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Abstract

This paper presents a method for efficient compression and relight-
ing with high-resolution, precomputed light transport matrices. We
accomplish this using a 4D wavelet transform, transforming the
columns of the transport matrix, in addition to the 2D row trans-
form used in previous work. We show that a standard 4D wavelet
transform can actually inflate portions of the matrix, because high-
frequency lights lead to high-frequency images that cannot easily be
compressed. Therefore, we present an adaptive 4D wavelet trans-
form that terminates at a level that avoids inflation and maximizes
sparsity in the matrix data. Finally, we present an algorithm for fast
relighting from adaptively compressed transport matrices. Com-
bined with a GPU-based precomputation pipeline, this results in an
image and geometry relighting system that performs significantly
better than 2D compression techniques, on average 2x-3x better in
terms of storage cost and rendering speed for equal quality matri-
ces.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gener-
ation; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism; G.1.2 [Numerical Analysis]: Approximation—Wavelets
and Fractals, Nonlinear Approximation

Keywords: Relighting, Pre-computed Radiance Transfer, Non-
linear Approximation, Wavelet Compression

1 Introduction

Many realistic image synthesis techniques require the evaluation of
complex, multi-dimensional integrals, and are therefore impracti-
cal for real-time rendering. Recent research has bridged the gap
between image quality and rendering speed by precomputing light
transport effects. These techniques precompute functions in the
light transport integral, and reuse this data to render a scene under
dynamic viewpoint and illumination. Using such precomputation
methods, it is possible to render high-quality images in real-time,
but there is the burden of significant storage and memory costs.
In most cases, approximation techniques are used to compress the
light transport data and reduce storage requirements.

The earliest systems offered only low frequency lighting effects,
fixed viewpoint or diffuse surfaces, and static scenes. Different ap-
proaches have removed various combinations of these limitations.
Capturing high-frequency lighting effects requires high-resolution
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Figure 1: Comparison of relighting from 2D and 4D compressed
matrices. The image is relit under illumination from St. Peter’s
Basilica,a) shows the result from a 2D compressed matrix andb)
the result from an 4D compressed matrix. The results are nearly
indistinguishable, but the 4D matrix is one third the size of the 2D
matrix.

sampling and consequently more basis function coefficients for ac-
curate approximation. However, these high-resolution transport
matrices require significant storage space, which can easily exceed
hundreds of megabytes. As scene complexity grows, the space nec-
essary to store precomputed results can become prohibitively large.
This paper addresses the problem of reducing the storage required
for precomputing high-resolution transport matrices.

We present a 4D wavelet decomposition of the light transport ma-
trix that consists of the following: a 2D transform of the light sam-
ples (matrix rows), followed by a 2D transform of the image sam-
ples (matrix columns). Using this representation, we identify and
eliminate coherence in the matrix, which corresponds to unneces-
sarily high sampling of image and lighting. This is a seemingly
natural extension to the 2D wavelet decomposition technique of Ng
et al. [2003] in that they compress the matrix by making the rows
sparse. However, we found that a naive 4D transform, while de-
signed to create additional sparsity in the matrix columns, can ac-
tually inflate the size of the matrix.

To correct for this inflation, we modify the 4D wavelet transform
to better account for existing sparsity in the matrix. We do this
by transforming the columns adaptively, meaning we terminate the
wavelet transform once we reach a level where there is no more co-
herence in the downsampled image. In this way, we compress the
matrix using a minimum set of wavelet basis functions, which is ef-
fectively the same as minimizing the light and image sampling rates
using non-uniform sampling. We then present a novel algorithm
for relighting from adaptively compressed light transport matrices,
along with a complete system capable of achieving 2x-3x greater
compression and rendering speed compared to 2D techniques. Fi-
nally, we present results from our system and discuss future direc-
tions for research in light transport matrix compression.



2 Related Work

Precomputed radiance transfer was introduced by Kautz et
al. [2002] and Sloan et al. [2002] for dynamic low frequency en-
vironments. These systems were very limited. They used either
a fixed viewpoint or a diffuse BRDF and a low-dimensional ap-
proximation using spherical harmonics, which restricted them low
frequency lighting effects in order to keep the transport matrix a
managable size. Furthermore, some techniques could only handle
static scenes. Since the introduction of PRT, research has mainly fo-
cused on expanding the feature sets of the system, sometimes using
new compression schemes to achieve this goal.

