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Abstract
We present algorithms for simulating and visualizing the inser-
tion and steering of needles through deformable tissues for surgi-
cal training and planning. Needle insertion is an essential compo-
nent of many clinical procedures such as biopsies, injections, neuro-
surgery, and brachytherapy cancer treatment. The success of these
procedures depends on accurate guidance of the needle tip to a clin-
ical target while avoiding vital tissues. Needle insertion deforms
body tissues, making accurate placement difficult. Our interactive
needle insertion simulator models the coupling between a steerable
needle and deformable tissue. We introduce (1) a novel algorithm
for local remeshing that quickly enforces the conformity of a tetra-
hedral mesh to a curvilinear needle path, enabling accurate compu-
tation of contact forces, (2) an efficient method for coupling a 3D
finite element simulation with a 1D inextensible rod with stick-slip
friction, and (3) optimizations that reduce the computation time for
physically based simulations. We can realistically and interactively
simulate needle insertion into a prostate mesh of 13,375 tetrahedra
and 2,763 vertices at a 25 Hz frame rate on an 8-core 3.0 GHz In-
tel Xeon PC. The simulation models prostate brachytherapy with
needles of varying stiffness, steering needles around obstacles, and
supports motion planning for robotic needle insertion. We evalu-
ate the accuracy of the simulation by comparing against real-world
experiments in which flexible, steerable needles were inserted into
gel tissue phantoms.

Keywords: surgical simulation, needle insertion, real-time finite
element methods, coupled simulation

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Physically based modeling;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation; I.6.8 [Simulation and Modeling]: Types of
Simulation—Animation.

1 Introduction
Needle insertion is an essential component of many clinical proce-
dures such as biopsies, injections, neurosurgery, and brachytherapy
cancer treatment [Abolhassani et al., 2007]. The success of these
procedures depends on how close the needle tip is maneuvered to
the target. It is crucial that the needle avoid bone and other critical
structures and organs [Kohn et al., 2000]. Unfortunately, needle in-
sertion deforms body tissues enough that poor accuracy is the norm
in practice. For example, experienced physicians inserting radioac-
tive seeds into the prostate gland for brachytherapy prostate cancer
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Figure 1: Screenshots from our prostate brachytherapy simulator.
A needle is inserted from the left through the epidermis and dermis
into the prostate gland. a) Bevel-tip flexible needle. b) Symmetric-
tip stiff needle.

treatment experience average placement errors of 6.3 mm, about
15% of the prostate’s diameter [Taschereau et al., 2000].

Computer simulations of needle insertion procedures enable physi-
cians and other clinicians to train in a controlled environment that
exposes them to both common and rare patient cases without risks
to patient safety. Studies indicate that surgical skills learned us-
ing computational simulators directly improve operating room per-
formance by significantly decreasing procedure time and reducing
the frequency of medical errors by up to sixfold compared to tradi-
tional training [Seymour et al., 2002; Satava, 2005; Gallagher et al.,
2005]. Surgical simulations also have uses for pre-operative plan-
ning [Alterovitz and Goldberg, 2008; Taylor, 2006].

We present a new simulator that models tissue deformation, needle
elasticity, and their interaction. It allows us to realistically simulate
the deflections that occur as thin needles travel through inhomo-
geneous tissues. A motivation for modeling needle elasticity is a
new class of flexible, steerable needles recently developed in col-
laboration between researchers at U.C. Berkeley and Johns Hop-
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kins University [Webster III et al., 2005b; Webster III et al., 2006].
These bevel-tip steerable needles have a flexible shaft that curves
as it penetrates soft tissue, due to asymmetric forces exerted at the
needle’s bevel tip. By twisting the needle as it is inserted, a physi-
cian can steer its tip around obstacles to reach clinical targets in
soft tissues [Alterovitz et al., 2005; Alterovitz et al., 2007]. It is not
easy to learn how to control steerable needles, and realistic training
simulations will accelerate their deployment in clinical practice.

