follows a parabolic
path but the projectile does not, then the system will be fully
determined with only a degenerate solution where all the s;
are zero. Note also that when used with a moving camera,
Equation (27) assumes that ¢, and t, are expressed in units
of meters. If other units have been used then the constant 9.8
should be adjusted accordingly.

G. Forensics

The estimation of the projectile motion described in the
previous two sections yields two parametrizations of the
projectile path. The first is the initial position, velocity and
acceleration (pg, Vv, a) as specified in Equation (1). The second
is a non-parametric representation specified by the variables
Sz

For authentic video of a ballistic projectile, these rep-
resentations should be in agreement, while an imperfectly
faked projectile motion will yield inconsistencies in these
representations. For the static camera case, we quantify the
error in these representations as the average Euclidean distance
between the pair of representations of the projectile motion:

1 n
E = = -1 28
- ; Ipr = 1] 28)
1 n
= =) lpo + v+ far) - (c+ s(ar — <), 29)
=1
where || - || denotes a vector 2-norm. Specifically, an error

E above a specified threshold is taken to be evidence of
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tampering. For the moving camera case, this error takes on
a similar form:

E=1Llyr

n T=1

I(po + v7 + 3ar?)

_((CT + t'r) + ST(RTqT - (30)

e )
This average error will be large when an overall path does
not correspond to a ballistic trajectory. For situations where
only small parts of an otherwise correct motion have been
altered, the maximum error may also be informative. Note,
however, that because the error E' is specified in world-space
units, a reasonable threshold will depend on the overall scale
of the scene and should be chosen accordingly. Furthermore,
as shown for example in Figs. 3-6, a visual comparison can
be made of the difference between the parametric and non-
parametric solutions.

H. Summary

Here we summarize the algorithmic steps required to ana-
lyze a projectile’s trajectory recorded from a static or moving
camera.

1) Tracking: On the first video frame manually select a
bounding box that is centered on the projectile’s center
of mass. On the remaining video frames automatically
track the projectile’s position (Section IV-A).

2) Size Constraint (optional): On each video frame man-
ually estimate the size of the projectile (e.g., a ball’s
diameter). This step can be automated by using the
results of the tracking in step 1.

3) Extrinsic Calibration: For a moving camera estimate
the extrinsic camera transformations R and t.. at each
time 7 that relates each video frame to a common
coordinate system (Section III-D).

4) Trajectory Estimation: Using the tracked projectile, the
size constraint (optional), and the results of extrinsic
calibration (for a moving camera), construct and solve
the linear system Mu = b (Section III-F). The solution
of this linear system yields a parametric and non-
parametric parametrization of the projectile’s trajectory.

5) Forensics: Compute the error between the two trajec-
tory parametrizations (Section III-G). An error above a
specified threshold is considered to be evidence of a
fake.

IV. RESULTS

We evaluate the efficacy of our forensic technique on
authentic and fake videos of our creation, and on several
videos obtained from video-sharing websites such as YouTube.
In each example, the optional size constraint described in
Section III-E was used. In order to be able to directly compare
the error metric, Equation (29) or (30), across different videos,
the size constraint is weighted to yield the same average
absolute difference, Equation (22). Specifically, each row of
the matrix in Equation (26) is weighted by a scalar amount that
controls the relative penalty contributed by the size constraint.
An iterative approach was taken to determine this weighting.
On each iteration the linear system is solved, and the weighting
is decreased until the difference reaches a specified threshold.

Because the trajectory estimation is scaled so that the acceler-
ation term is 9.8m/s?, Equation (27), the resulting error metric
is specified in meters.

A. Tracking

The projection of a projectile’s center of mass q, on each
video frame is estimated using a combination of manual
and automatic tracking. A user first manually selects the
approximate center of mass of the projectile on each frame. A
user also places a bounding box around the projectile in the
first frame, which is subsequently used as a template to refine
the initial manually selected projectile locations. The bounding
box is selected such that its center of mass corresponds to
the projectile’s center of mass. For each frame, the cross-
correlation between the template and a small region around
the user selected location is computed. The final projectile
location is the position that maximizes the cross-correlation.
The template is updated on each frame by automatically
moving the selected bounding box to the next frame. This
contends with the possible changing appearance and size of
the projectile over time.