One branch of improvements focused on adding all-frequency light-
ing and view dependent effects. Ng et al. [2003] used the Haar
wavelet basis to allow for all-frequency shadows, but were still lim-
ited to either static scenes or a diffuse BRDF. Liu et al. [2004] and
Wang et al. [2004] concurrently extended PRT to allow for glossy
materials by factoring the BRDF into view and light direction de-
pendent terms. Wang et al. [2005] introduce a method for precom-
puting transport vectors for translucent objects, including single and
multiple scattering. Ng et al. [2004] introduced the wavelet triple
product integral which allows the separation of the BRDF and vis-
ibility terms. Their system can relight a scene under varying all-
frequency lighting and viewing conditions in a few seconds, but is
still limited to static scenes.

Another branch of techniques focused on adding local lighting and
dynamic scenes, accepting low-frequency and view independent
lighting effects. Sloan et al. [2002] use a neighborhood transfer
technique to generate soft shadows from dynamic objects. Sloan et
al. [2005] use zonal harmonics to quickly rotate transfer and pro-
duce dynamic local shading effects. Kautz et al. [2004] use ap-
proximate hemispherical rasterization to render soft shadows with
explicit occlusion information. Kontkanen and Laine [2005] pre-
compute ambient occlusion fields to render soft cast shadows in
real-time. Ren et al. [2006] model geometry as a set of spheres and
use spherical harmonic exponentiation to calculate visibility. Yet
another class of techniques computes the direct lighting on a set of
sample points in the scene using efficient existing techniques and
computes the resulting indirect lighting at view points [Kontkanen
et al. 2006; Hăsan et al. 2006]. However, these techniques cannot
account for high-frequency view-dependent lighting effects.

Recently the gap between these two branches has been bridged.
Zhou et al. [2005] precompute shadow fields for each type of ob-
ject to render dynamic objects illuminated by multiple local light
sources. Wang et al. [Wang et al. 2006] present an efficient method
for wavelet rotation and apply this to environment rendering. Many
of the techniques mentioned could use this wavelet rotation to im-
plement more efficient relighting by rotating a single compressed
version of the BRDF into the local frame for each vertex. Sun
and Mukherjee [2006] generalized wavelet product integrals, in-
corporating dynamic occlusions. They also present a just-in-time
radiance transfer technique which reduces the shading integral per-
formed each frame to a double product integral.

All precomputed radiance transfer techniques exploit angular co-
herence by projecting transport vectors onto some basis and ap-
proximating the result. Overbeck et al. [2006] present a system
which exploits temporal coherence in lighting by using the differ-
ences in lighting between consecutive frames to efficiently relight
a scene. This coherence is orthogonal to that exploited by other
systems and is thus easily integrated with other techniques. Our
technique exploits spatial coherence in the image, which is often
ignored in other systems. Some techniques have exploited signal
coherence by clustering transport vectors [Sloan et al. 2003; Liu

et al. 2004; Tsai and Shih 2006]. Our technique instead uses an
adaptive wavelet transform to exploit spatial coherence.

3 Matrix Light Transport

The light transport operatorT(x,ωi → ωo) is a transfer function
that linearly maps incident radiance alongωi to exitant radiance
alongωo at a point x on a surface. As is typical of precomputed
radiance transport methods, we assume that the illumination is dis-
tant, and can therefore be written asL(ω), a function of direction
only. In this case the light transport operator is

T(x,ωi → ωo) = S(x,ωi) fr(x,ωi → ωo)(ωi ·n(x)),

whereS is a binary visibility term that tells whether the light in-
cident at x alongωi is shadowed,fr is the BRDF, andn(x) is the
surface normal at x. This form allows us to compactly express the
exitant radianceB(x,ωo) at a point x on a surface:

B(x,ωo) =
Z

Ω
T(x,ωi → ωo)L(ωi)dωi . (1)

If we make the assumption that either the viewpoint is fixed or the
geometry is perfectly diffuse, it can be shown that both the light
transport operator and the exitant radiance no longer depends on
the outgoing directionωo [Ng et al. 2003].