Several impediments make it difficult to simulate the interaction
between a needle and soft tissues: a static spatial discretization
(e.g. a fixed finite element mesh) does not easily support the ac-
curate computation of contact forces and needle steering; the mis-
match between needle stiffness and tissue stiffness hinders numeri-
cal stability; and the simulation must run at interactive rates. To ad-
dress these challenges, we introduce (1) a novel algorithm for local
remeshing, (2) an efficient algorithm for coupling a 3D finite ele-
ment simulation and a 1D elastic rod simulation with stick-slip fric-
tion, and (3) several generally applicable optimizations for reducing
computation time for physically based simulations. Our remeshing
algorithm efficiently relocates and creates nodes so they lie along a
curvilinear needle path in a volumetric mesh, enabling the simula-
tion to apply cutting and frictional forces along the needle shaft at
mesh nodes while maintaining a high quality tetrahedral mesh for
computing tissue deformations. Our optimizations include acceler-
ating the solution of the linear complementarity problem for node
friction states, using a parallel conjugate gradient method on sparse
matrices, and using a parallel lazy update of Jacobian matrices for
tetrahedral elements.

Together, these algorithms and enhancements enable us to realisti-
cally simulate needle insertion in the prostate at interactive frame
rates. We achieve frame rates of 25 Hz on an 8-core 3.0 GHz Intel
Xeon PC for a prostate mesh of 13,375 tetrahedra and 2,763 ver-
tices. We use realistic material properties for human tissue, making
it more challenging than the more compliant materials for which
real-time performance is usually reported. We present simulations
of prostate brachytherapy with needles of different stiffness, sim-
ulations of needles steered around obstacles, and an application to
motion planning for robotic needle insertion. Throughout our trials,
our remeshing procedure consistently maintained high mesh qual-
ity. We evaluate the accuracy of the simulator using data extracted
from real-world experiments in which flexible, steerable needles
were inserted into gel tissue phantoms. The simulated and real-
world deformations are qualitatively and quantitatively similar.

2 Background
Surgical simulators often use methods originating in computer
graphics for fast simulation of deformable tissues. Deformable
body simulation has been a topic of active research in the com-
puter graphics community since Terzopoulos et al. [1987]. The fi-
nite element method has been extended to handle fracture [O’Brien
and Hodgins, 1999], viscoplastic behavior [O’Brien et al., 2002;
Goktekin et al., 2004; Bargteil et al., 2007; Wojtan and Turk,
2008], and inverted elements [Irving et al., 2004; Irving et al.,
2007]. Researchers have attained real-time performance with multi-
resolution methods [Debunne et al., 2000] and stiffness warping
techniques [Müller et al., 2002; Müller and Gross, 2004].

Several open-source surgical simulation toolkits model tissue defor-
mation, including GiPSi [Çavuşoğlu et al., 2006] and SOFA [Allard
et al., 2007]. Surgery simulators must also model tool-tissue in-
teractions. Finite element methods have been developed that use
remeshing [Nienhuys and van der Stappen, 2001; Mendoza and
Laugier, 2003; Picinbono et al., 2003] or discontinuous basis func-
tions [Lindblad and Turkiyyah, 2007] to simulate tissue cutting.

Abolhassani et al. [2007] survey needle insertion modeling and
simulation. Physically based simulations have been developed

Needle mesh

Tissue mesh

Figure 2: The needle mesh (red) and tissue mesh (black). The large
red nodes and bold red edges belong to both meshes and couple the
two objects.

for the insertion of rigid needles [Alterovitz et al., 2003], flexible
symmetric-tip needles [DiMaio and Salcudean, 2005], and flexible
bevel-tip needles [Alterovitz et al., 2005] into 2D slices of tissue.
Simulations of 3D rigid needle insertion have been developed us-
ing mass-spring models [Marchal et al., 2006; Vidal et al., 2008]
and the non-physically based chain-mail model [Wang and Fenster,
2004]. We know of no prior simulation that handles interactive sim-
ulation of coupled tissue and needle deformation in 3D.

For 3D finite element simulation of needle insertion, mesh main-
tenance is a key difficulty. Nienhuys and van der Stappen [2004]
use a finite element method and recursive refinement of the mesh
until mesh nodes are very close to the needle shaft. Goksel et
al. [2006] simulate interactive 3D rigid needle insertion in linear
elastic tissues using local remeshing with node snapping and face
splitting. Dehghan and Salcudean [2007] extend this method to sup-
port nonlinear material properties. Our new remeshing algorithm
builds on this body of work by using additional remeshing opera-
tions (edge and tetrahedron splitting) and by choosing operations
based on mesh quality, not on geometric heuristics.