A specialized tracking algorithm is employed when the
projectile is spherical (a basketball or soccer ball). Specifically,
a circular Hough transform [23] is used to refine the location
of the initially selected projectile location.

B. Simulations

We simulated ballistic trajectories of a projectile with
varying initial positions relative to a fixed and stationary
camera, varying velocities, small amounts of additive noise,
and varying planes of motion relative to the camera. These
trajectories had known world and image positions, so no
tracking algorithm was required. In addition, the projectile
was simulated as a point, so the optional size constraint was
not used. Ten thousand random trajectories were generated
from which the error, Equation (29), between the estimated
parametric and non-parametric parametrizations was com-
puted. The mean error for the authentic ballistic trajectories is
0.0096 with a standard deviation of 0.0039. Non-ballistic, yet
visually plausible, trajectories were created by sampling a path
along an ellipse. Ten thousand random elliptical trajectories
were created. The mean error for the elliptical trajectories
is 0.0446 with a standard deviation of 0.0150. In terms of
discriminability, 98.82% of the parabolic trajectories have an
error less than 0.02, while 97.96% of the elliptical trajectories
have an error greater than 0.02, revealing good discrimination.

C. Static Camera

Images in Fig. 3 show results from videos recorded with a
static camera. The images in panels (a) show four frames taken
from each of the video sequences. Panel (b) shows the two
parametrizations of the estimated trajectory: the parametric
trajectory specified by initial position pg, velocity v, and
acceleration a is denoted with filled yellow dots and solid line,
and locations along the non-parametric trajectory specified by
the variables s, are denoted with open blue circles. The small
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black dot corresponds to the camera center and the small red
dots correspond to the projection of the projectile in each video
frame. Panel (c) shows the estimated parametric trajectory,
denoted with filled yellow dots, projected into the image plane,
and the tracked position of the projectile denoted with small
red dots.

In the first column the different parametrizations of the pro-
jectile are in agreement, as would be expected for an authentic
video. The different parametrizations are not in agreement for
the second and third videos revealing them to be fakes. The
mean error from Equation (29) for these three sequences are
respectively 0.014m, 0.151m, and 0.175m, Table I. The errors
for the fake videos are an order of magnitude larger than for
the authentic video.

Note that in the first column of Fig. 3 the ball temporarily
disappears from the field of view. Regardless, we can still set
up the linear system, skipping frames where the ball cannot
be observed, because the time-coding of the video establishes
a consistent time parametrization. Once we have computed
Po, Vv, and a, the full trajectory can then be estimated by
extrapolating the ball’s position during the time it is out of
the field of view.

A total of six authentic and seven fake videos with static
cameras were analyzed, a subset of which are shown in Figs. 3
and 7(a)-(b). The mean error averaged over all the authentic
videos is 0.023m and the largest mean error for any of the
authentic videos is 0.032m. The mean error averaged over the
fake videos is an order of magnitude larger at 0.247m, and
the smallest of the mean errors for any of the fake videos is
0.106m. With a threshold of 0.075m, the authentic and fake
videos are perfectly separated in terms of the error metric used
to assess authenticity. There is also a very clear qualitative
distinction that can be seen when comparing the trajectory
visualizations in panel (c) of Fig. 3.

Images in Fig. 4 show results from three YouTube videos.
Based on the agreement of the estimated trajectories we
conclude that the first two videos are authentic while the
third is fake. The mean errors from Equation (29) for these
sequences are 0.010m, 0.038m, and 0.307m, Table 1. The
errors for the fake video are an order of magnitude larger
than for the authentic videos. Images in the first two columns
of Fig 7(e) show results from two more YouTube videos. With
a mean error of 0.033m and 0.036m, we conclude that these
videos are authentic.