We can then discretize bothT and L by choosing a fixed set of
sample points xi in the scene and a fixed set of directionsω j . This
yields a lighting vectorL (e.g., a cubemap) and a transport matrix
T, and allows us to rewrite Equation 1 in matrix form:

B[xi ] = ∑
j

T[xi ,ω j ]L[ω j ]. (2)

Each row inT corresponds to a single sample point xi , and each
column corresponds to a single lighting directionω j . The size of
the matrix is therefore the product of the sampled lighting resolu-
tion and the spatial sampling resolution. For image relighting, each
spatial sample inT is an image pixel; for geometry relighting, the
xi are model vertices. In general, there is significant coherence in
this matrix, both in the rows and the columns.

In order to capture high-frequency lighting effects like sharp shad-
ows, we must finely sample both the image and the lighting, leading
to an extremely large matrixT. For some examples in this paper,
the raw transport matrix has roughly 109 elements, requiring many
gigabytes of storage. Therefore, compression is necessary to make
T a manageable size and to permit interactive rendering of scenes
under dynamic, complex illumination.

4 4D Wavelet Compression and Relighting

A 2D row transform alone can create a sparse matrix [Ng et al.
2003]. However, there is still significant coherence in the matrix.
As shown in Figure 2, the coherence in the columns depends on
the row wavelet level. Wavelet lights in the highest subbands create
sharp lighting effects and are already sparse. The wavelet scaling
function light is a large area light, which produces soft lighting ef-
fects and coherent images. Therefore we can further increase spar-
sity by using the 2D column transform to eliminate the remaining
coherence in the image space.

A 4D wavelet transform ofT is illustrated in Figure 3. We perform
a 2D wavelet transform over each cubemap face of each row ofT.
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Figure 2: Matrix column images showing different types of light
transport. The left image shows transport from the Haar scaling
function (large area light), while the other images correspond to
increasingly high-frequency lighting effects from smaller wavelet
lights. The left image is easy to compress with a full wavelet trans-
form, while the far right image is already sparse and thus more
difficult to compress further.
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Figure 3: A 4D wavelet decomposition of the light transport matrix
T. We perform a 2D wavelet transform of the light sample data
for each vertex (labeledr1 throughrN), followed by a 2D wavelet
transform of each column inT. The matrix layout and example
images are colored according to wavelet level, where black is the
finest level.

Next, we interpret the columns as 2D images and perform a 2D
wavelet transform of each column. Because we use a 2D transform
over lighting (row transform) and image (column transform), this
can be viewed as a 4D wavelet decomposition of the light transport
matrix.

Conceptually, this 4D decomposition partitionsT according to its
frequency content. That is, the row transform turns arbitrary light
transport at each point into a well-defined set of wavelet basis func-
tions. This is illustrated in Figure 3, where the matrix elements
(shown for rows r1 through rN) are colored according to their
wavelet level in the row transform. As a result, each column is
composed entirely of coefficients from one level of the row trans-
form, and contains lighting effects (e.g. shadows) that are related
to the size and position of a basis function at that level. In general,
there are 4l columns holding light transport from wavelet lights in
level l of the row transform.

a) b) c)

Figure 4: Column images fromT showing light tranport energy
from different basis functions. We show illumination from:a) A
single pixel light,b) a single Haar wavelet light at the same angu-
lar location asa, andc) a single Daubechies 6 orthogonal wavelet
light. The dark background in the wavelet images illustrates the
effectiveness of these filters for compressing rows inT.

4.1 Filters and Parameterization

Previous research has shown that a 2D Haar wavelet filter is effec-
tive for compressing light transport vectors and for non-linear light-
ing approximation [Ng et al. 2003]. Compression errors commonly
associated with Haar, such as blocking artifacts, are less a of prob-
lem since they are not visualized directly. That is, a rendered image
is a linear combination of row elements fromT, not the elements
themselves.