Alternatively, different meshes can be tied together by binding con-
straints without remeshing, as Sifakis et al. [2007] do. However, in
real tissues, the deformation gradient around the needle shaft is dis-
continuous, with a near-singularity at the needle tip. Therefore, it is
essential for accuracy that our volume mesh conform to the needle,
and especially that it have a node at the needle tip. Nonconform-
ing approaches distribute the needle forces onto nearby nodes, so
the largest deformation does not coincide with the needle and the
piecewise constant strains are inaccurate for elements that intersect
the needle. While the bulk tissue behavior would be similar away
from the needle, the needle path would be quite different.

We model the needle as a 1D rod bending in 3D space. Pai [2002]
uses Cosserat theory to simulate an elastic rod as a boundary value
problem. Bertails et al. [2006] improved the running time of this
approach to O(n2) per time step and later to O(n) [Bertails, 2009],
where n is the number of vertices used to discretize the needle. The
static equilibrium of the rod is considered by Loock and Schömer
[2001] and Grégoire and Schömer [2006]. Spillmann and Teschner
[2007] augment the method to include dynamics and be solved in
O(n) time per time step. Our simulation builds on the method of
Bergou et al. [2008], who simplify the computation by assuming
that the twist wave propagates at infinite speed through the rod.

3 Methods
We model tissue elasticity with constitutive equations discretized
over a tetrahedral mesh by a finite element method. The needle
has a small diameter, so we model it as a 1D elastic rod, following
DiMaio and Salcudean [2005]. We denote the tetrahedral tissue
mesh by T . The needle is represented by a mesh T̃ comprising a
subset of the edges of T , plus additional edges that represent the
portion of the needle outside the tissue, as Figure 2 shows. We
dynamically update the tetrahedral mesh so that it always conforms
to the needle, as described in Section 3.4.

We use a stick-slip model of the friction between the tissue and the
needle shaft. Each node shared by the two meshes is in either a
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static or dynamic friction state. Static friction implies that the nee-
dle and tissue are moving in lockstep at the node; dynamic friction
implies that they are sliding against each other. The needle tip is
a special case, because when it is moving into the tissue with dy-
namic friction it is cutting tissue, and therefore encounters much
greater resistance than accounted for by dynamic friction alone.

Our main contributions are the remeshing and coupling algorithms,
which are independent of how the tissue and needle forces are com-
puted. Thus, we summarize our choices of force computations only
briefly, and refer the reader to the original papers for details. Algo-
rithm 1 summarizes the execution of one simulation step.

Algorithm 1 Needle simulation (one time step)

1: Compute tissue forces F̂, needle forces F̃, and Jacobians ∂F/∂x
and ∂F/∂v for both tissue and needle (§3.2)

2: Solve coupled system Eq. (7), yielding the friction configura-
tions and the nodal accelerations in tissue and needle (§3.3)

3: Update the positions and velocities of tissue and needle (§3.1)
4: if the needle tip is cutting or retracting then
5: Remesh around the tip (§3.4.1)
6: Reparameterize the needle (§3.4.2)

Throughout the simulation, we maintain for each node of T both
a material coordinate (recording the geometry of the undeformed
mesh) and a world coordinate (recording the deformed mesh). Let
uk

i , xk
i , vk

i , ak
i ∈ R3 denote the material position, world position,

velocity, and acceleration of the ith node at time index k. We omit
the node index to refer to a vector of properties for all the nodes.
We omit the time index to refer to the current time. We use carets
(ˆ) to denote tissue properties, and tildes (˜) for needle properties.