D. Moving Camera

Images in Fig. 5 show results from videos recorded with a
moving camera. Panels (a) show four video frames from each
motion sequence. Shown in panel (b) are the two parametriza-
tions of the estimated trajectory: the parametric trajectory
specified by initial position pg, velocity v, and acceleration a
is denoted with filled yellow dots and solid line, and the non-
parametric trajectory specified by the variables s, is denoted
with open blue circles. The small black dot corresponds to
the camera center and the small red dots correspond to the
projection of the projectile in each video frame. Shown in
panel (c) is the estimated parametric trajectory, denoted with

Fig Col l  (m) o (m) max (m) l Truth  Predict
3 1 0.014 0.011 0.044 real real
3 2 0.151 0.093 0.382 fake fake
3 3 0.175 0.077 0.420 fake fake
4 1 0.038 0.029 0.121 — real
4 2 0.010 0.009 0.033 — real
4 3 0.307 0.114 0.750 — fake
5 1 0.027 0.019 0.082 real real
5 2 0.082 0.072 0.341 fake fake
5 3 0.266 0.173 0.934 fake fake
6 1 0.024 0.016 0.077 — real
6 2 0.056 0.035 0.162 — real
6 3 0.119 0.064 0.365 — fake

TABLE I. The error between the parametric and non-parametric parametriza-
tions of the estimated projectile trajectory for a static camera (Figs. 3 and 4),
Equation (29), and for a moving camera (Figs. 5 and 6), Equation (30). Shown
are the mean p, standard deviation o, and maximum error, specified in meters.
Shown in the last two columns are, respectively, the actual and predicted
authenticity of each video. (Actual authenticity is not known for the YouTube
videos).

filled yellow dots, projected into the image plane, and the
tracked position of the projectile denoted with small red
dots. The underlying image in panel (c) was constructed by
compositing the video frames into a single composite.

In the first column the different parametrizations of the
projectile are in agreement, as would be expected for an
authentic video. The different parametrizations are not in
agreement for the second and third videos revealing them to be
fakes. The mean error, Equation (30), for these three sequences
are 0.027m, 0.082m, and 0.266m, Table I. The errors for the
fake videos are significantly larger than for the authentic video.

A total of five authentic and six fake videos with a moving
camera were analyzed, a subset of which are shown in Figs. 5
and 7(c)-(d). The mean error averaged over the authentic
videos is 0.034m and the largest mean error for any of the
authentic videos is 0.049m. The mean error for the fake videos
is several times larger at 0.201m, and the smallest of the mean
errors for any of the fake videos is 0.081m. With the same
threshold as in the static camera case of 0.075m, the authentic
and fake videos are perfectly separated in terms of the error
metric used to assess authenticity. As with the static camera
examples, there is also a very clear qualitative distinction that
can be seen when comparing the trajectory visualizations.

Images in Fig. 6 show results from three YouTube videos.
Based on the agreement of the estimated trajectories we
conclude that the first two videos are authentic while the
third is fake. The mean errors from Equation (29) for these
three sequences are 0.056m, 0.024m, and 0.119m, Table I.
The errors for the fake videos are significantly larger than for
the authentic video. The image in the last column of Fig 7(e)
shows results from one more YouTube video. With a mean
error of 0.029m, we conclude that this video is authentic.

V. DISCUSSION

We have described a geometric technique for detecting
forged ballistic motion in video sequences. This technique
explicitly models the three-dimensional trajectory of objects in
free-flight and the two-dimensional imaging of the trajectory
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http://www.youtube.com/watch?v=z7NpkDCDYjg http://www.youtube.com/watch?v=RLJ7aNkIv7I http://www.youtube.com/watch?v=ucGLO8wzxNM

Fig. 3. One authentic video (left), one fake video (middle), and a non-ballistic motion (right) all from a static camera. Shown in panel (a) are four sample
video frames. Shown in panel (b) are the two parametrizations of the estimated trajectory: the parametric trajectory specified by po, v, a (filled yellow dots
and solid line), and the non-parametric trajectory specified by the variables s, (open blue circles). The small black dot corresponds to the camera center and
the small red dots correspond to the projection of the projectile in each video frame. Note that the two parametrizations are in agreement for the authentic
video but not for the fake videos. Shown in panel (c) is the estimated parametric trajectory projected into the image plane (filled yellow dots) and the tracked
position of the projectile (small red dots). These locations are in agreement for the authentic video but not for the other videos.