In addition to Haar, we transform the matrix rows using several
orthonormal, high-order wavelets including Daubechies 4, 6 and 8
[Daubechies 1988]. These filters are energy-preserving and can,in
some cases, more accurately approximate light transport for a given
number of terms. Figure 4 shows examples of light transport from
pixel and wavelet lights. The shadow information from the wavelet
lights is relatively sparse, and thus easier to compress, compared to
pixels. Note the significant difference in frequency content between
Haar and Daubechies 6.

In contrast to the row transform, it is far more important that we
minimize spatial error in the column image transform, since arti-
facts in this domain are directly visible. Therefore, we perform 2D
column transforms with wavelet filters commonly used in the image
compression literature. These include the Daubechies filters men-
tioned above as well as the biorthogonal Legall 5/3 and Daubechies
9/7 filters from the JPEG 2000 image compression standard. In
general, we find the 5/3 and 9/7 filters most effective for remov-
ing coherence in the image space without introducing unacceptable
artifacts.

For any filtering operation (i.e. wavelet transform), there is the need
for proper parameterization or there might be severe distortions in
the approximation. That is, the data set must be parameterized over
the same domain as the filter. For example, if the spatial samples
in a scene correspond to model vertices, then the model needs to be
parameterized over the plane before we can perform a 2D wavelet
transform of the matrix columns. Finding area-preserving planar
parameterizations of complex geometry, is a current research topic,
with significant recent interest in the graphics community [Lee et al.
1998; Gu et al. 2002]. We use geometry images generated by spher-
ical parameterization [Praun and Hoppe 2003; Gu et al. 2002] to
perform geometry relighting. Therefore image and geometry re-
lighting use the same pipeline and column transforms are simply
2D image wavelet transforms for both cases.



0.00001

0.0001

0.001

0.01

0.1

1

0 1000 2000 3000 4000 5000 6000 7000 8000

Approximation Terms

R
e

la
ti

v
e

 E
rr

o
r

Level 0

Level 2

Level 8

Figure 5: Relative error curves for untransformed, partially trans-
formed, and fully transformed columns. The optimal transform
depth is given by the curve with the lowest error for a given number
of approximation terms. For some approximations, performing full
4D compression actually increases error compared to 2D compres-
sion.

4.2 Adaptive Wavelet Tranforms

Unfortunately, it is possible that a 4D wavelet representation ofT
will capture less energy or require more storage space than the orig-
inal pixel data. After the row transform, some matrix columns are
amenable to wavelet transform while others are not. In particular,
there is aninflation point for each column, where further wavelet
transform steps will in fact increase the number of small, non-zero
transport elements. Naively performing a full 4D wavelet transform
can inflate the data size by as much as 4x for some columns in our
test matrices. This inflation can be explained by the relatively large
support of some wavelet bases. If energy is very well localized,
then filters with larger support such as those generally used for im-
age compression, actually increase data size by spreading energy
among more wavelet coefficients. Figure 5 shows error curves for
a few column transform levels of a typical column. This shows that
a full 4D transform can inflate data size, requiring more terms to
preserve the same amount of energy.

To avoid inflating the size of the transport matrix, we first have to
determine, for each column image, at what spatial resolution the
inflation begins. We define theoptimal transform depthfor a given
column image as the number of transform steps prior to the inflation
stage for that image. We can maximize sparsity inT using an adap-
tive 4D wavelet transform. Instead of performing a full 2D wavelet
transform of each column, we transform each column image to its
optimal transform depth. At stepl in the wavelet transform we only
need to compare the energy of the non-linear approximation atl and
l +1, choosing the level which preserves more energy. If both lev-
els contain all the energy in the column image, we choose the level
using fewer non-zero terms. Figure 5 shows that the optimal trans-
form depth depends on the number of approximation terms and is
not always the 2D or full 4D levels.

The optimal transform depth for a particular column is related to
the size of its corresponding wavelet light. Lights in the lower
wavelet subbands are large area lights and thus produce low-
frequency effects that are amenable to further compression. Lights
in higher wavelet subbands create high frequency effects that are
less amenable to further compression. This is important because it
provides us with a quantitative method for relating the frequency
of the lights with that of the image. However, although this rela-
tionship follows a general trend, there will likely be data-dependent

variations. Further, some high frequency effects, such as silhou-
ettes, are independent of lighting.