3.1 Implicit Time Integration

Let n be the number of nodes in the (tissue or needle) mesh. We
integrate the node positions x ∈ R3n and velocities v ∈ R3n over
time with Newmark’s method,

xk+1 = xk + 4tvk + 4t2
((

1
2
− β

)
ak + βak+1

)
, (1)

vk+1 = vk + 4t
(
(1 − γ) ak + γak+1

)
, (2)

where 4t is the time step, 0 ≤ β ≤ 0.5, and 0 ≤ γ ≤ 1. (All our
simulation results use β = 0.25 and γ = 0.5, equivalent to integra-
tion by the trapezoid rule.) We obtain the accelerations ak+1 ∈ R3n

by solving
F(xk+1, vk+1) =Mak+1, (3)

where M ∈ R3n×3n is the mass matrix and F(·) ∈ R3n is the sum of
all internal forces such as stiffness and damping forces (discussed
in the next section) and external forces such as gravity. Because
Equation (3) is nonlinear, we linearize it with one Newton–Raphson
iteration; i.e. by solving

F(xk, vk) +
∂F
∂x

(xk+1 − xk) +
∂F
∂v

(vk+1 − vk) ≈Mak+1, (4)

where ∂F/∂x, ∂F/∂v ∈ R3n×3n are the Jacobian matrices of force
with respect to position and velocity, evaluated at (xk, vk).

Ignoring for now the coupling between needle and tissue, we sub-
stitute (1) and (2) into (4) to obtain sparse linear systems

Ââk+1 = b̂, (5)
Ãã∗k+1 = b̃ (6)

for the tissue and needle nodes’ accelerations, respectively. The
asterisk indicates that ã∗k+1 is a temporary quantity, for reasons ex-
plained in Section 3.4.2. Having solved for âk+1 and ã∗k+1, we ob-
tain x̂k+1, v̂k+1, x̃∗k+1, and ṽ∗k+1 from Equations (1) and (2).

The sparsity of Â is unstructured, whereas Ã has bandwidth 5 (mea-
sured in 3×3 blocks) because each needle node has nonzero entries
for the two nodes before and after it on the needle. We assemble
both matrices and store Â with a block compressed sparse row for-
mat and Ã with a block banded format.

3.2 Force and Jacobian Computations

We follow Irving et al. [2004] in computing tissue forces. We com-
pute a deformation gradient ∂x̂/∂û for each tetrahedron. Then we
perform a singular value decomposition (SVD) of each element’s
deformation gradient and treat negative eigenvalues specially so
that inverted tetrahedra, if they arose, would not be fatal to the sim-
ulation. We calculate the first Piola–Kirchhoff stress from the tetra-
hedron’s deformation gradient and material properties, then com-
pute the elastic force from the stress. We apply a damping force,
computed similarly from the velocity gradient. To evaluate the Ja-
cobians of the tissue forces, F̂, we differentiate the forces with re-
spect to x̂ and v̂ while holding the SVD rotation matrices constant.

We borrow from two recent works to compute the needle forces,
F̃. We compute bending and twisting forces following Bergou et
al. [2008]. The needle is inextensible, but instead of enforcing
inextensibility by projection, we use a method of Spillmann and
Teschner [2007] that applies compensatory stretching forces. In
contrast to these two works, we treat the bending and stretching
forces implicitly, which requires Jacobian computation. However,
the twisting force has an asymmetric Jacobian. To avoid solving an
asymmetric linear system, we integrate the twisting force explicitly
by setting its contribution to the Jacobians to zero.

3.3 Needle-Tissue Coupling and Cutting

Each node i of T̃ has a friction state si which is one of , ,
−, or +. The sign of dynamic friction indicates the
direction in which the needle is sliding along the tissue at that node.
The  nodes are not in the tissue. The other nodes, which are
shared by the tissue mesh T and the needle mesh T̃ , are called cou-
pling nodes. Assume that each coupling node has the same index
in both meshes.

If we know every state si, we can solve the coupled equations with
Lagrange multipliers, introducing for each coupling node i an ad-
ditional variable ci ∈ R3, the constraint force required to satisfy the
stick-slip constraint. This force acts upon tissue and needle nodes
i in equal magnitude but opposite directions. To accommodate dy-
namic friction and sliding of the needle, we express ci in a local
coordinate system of the needle, in which the first axis is the unit
vector ti that is tangential to the needle at node i. We approxi-
mate the tangent as ti = ((x̃i − x̃i−1)+ -
(x̃i+1 − x̃i)). Let Ri ∈ R3×3 be the rotation matrix that transforms
from local coordinates to world coordinates, so that Rici is the con-
straint force at the coupling node i in world coordinates. For a -
 node, we set the first column of Ri to zero, thus ignoring the
tangential constraint force in direction ti.

