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Introduction
We describe a method for simultaneous two-way coupling
of fluid and deformable bodies. The interaction between a
fluid and deformable body can create complex and interest-
ing motion that would be difficult to convincingly animate
by hand.

Previous approaches used a time splitting procedure that
alternately fixes the fluid pressure while simulating the solid,
then fixes the solids velocity while simulating the fluid.
While this approach works reasonably well for physical sys-
tems with non-stiff coupling, it can lead to instability and
visual artifacts for other systems. These problems occur
because while solid velocities are fixed they will ignore ar-
bitrarily large fluid pressures, and the converse when the
fluid velocities are fixed. For a tightly coupled system like
a piston, time splitting becomes untenable and difficulties
can still arise even for less tightly coupled systems. Time
splitting also requires non-physical fixes for closed systems.
By enforcing simultaneous coupling our method avoids these
artifacts and allows for substantially larger time steps.

Overview
The interaction between a fluid and a deformable solid oc-
curs at the interface. The fluid applies pressure forces on
solids’ boundary and the solid imposes boundary fluxes on
the fluid. This information exchange occurs simultaneously
for real physical systems. Therefore, in order to simulate
the complex interactions between a solid and a fluid we need
to augment both simulations with extra degrees of freedom
and create a combined fully coupled system. The key idea
is that when performing pressure correction on the fluid and
implicitly solving for the solid’s node velocities, we need to
simultaneously account for how fluid pressure changes will
effect the deformable solid and how the solid’s motion will
effect the fluid.

Using a finite element or finite difference method and an
implicit Newmark time integration scheme the dynamics of
an elastic solid body deforming under pressure forces can be
fully discretized in the following form:
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The solid’s node displacement and velocity are denoted by
d and u respectively. M and C are the mass and damping
matrices. K is the non-linear stiffness matrix function and
K′ is it’s tangent matrix evaluated at dn. Forces due to
the pressure of the fluid are computed and mapped by the
J matrix. fe are any additional external forces. Finally, h
and n denote the timestep and time index respectively.

The fluid, on the other hand, needs to account for the
boundary fluxes imposed by the solid while satisfying the
incompressibility condition. The resulting Pressure Poisson
equation can be formulated as:

−D1Hun+1 +
h

q
D2G2pn+1 = D2v∗ (2)

where D1 and D2 are matrices for computing the divergence
due to the boundary and internal fluid fluxes respectively.

Figure 1: A frame from an animation of a jet interacting
with two thin rubber sheets.

G2 is the gradient matrix for internal fluxes and H is a ma-
trix that converts solid’s boundary node velocities into fluxes
on the fluids’s boundary. Finally, v∗ is the intermediate fluid
velocity computed from the fluid simulation that needs to be
projected onto it’s divergence free component vn+1.

In order to simulate full coupling between the fluid and
the solid we combine Equation (1) and Equation (2) to solve
for un+1 and pn+1 simultaneously:[
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Finally, we can compute the divergence free fluid velocities
vn+1 as follows:

vn+1
i =

{
(v∗ − h

ρ
(G2p))i if i is not a boundary face

(Hun+1)i if i is a boundary face

(4)

Results
Figure 1 shows a frame of animation demonstrating the in-
teraction between a jet of smoke and two thin rubber sheets.
The supplemental video includes this sheet example and also
a comparison showing how simultaneous coupling can be sta-
ble while an otherwise identical time-spitting simulation will
exhibit undesirable artifacts. With a time steps of 1

30
sec the

simultaneous coupling method presented in this paper re-
mains stable while the time-splitting method goes unstable.
The time-splitting method behaves stably only after reduc-
ing the time step to 1

60
sec. Even though the resulting system

in Equation (3) is larger than those used in time-splitting,
it is still very sparse and by solving it our method does not
incur an overhead large enough to offset the advantage of
using large timesteps.