4.3 Scaling and Quantization

Our adaptive 4D compression scheme forT is especially sensitive
to scaling and quantization of the wavelet coefficients. To maintain
an accurate light transport approximation, we use non-linear scal-
ing to alter the histogram of the matrix columns. We first transform
the matrix rows in full floating-point with the 2D wavelet trans-
form. 2D wavelet compression commonly normalizes each row
with a linear scale factor equal to the maximum absolute coeffi-
cient value. However, we need a more sophisticated approach to
preserve accuracy in the 4D setting. Therefore, following the col-
umn transform, we apply a simple non-linear scaling function to
lift more terms above the zero quantization threshold. We scale
all coefficients at levell by 2l , since the structure of the wavelet
transform ensures that the resulting values are proportional to 2−l ,
wherel = 0 is the coarsest level. We note that although we scale
the coefficients, the non-linear approximation is performed on the
original coefficients. The non-linear scaling is performed only to
preserve accuracy which would otherwise be lost due to quantiza-
tion. Finally, we normalize the column data and dither and quantize
the entire matrix to a user specified number of bits. We find 9 bits
to be sufficient in general, and in many cases, the parameterization
of geometry images hides error and allows us to use fewer bits.

4.4 Precomputation Implementation

Most precomputed light transport methods require significant en-
gineering effort to implement efficiently, and our system is no ex-
ception. In fact, our 4D precomputation pipeline is more compli-
cated than typical 2D systems because we evaluate the rows ofT
in one pass and wavelet transform the column images in another.
Therefore, we have to transposeT between passes, which is a chal-
lenge for multi-gigabyte transport matrices and limited memory re-
sources. At a high level, our main precomputation steps include:

1. Light transport sampling.

2. 2D wavelet transform of the matrix rows.

3. Blocked matrix transpose operation onT.

4. 2D wavelet transform of the matrix columns.

5. Scaling and scalar quantization ofT.

For the first step, we sample the light transport operator (visibilty
and BRDF) by rasterizing a high-resolution hemicube at each spa-
tial sample and downsampling with bilinear interpolation to the ap-
propriate lighting resolution [Ng et al. 2003]. This sampling pro-
cess is implemented entirely on programmable graphics hardware.
We use pixel shaders to evaluate any analytic reflection function
(BRDF) that can be parameterized by the view direction and sur-
face normal. For step 2, we wavelet transform each hemicube face
using one of the row filters discussed in Section 4.1.

Step 3 is necessary because we sampleT in row-major order, but
we needT in column-major order to perform 2D wavelet transforms
on the column images. Transposing the matrix makes data access
cache-coherent and further allows us to store the matrix as com-
pressed, wavelet transformed images for efficient relighting. For
greater efficiency, we sample the matrix rows for relatively small
blocks of image pixels. We then transpose each block indepen-
dently, and construct column images progressively by storing the



transposed rows into memory mapped files. This is simply a stan-
dard, out-of-place matrix transpose and keeps disk activity to a min-
imum.

In the last precomputation steps, we transform each column image
in T to itsoptimal transform depthfor a user specifiedN term non-
linear approximation, as described in Section 4.2. It is necessary to
examine all transform depths because in some cases the sparsity can
fluctuate. This occurs in only a small fraction of matrix columns but
is enough to affect compression.

4.5 Relighting

Our image relighting algorithm is based on the technique of Ng et
al. [2003] in that we use a non-linear approximation for the light-
ing. As a result, we are able to render each frame accurately and
efficiently using a very small number of wavelet lights and, in turn,
a small fraction of the light transport matrixT. Relighting from a
2D compressed matrix is simple because Equation 2 is valid as long
asT andL are represented in the same orthonormal basis such as
pixels or Haar wavelets. However, relighting from our 4D represen-
tation is more complicated because the matrix column images are
wavelet transformed, yet we need the rendered image in pixels for
display.