The coupled system is Â 0 ŴR
0 Ã −W̃R

(ŴR)T −(W̃R)T Z


 âk+1

ã∗k+1

c

 =
 b̂ + ŴRd

b̃ − W̃Rd
e

 . (7)

The first two rows are Equations (5) and (6) augmented with
the constraint forces. Here, di is [0, 0, 0]T for a  node and
[si fi, 0, 0]T for a  node, si is 1 for + or −1 for
−, fi is the magnitude of dynamic friction (possibly includ-
ing a cutting force fcut at the needle tip), and Ŵ and W̃ are 0–1
matrices that map coupling nodes to the tissue nodes and needle
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nodes, respectively. Thus, for a dynamic node i, the unknown tan-
gential component of the constraint force ci on the left-hand side is
supplanted by the known friction ± fi on the right.

The third row of Equation (7) constrains the coupling nodes to have
the same positions in the tissue and needle meshes, except that a
node in a dynamic friction state permits the needle to slide tangen-
tially relative to the tissue. If si is , we constrain x̂i and x̃i
to be identical. If it is , we constrain them to agree in the
directions orthogonal to ti. Thus, Z is a diagonal matrix in which a
diagonal entry is 1 for the tangential component of a  node
and 0 otherwise, and e is the right-hand side of the equation found
by substituting Equation (1) into

(ŴR)T(x̂k+1 − x̂k) − (W̃R)T(x̃∗k+1 − x̃∗k) = 0 (8)

and moving the terms that include âk+1 and ã∗k+1 to the left-hand
side. Note that the columns having a 1 on Z’s diagonal are the
same columns of R that we set to zero.

The coupled system (7) is symmetric but indefinite. Indefinite sys-
tems usually cannot be solved by the conjugate gradient method
(CG), and require algorithms like MINRES or SYMMLQ [Paige
and Saunders, 1975], which are about twice as expensive per iter-
ation. Nevertheless, we find that CG effectively solves our system
(7) to the desired tolerance in practice. Marcia [2008] makes the
same observation for linear systems similar to ours, and provides a
partial explanation.

An advantage of our formulation (7) is that we can update it quickly
if the friction states si change. The tricky part of stick-slip friction
is that the states si are not known in advance (except the  ones).
We must guess them, then guess again if we are wrong. We have
guessed right if they satisfy the following constraints. For a 
node i except the needle tip,

− fi ≤ [1 0 0]T · ci ≤ fi, (9)

where fi is the static friction threshold, which experimentally is the
same as the dynamic friction magnitude. For a  needle tip i,

−( fi + fcut) ≤ [1 0 0]T · ci ≤ fi. (10)

For a  node i (needle tip or not),

siti ·
(
(x̂k+1

i − x̂k
i ) − (x̃∗k+1

i − x̃∗ki )
)
≥ 0; (11)

that is, the relative tangential movement between tissue and needle
 coupling nodes must not change direction.

The equations and constraints together form a linear complementar-
ity problem (LCP). Given q coupling nodes, there are 3q possible
settings of the friction states. The LCP has the potential to take ex-
ponential running time. Each wrong guess requires us to solve the
linear system again, so even a moderate number of wrong guesses
can kill real-time performance. Fortunately, the system has tempo-
ral coherence, and a good guess is to take the friction states from
the previous time step. If these are wrong, we make local changes
(driven by the constraints that are not satisfied) and usually find the
correct states within a few trials. Pseudocode for our LCP solver
appears in Section 3.6.1, which also discusses several other opti-
mizations that accelerate this computation.

We set fi = fperlen(li−1 + li)/2, where li−1 and li are the rest lengths
of the needle edges adjoining node i, and fperlen is the needle-tissue
friction per unit length. If node i is the needle tip and it is cutting,
we add to fi a cutting force fcut that varies spatially according to the
type of tissue the needle tip is currently cutting through. Simone
and Okamura [2002] observed capsule puncture, a phenomenon
where an unusually large force is required to cut the membrane sur-
rounding an organ. We model it by setting fcut to be large near a

Figure 3: Mesh operations: node snap, edge split (upper right),
face split (lower left), tetrahedron split. The needle tip unew is at the
red circle. The simplex the operation acts on is green.

membrane, the prostate having a 0.5 mm thick capsule membrane
and the skin being 1 mm thick.