http://www.youtube.com/watch?v=z7NpkDCDYjg
http://www.youtube.com/watch?v=RLJ7aNkIv7I
http://www.youtube.com/watch?v=ucGLQ8wzxNM
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http://www.youtube.com/watch?v=wpYM3NkMYMs http://www.youtube.com/watch?v=kDUHTioJi7A http://www.youtube.com/watch?v=WbaH52J13So

Fig. 4. Three YouTube videos from a static camera. Shown in panel (a) are four sample video frames. Shown in panel (b) are the two parametrizations of
the estimated trajectory: the parametric trajectory specified by po, v, a (filled yellow dots and solid line), and the non-parametric trajectory specified by the
variables s (open blue circles). The small black dot corresponds to the camera center and the small red dots correspond to the projection of the projectile in
each video frame. Shown in panel (c) is the estimated parametric trajectory projected into the image plane (filled yellow dots) and the tracked position of the
projectile (small red dots). Based on the agreement of the estimated trajectories we conclude that the first two videos are authentic while the third is fake.


http://www.youtube.com/watch?v=wpYM3NkMYMs
http://www.youtube.com/watch?v=kDUHTioJi7A
http://www.youtube.com/watch?v=WbaH52JI3So
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http://www.youtube.com/watch?v=4n8B1jWjsq4 http://www.youtube.com/watch ?v=PumYuLIHDoc

Fig. 5. One authentic video (left), one fake video (middle), and a non-ballistic motion (right) all from a moving camera. Shown in panel (a) are four sample
video frames. Shown in panel (b) are the two parametrizations of the estimated trajectory: the parametric trajectory specified by po, v, a (filled yellow dots
and solid line), and the non-parametric trajectory specified by the variables s, (open blue circles). The small black dot corresponds to the camera center and
the small red dots correspond to the projection of the projectile in each video frame. Note that the two parametrizations are in agreement for the authentic
video but not for the fake videos. Shown in panel (c) is the estimated parametric trajectory projected into a rectified composite image plane (filled yellow
dots) and the tracked position of the projectile (small red dots). These locations are in agreement for the authentic video but not for the other videos.


http://www.youtube.com/watch?v=4n8B1jWjsq4
http://www.youtube.com/watch?v=3v93eqwwkV0
http://www.youtube.com/watch?v=PumYuLlHDoc
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http://www.youtube.com/watch ?v=2JwbubAX-Aw http://www.youtube.com/watch?v=EXPOfStEILA

Fig. 6. Two YouTube videos from a moving camera. Shown in panel (a) are four sample video frames. Shown in panel (b) are the two parametrizations of
the estimated trajectory: the parametric trajectory specified by pg, v, a (filled yellow dots and solid line), and the non-parametric trajectory specified by the
variables s, (open blue circles). The small black dot corresponds to the camera center and the small red dots correspond to the projection of the projectile
in each video frame. Shown in panel (c) is the estimated parametric trajectory projected into a rectified composite image plane (filled yellow dots) and the

tracked position of the projectile (small red dots). Based on the agreement of the estimated trajectories we conclude that the first video is authentic while the
second is fake.


http://www.youtube.com/watch?v=2JwbubAX-Aw
http://www.youtube.com/watch?v=EXPOfStElLA
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http://www.youtube.com/watch?v=KAt4IX7rdyc

http://www.youtube.com/watch?v
=

(d)

http://www.youtube.com/watch?v=7gsAC5_0QxE

=y

— X

http://www.youtube.com/watch?v=utHYnOXU1-Y http://www.youtube.com/watch?v=TOi5-T6rcCO http://www.youtube.com/watch?v=TKcnJP2leuA

Fig. 7. Additional test videos. Shown in panel (a) are three authentic videos from a static camera. Shown in panel (b) are three fake videos from a static
camera. Shown in panel (c) are three authentic videos from a moving camera. Shown in panel (d) are three fake videos from a moving camera. Shown in
panel (e) are three videos from YouTube, the first two taken from a static camera and the third from a moving camera. For all the examples, the estimated
parametric trajectory projected into the image plane (filled yellow dots) and the tracked position of the projectile (small red dots) are shown. The two estimated
trajectories are in agreement for authentic videos, but not for manipulated sequences.