We begin by presenting a relighting formula for full 4D wavelet
transforms, which we then extend to support adaptive transforms.
For anN-term non-linear lighting approximation, we can reformu-
late Equation 2 as:

B =
N

∑
i=1

wiS′

(

Ci
)

(3)

whereB is the rendered image,wi is a wavelet light,Ci is the com-
pressed column image corresponding towi , andS′ is the inverse
wavelet transform operator, modified to accommodate the non-
linear scaling from Section 4.3. However, Equation 3 is painfully
inefficient since it requiresN inverse wavelet transforms to produce
a single image. Fortunately,S′ is a linear operator, which means we
can factor it out of the summation to get:

B = S′

(

N

∑
i=1

wiCi

)

(4)

Now, this formulation is quite efficient considering it involves only
one inverse transform independent ofN. In fact, as we show in
Section 5, the computational cost ofS′ quickly becomes negligible
asN increases. In short, Equation 4 is a fast relighting solution for
our full 4D compression scheme.

We cannot use Equation 4 for relighting from an adaptively com-
pressed transport matrix because the columns are not expressed in
the same basis. We could go back to using Equation 3 by chang-
ing S′ to start at the transform depth of each column image, but
this would be prohibitively expensive. Fortunately, we can easily
derive an adaptive relighting formula with the same computational
cost of Equation 4. Note that the structure of the wavelet transform
allows us to rewriteS′ recursively in terms of single-step inverse
transforms:

S′ (C) = S′

l−1→l
(

S′

l−2→l−1
(

...

(

S′

0→1 (C) ...
)))

(5)

whereC is a column image, andS′
l→l+1 denotes a single-step in-

verse wavelet transform from levell to l + 1. Substituting Equa-
tion 5 into Equation 3, and once again exploiting the linearity ofS′,

lets us write a simple recursive formula for relighting from adap-
tively compressed matrix columns:

Bl+1 = ∑
i∈N(l+1)

wiCi +S′

l→l+1 (Bl ) (6)

B0 = ∑
i∈N(0)

wiCi (7)

whereBl is the rendered image for wavelet levels up to and in-
cluding l , and N(l) is the set of all wavelets lights for columns
transformed to levell . The desired cost of only one full inverse
transform per frame is explicit in the recursion. Finally, for effi-
cient implementation, we can rewrite this equation in iterative form
for all wavelet levelsW for a given image resolution:

B = ∑
l∈W

S′

l→l+1

(

∑
i∈N(l)

wiCi

)

(8)

Figure 6 shows a graphical illustration of the steps we use to directly
implement Equation 8. The steps of this algorithm for anN-term
non-linear lighting approximation are as follows:

1. Sort the lights according the transform depth of their corre-
sponding columns inT, such that lights for columns com-
pressed with more wavelet transform steps come first.

2. For each set of wavelet lightsN(l), compute the partial re-
lighting approximation using a sparse matrix multiply[Ng
et al. 2003].

3. Inverse transform the rendered image from levell to l +1, and
repeat these steps for all wavelet levels (i.e. for allN lights).

At each frame, we sample the illumination in the raw pixel basis
of a cubemap and compute a non-linear wavelet approximation for
the light vector. The running time for this relighting algorithm is
linear in the number of lights used for the non-linear approxima-
tion. The inverse wavelet transform isO(n), wheren is the number
of elements in a compressed column image, so the cost here only
depends on the size of the image, but is constant for any particu-
lar scene. Overall, this is significant because it provides us a way
to predict an approximate upper bound on the number of lights we
can use given a desired framerate. We discuss this in more detail in
Section 5.

5 Results

In this section, we present results for the algorithms in Section 4,
including compression and rendering times for test scenes. We
also analyze and compare error between 2D, 4D and adaptive 4D
wavelet approximations ofT. Not surprisingly, some scenes are
more amenable to 4D wavelet compression than others. In general,
however, we achieve around 2x-3x greater compression and relight-
ing speed relative to 2D compression with the same approximation
error.