Crouch et al. [2005] report that real-world needle-tissue friction is
a function of their relative velocity. Rather than have fi reflect this
relationship, we instead include the velocity-induced friction in the
force vector F(·) in Equation (3). We apply an implicit viscous
frictional force f vis

i = (η(li−1+ li)/2)(v̂i− ṽi) to needle node i (where
η is a viscous damping coefficient) and an opposing force − f vis

i to
tissue node i.

3.4 Remeshing and Reparameterization

After a simulated time step, some of the  coupling nodes of
T and T̃ are no longer coincident. However, our coupling method
requires coupling nodes to have the same positions in both meshes.
Thus, we dynamically adapt the meshes after each time step. Our
mesh adaptation consists of two steps: needle tip remeshing and
needle reparameterization.

3.4.1 Needle Tip Remeshing

When the needle tip node is , we change the tissue mesh T ,
sometimes topologically, so that it has a node at the new location
of the needle tip. Mesh changes occur only near the needle tip, and
are quite inexpensive. We skip this step if the tip node is .

The goals of needle tip remeshing are to make T conform to the
needle, to have tetrahedra of as high quality as possible, and to do
so quickly. We remesh in material space by applying one of the
candidate operations depicted in Figure 3: the node snap, the edge
split, the face split, and the tetrahedron split.

Two ideas govern our remeshing algorithm. First, we choose among
candidate operations by directly measuring the quality of the tetra-
hedra that would be created by each operation, and selecting the
operation that maximizes the quality of the worst tetrahedron. Sec-
ond, we maintain a stack of all the operations that have changed
the mesh topology (i.e. all operations except the node snap), and
we consider undoing the most recent operation before applying a
new one. The stack is particularly important when the needle is re-
tracted; our procedure is designed so that once the needle is fully
withdrawn from the body, the tissue mesh will have returned to
its original topology. We thereby prevent the accumulation of mesh
quality degradation when the needle is inserted and withdrawn mul-
tiple times. Even when the needle is being inserted, the ability to
undo the previous operation and replace it with a new one often
offers better mesh quality.

For each candidate operation, we evaluate each new tetrahedron
with a quality measure equal to its signed volume divided by the
cube of its root-mean-squared edge length [Parthasarathy et al.,
1994]. This measure is zero for a degenerate tetrahedron, and maxi-
mized by an equilateral tetrahedron. We have found this measure to
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Figure 4: The red edges and nodes are part of the needle shaft.
The green face is split, creating a new needle tip node. We move
the old needle tip node back along the needle shaft to maximize the
mesh quality.

be both a good reflection of a tetrahedron’s fitness for finite element
simulation and amenable to numerical optimization [Klingner and
Shewchuk, 2007]. Tetrahedron quality is always computed from
material (not world) coordinates. Let R be the mesh region compris-
ing the union of all tetrahedra that can be deleted or changed by the
candidate operations. The quality vector of the tetrahedra in R is a
list of the tetrahedron qualities, sorted from worst to best. Our algo-
rithm chooses the operation that lexicographically maximizes that
quality vector (that is, it maximizes the worst tetrahedron, breaking
ties by maximizing the second-worst, then the third-worst, etc.).

If the needle is penetrating tissue, we generate a set of candidate
operations as follows. Let unew be the new position of the needle
tip in material space. (We obtain unew by barycentric interpolation
from the needle tip position in world space, and we obtain a tis-
sue velocity and acceleration for it the same way.) We consider
fifteen standard operations that transform the tetrahedron that con-
tains unew: four node snaps, six edge splits, four face splits, and one
tetrahedron split. Each operation places the new node or snapped
node at unew. We also consider composite operations that first undo
the operation atop the stack (if that operation created the needle tip
node), then apply a new standard operation.

Candidate operations that would change the mesh boundary are dis-
carded, except in the moment where the needle first penetrates the
skin. Operations that fail to properly connect the needle nodes are
also discarded. Let u1 and u2 be the old positions in material space
of the needle tip and the needle node adjoining the tip, respectively.
The needle nodes remain properly connected by the operations that
snap u1 to unew, that create an edge connecting u1 to unew, or that
delete u1 and create an edge connecting u2 to unew. (Undoing the
top stack operation entails deleting u1 from both T and T̃ .)