http://www.youtube.com/watch?v=GbKA7t79Wds
http://www.youtube.com/watch?v=BBQvkXIG6CU
http://www.youtube.com/watch?v=KAt4lX7rdyc
http://www.youtube.com/watch?v=6RPuXxdRJbA
http://www.youtube.com/watch?v=ChawQ_3CjbI
http://www.youtube.com/watch?v=T80STiHaAUQ
http://www.youtube.com/watch?v=6-FZ8pMiWRk
http://www.youtube.com/watch?v=MEIS_gkgGYI
http://www.youtube.com/watch?v=c85qoQ8K6hQ
http://www.youtube.com/watch?v=7gsAC5_0QxE
http://www.youtube.com/watch?v=TaX0mRzBvIg
http://www.youtube.com/watch?v=ys4ujiagA1I
http://www.youtube.com/watch?v=utHYn0XU1-Y 
http://www.youtube.com/watch?v=TOi5-T6rcC0
http://www.youtube.com/watch?v=TKcnJP2leuA 
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by a static or moving camera. We have shown that the three-
dimensional trajectory can be directly and reliably estimated
from a video sequence. Deviations from this model provide ev-
idence of manipulation. This forensic analysis makes minimal
assumptions, requires limited user input, and is computation-
ally efficient. We have verified the efficacy of this technique in
large-scale simulations, and on numerous real-world examples.

Once a moving camera is calibrated for its extrinsic param-
eters, the analysis of a video from a moving camera and static
camera rely on the same underlying analysis. In the case of
a static camera, the primary source of error in the analysis is
the localization of the projectile on each frame, particularly in
the presence of motion blur. In the case of a moving camera,
motion blur is often reduced because the camera typically
tracks the projectile. The analysis, however, requires extrinsic
camera calibration which is the primary source of error. In our
simulations and experiments, however, this error is relatively
small — small enough that the same error threshold can be
used for the analysis of video from both a static and moving
camera.

Although somewhat narrowly applicable, this forensic tool
adds to a growing set of techniques for authenticating images
and video. One of the advantages of geometric techniques
over techniques based on low-level image statistics is that
the modeling and estimation of geometry is less sensitive
to resolution and compression that can easily confound the
statistical analysis of images and video.

The analysis of projectiles in video also has applications
in computer vision and robotics. Unlike previous approaches,
our analysis does not require a stereo camera pair, explicit
camera calibration, or any other information about the scene
geometry. Further, our analysis is applicable for a stationary
or moving camera with unknown camera motion.

As with any forensic technique, it is important to consider
the ease with which counter-measures can circumvent our
forensic analysis of ballistic motion. Because our analysis con-
siders the three-dimensional trajectory of a projectile, a two-
dimensional image-based manipulation is unlikely to correctly
generate a physically plausible three-dimensional trajectory.
This is made even more unlikely when the video is filmed with
a moving camera, because there is no frame of reference from
which a forger can specify the overall trajectory. A determined
forger could, of course, compute a desired 3-D parabolic
trajectory, project it under the appropriate homography, and
then alter a projectile’s path accordingly. However, such a
trajectory may not always exist for scenarios that a forger
wishes to depict. In particular, constraints such as combining
an altered trajectory with an authentic initial segment of
motion or connecting specific targets in a scene, can create
situations where no physically possible ballistic motion would
meet the forger’s requirements. Furthermore, for a moving
camera the forger would have to first align all of the frames
into a common coordinate system and project edits back into
the original video sequence. This counter-measure, while not
impossible, is currently outside of the capabilities of available
video-editing software.

While we have focused only on ballistic motions, the basic
framework presented here could be applied to analyzing the

motion of cars, planes, rockets, or other moving objects. This
would, of course, require more sophisticated models of motion
to account for the particular type of accelerations experienced
by these objects.
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