5.1 Precomputation

Our precomputation times are reasonably efficient, ranging from
minutes for scenes with roughly 50-100k image samples to hours
for scenes with very high image and lighting resolutions. We
greatly reduce the cost of visibility sampling by storing the scene
geometry in fast video memory and substituting lower resolution
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Figure 6: A 1D illustration of our relighting pipeline, as applied to an n-term non-linear approximation. The columns are colored according
to a standard wavelet decomposition; the scaling function is shown as white,and the wavelet levels are differentiated with gray scales (black
being the finest level). First, we sort the lights based on the transform depth of their corresponding columns. This process forms clusters of
columns (labeled c1 through c4), where a cluster is defined as the set ofall columns with the same size scaling function. We relight each
frame using a sparse matrix multiply within each cluster, followed by a single-level inverse transform. This continues until we have a fully
reconstructed column image V.
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Figure 7: A graph showing sparsity vs. error in the light trans-
port approximation for 2D, full 4D, and adaptive 4D compression
schemes for an average scene. The adaptive 4D compression pro-
duces more numerically accurate approximations at all levels. The
naive 4D compression inflates the matrix at some sizes and com-
presses at others. Note the y-axis is log scale to focus on matrices
with reasonable error, 10% or less.

models for visibility sampling. Transport sampling makes up a rel-
atively small percentage of the total precomputation time for most
scenes. The matrix transpose and search for the optimal transform
depth consume the majority of processing time. This pass is expen-
sive because the raw transport matrix is usally many gigabytes, so
we cannot load the entire matrix into memory. Instead, we trans-
pose the matrix using anO(n2) process, wheren is the number of
blocks. Although the wavelet transform is a relatively fast,O(n) al-
gorithm, finding the optimal transform depth is expensive because
we sort the coefficients to compute the non-linear approximation.

5.2 Compression and Error Analysis

Measuring approximation error for precomputed transport matrices
is challenging because numeric error does not always translate to
perceptual error in the image. However, common error metrics like
the L2 norm are still useful for comparing compression methods.
Figure 7 shows graphs of sparsity vs. RMS error for typical light
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Figure 8: Graphs showing wavelet transform statistics for a sam-
ple matrix. The y-axis shows the average column transform depth
chosen using the algorithm in Section 4.4, as a function of the row
transform level of the associated wavelet lights (x-axis). As ex-
pected, low-frequency column images are transformed more on av-
erage than high-frequency columns.

transport matrices. The important point here is that adaptive 4D
compression has less error over the entire range of matrix sizes.
Also note that full 4D compression produces matrices both larger
and smaller than 2D compression. Full 4D compression also cannot
generate matrices with as large a range of sizes and error as adaptive
4D compression, reaching its minimum error and maximum size at
about 5% for the sample matrix. This occurs because, even with
non-linear scaling, most coefficients in the full matrix will quantize
to zero.

Figure 8 shows the average transform depth of the columns of a
sample matrix by the row transform level for the column. Images
corresponding to large wavelet lights are, on average, transformed
to a greater depth than those corresponding to small wavelet lights.
This confirms our expectation concerning the compressibility of
different column images like those in Figure 2.

In some cases, 2D compression schemes forT can yield highly
non-uniform storage requirements, since high-frequency columns
are compressed significantly more than low-frequency columns [Ng
et al. 2003]. The 4D adaptive wavelet transform removes coher-
ence in the columns wherever it exists, so the storage requirements
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Figure 9: Graphs comparing 2D and adaptive 4D relighting per-
formance for matrices of equal quality over a range of lighting ap-
proximations, averaged over 200 frames.a) shows the dynamic
compression rate for each matrix, which is high and steady for 4D
compression and increases slowly with more lighting terms for 2D
compression.b) shows the frame rate for both matrices. 4D com-
pression quickly surpasses 2D as we increase the number of wavelet
lights.

do not depend as heavily on the frequency content ofT. The re-
sult of the 4D wavelet compression is thatcolumns at all levels are
compressed to essentially the same extent. This is a useful result
because we can approximate the working data set for relighting as
NX, whereN is the number of lights andX is the average number
of non-linear approximation terms for a column image.

The wavelet filters used in each of the 2D transforms can greatly
affect the compression and error. We have performed a simple anal-
ysis of the filters mentioned in Section 4.1, and we found the com-
bination of Daubechies 4 for the row transform and Legall 5/3 for
the column transform is best. However, we have not performed this
analysis over a wide variety of matrix sizes and sample scenes. The
best choice will be data dependent. A full analysis of the interaction
of these wavelet transforms would be very valuable.