Because the needle moves only a small distance during a time step,
unew tends to be close to u1 or u2, often producing a short edge that
compromises the mesh quality. We avoid this pitfall by moving u1
to the optimal position on the segment unewu2, or (if the operation
deletes u1) by moving u2 to the optimal position on the segment
unewu3; see Figure 4. (To respect the needle curvature, we could
have searched along the energy-minimizing curve that Spillmann
and Teschner [2008] use, but we find that placing the node on the
segment is good enough.) The “optimal” position is the one that
maximizes the minimum quality among the tetrahedra that adjoin
the moved node. This repositioning is part of the candidate opera-
tion, and is taken into account when the best operation is chosen.

Needle retraction uses somewhat different candidate operations.
The only operation we consider that does not delete the needle tip
u1 from the needle mesh is a node snap that moves u1 to unew. The
other candidate operations delete u1 as follows. If u1 was created
by the operation on top of the stack, then the stack is popped and
that operation is undone, deleting u1 from both T and T̃ ; otherwise,
u1 was placed by a node snap, in which case we delete it from the
needle mesh only. In either case, one of the standard operations
subsequently creates a node at unew, or snaps a node there. If u1
survives in the tissue mesh, it tends to be close to unew, so we sub-
sequently optimize the position of u1 (but not u2) as part of the
candidate operation. Because u1 no longer lies on the needle, it can
move freely.

Figure 5: Cutaway views of the changing mesh at several times
during a simulation. The most recently changed tetrahedra (around
the needle tip) are highlighted in blue.

Our remeshing procedure is summarized in Algorithm 2. Figure 5
depicts mesh modifications during needle insertion. The remesh-
ing algorithm relies on the presumption that the needle tip will not
move much further than an element’s width in a single time step.
If we needed to accommodate larger needle movements in a sin-
gle step, then the large motion could be broken down into smaller
substeps with multiple applications of the inexpensive remeshing
algorithm.

Algorithm 2 Tissue remeshing at the needle tip
1: /* Build set S of candidate operations */
2: S ← { node snap, moving needle tip u1 to unew}

3: t ← tetrahedron in T containing unew
4: if s1 = + (the needle is penetrating) then
5: S ← S∪ set of standard operations on t that place a node

(other than u1) at unew that is connected to u1, then opti-
mize the position of u1 constrained to lie on unewu2

6: if u1 was created by the operation atop the stack then
7: tundo ← tetrahedron that will contain unew if the operation

atop the stack is undone
8: S ← S∪ set of operations that undo the top stack opera-

tion, then perform a standard operation on tundo that places
a node at unew that is connected to (or is) u2, then optimize
the position of the needle node adjoining unew

9: else if s1 = − (the needle is retracting) then
10: S ← S∪ set of standard operations on t that place a node

at unew that is connected to (or is) u2, then freely optimize
the position of u1.

11: T ′ ← set of tetrahedra deleted/changed by operations in S
12: for each candidate operation o ∈ S do
13: Compute the quality vector for the tetrahedra created by o

and the tetrahedra in T ′ not deleted by o
14: Perform operation that maximizes the quality vector
15: if optimal operation undoes the top stack operation then
16: Pop the stack
17: if optimal operation includes a face/edge/tetrahedron split then
18: Push the split operation onto the stack

Because of the restricted demands of our application, our remesher
is effective at maintaining element quality: in all the simulations we
have run, after the first twenty time steps, no tetrahedron’s dihedral
angle has been smaller than 10.3◦ or larger than 160.0◦. During the
first few time steps after the needle punctures the skin, it is impos-
sible to prevent the presence of a very short edge connecting the
needle tip to the mesh surface, with flat tetrahedra adjoining it; but
at all other times, tetrahedron quality is good. Table 2 in Section 4
shows that remeshing is cheap compared to the simulation.