5.3 Relighting

We achieve interactive relighting using a straightforward imple-
mentation of the algorithm described in Section 4.5. Actual fram-
erates for our test scenes range from 5 to 100 frames per second
depending on the image and light resolutions, as well as the size of
the nonlinear approximation forL. For example, Figure 1 shows
an example image generated by our system and the graphs in Fig-

b)a)

Figure 10: An example of geometry relighting for a 256x256 mesh
and 6x64x64 lighting resolution, compressed to about 5.5% the
original matrix size. a) shows the geometry image, relit at 18
frames per second using a 256 term non-linear lighting approxima-
tion with no visible compression artifacts andb) shows this texture
applied to the mesh.

ure 9 show relighting results from a sample scene. We use the area
weighted method for non-linear approximation of the lighting as de-
scribed in Ng et al. [2003]. The dynamic compression rate, or the
effective compression of the working set of matrix columns for a
particular relit frame (grapha), is low for the 2D matrix and slowly
increases with more lighting terms. Since large wavelet lights usu-
ally contain the most energy and are among the first terms in the
lighting approximation, this indicates that the 2D matrix is less
compressed for large lights than for small lights. Adaptive 4D com-
pression provides significantly better dynamic compression rates
that are almost constant over the entire range of lighting approx-
imation sizes, even for matrices which are not limited by the user
specified number of column non-linear approximation terms. This
indicates that our adaptive 4D technique compresses all columns to
approximately the same extent, as we asserted earlier. In graphb
we see that initially the 2D compression scheme yields higher fram-
erate, which is due to the overhead of the inverse wavelet transform.
However, the 4D framerate quickly surpasses the 2D, by 2x-4x for
this particular scene, as we increase the number of wavelet lights.
The framerate is near linear once the inverse wavelet transform be-
comes insignificant, as expected given the linear working set de-
scribed in Section 5.2. We can use this property to approximate the
frame rate for a given number of lighting approximation terms.

6 Conclusions and Future Work

We have presented a compression and relighting technique, based
on adaptive 4D wavelet transforms, for high-resolution light trans-
port matrices. One of our insights is that the compressibility of
images or columns decreases for higher frequency lights. Indeed,
the net compression from both row and column transforms is ap-
proximately the same across all columns in our examples.

To make PRT more useful in practice we believe there must be a
focus on more effective compression as well as additional features.
Our technique improves compression and reduces the number of
transport terms involved in relighting, thus increasing the overall
frame rate. There is significant future work in extending this system
to other PRT techniques. In some cases the system should extend
easily by applying the additional transform and performing the new
relighting procedure, such as in systems which allow view depen-
dent BRDFs [Liu et al. 2004; Wang et al. 2004]. In these systems
there are essentially k matrices for a k-term BRDF approximation.



Each of this matrices can be compressed independently using our
technique. To perform relighting, view independent color vectors
are generated using each matrix. The final colors are calculated as
a linear combination of the view-independent color vectors using
view-dependent weights. We maintain all the benefits of our system
without significant changes to the underlying algorithm. However,
the method is not directly applicable to other systems, such as the
triple or generalized wavelet product integral based systems [Ng
et al. 2004; Sun and Mukherjee 2006].

CPCA has been used in other systems to exploit spatial coherence in
PRT data [Sloan et al. 2003; Liu et al. 2004]. Our technique offers
a much cheaper alternative to CPCA by using a standard wavelet
transform, choosing an optimal basis through our adaptive trans-
form. This becomes increasingly significant as the dimension of
the transport vectors increases to better represent lighting effects.
This improvement comes at the cost of requiring data to be param-
eterized as a geometry images [Praun and Hoppe 2003] for geome-
try relighting. Investigating remeshing procedures which take into
account relighting would be useful. Also, a more in depth and prin-
cipled approach to determine which wavelets interact well and why
would be useful not only in our system but in any system which
might combine sets of wavelet transforms. A more significant area
of future work would be investigating alternative spatial transforms,
specifically those which do not require special parameterization and
are not data dependent.

While the 4D adaptive wavelet transform presented here is one so-
lution to the problem of non-uniformly sampling light transport ma-
trices, it is by no means the only one. Future work can also focus
on direct approaches to non-uniformly sample precomputed matri-
ces and functions on geometry and images. We believe approaches
based on sampling the light transport function properly will be very
significant in future work in this area.
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