3.4.2 Needle Reparameterization

Our needle tip remeshing procedure ensures that the tissue mesh has
a sequence of nodes and edges that corresponds to the part of the
needle inside the tissue. These nodes will be the coupling nodes in
the next time step, and their positions are determined by the tissue
mesh—that is, x̃k+1

i = x̂k+1
i . The  nodes’ positions are deter-

mined by the solution to Equation (7); that is, x̃k+1
i = x̃∗k+1

i .
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Figure 6: Needle reparameterization. The numbers are d∗ (top)
and d (bottom). The red arrows indicate which old nodes and new
nodes’ quantities are related via piecewise linear interpolation.

Needle sliding at a  node implies that it no longer repre-
sents the same point on the needle as it did before the time step.
Moreover, remeshing creates and deletes nodes, and the simulation
does not keep the needle perfectly inextensible, so the needle length
varies slightly. Therefore, we reparametrize the needle and interpo-
late physical quantities from before to after the time step.

We parametrize each node i existing before the time step by its dis-
tance d∗i from the base of the needle, and each node j existing after
by its distance d j from the base after the time step. (We compute
these distances as sums of line segment lengths, but one could use
the arc length of an interpolating curve instead.) Because the nee-
dle is not perfectly inextensible, we scale all the distances after the
time step so the values of d∗ and d at the needle tip are equal.

To compute the acceleration ã j at node j after a time step, we
build an interpolating function g(·) such that g(d∗i ) = ã∗i , where the
right-hand side comes from the solution of Equation (7), then set
ã j = g(d j), as illustrated in Figure 6. We use Akima’s interpolation
[1970] to construct the interpolating functions for the parameters
used in the needle force computations of Bergou et al. [2008] and
Spillmann and Teschner [2007] such as the twist angle θi (the angle
of deviation from the Bishop frame at node i) and the rest curvature
ω̄i. We treat the rest lengths l j of the needle edges specially by first
constructing L∗0 = 0, L∗i =

∑i
1 l∗i , then using Akima’s interpolation

for L, then setting lq = Lq − Lq−1. We use piecewise linear interpo-
lation for velocity and acceleration, as Akima’s interpolation is not
monotonic and could compromise stability.

A needle edge outside the tissue can become too short or too long
in two places: where the needle exits the guide sleeve (see Sec-
tion 3.5), and where the needle enters the tissue. Thus, we merge
nodes that are too close together (shorter than half the minimum
initial edge length), moving a  node onto the node on the sur-
face of the tissue or the end of the sleeve; and we split edges that
are too long (over four times the maximum initial edge length), all
before reparameterizing. To split an edge, we place a new node at
the midpoint of an interpolating cubic curve.

3.5 Bevel Tip and Needle Base Manipulation
The formulation above suffices to model a needle whose tip is sym-
metric, causing it to penetrate tissue in a straight line. However, sur-
geons can more easily circumvent obstacles by using bevel-tip nee-
dles that move on curved paths because the beveled tip compresses
tissue asymmetrically. The compressed tissue exerts a force that
bends the needle, as shown in Figure 7a. This phenomenon occurs
at a scale too small for the tetrahedral mesh to simulate. Instead,
we approximate the effect by adding a displacement to the needle
tip material coordinate unew. The displacement added is along the
second axis of the local coordinate frame of the needle tip, m2 as
defined by Bergou et al. [2008]. The magnitude of the displacement
is h = d tanψ, where d is the distance the tip moves along the tan-
gential direction ti during the current time step, and ψ is the bevel
angle depicted in Figure 7b.

Steerable needles offer three control parameters to the surgeon: 1)
vinsert, the speed at which the needle advances from the guide sleeve,
2) vbase, the rigid-body velocity of the sleeve that holds the base of

Material space World space

time t

time t+Δt

a) b)

h

d

d

h

ψ

ψ

Tissue elastic force

Figure 7: a) As the needle penetrates the tissue, the bevel tip com-
presses the tissue in one direction more than the other, inducing an
asymmetric elastic tissue force that causes the needle to bend. As
the needle moves a distance d, it displaces the tissue on one side
by a distance of h = tanψ. b) The current tip position appears as
a blue circle. The new tip position appears as a hollow red circle.
The new tip position is displaced to the solid red circle in mate-
rial space, but not in world space. This displacement simulates a
strain near the needle tip that will bend the needle in subsequent
time steps.

the needle, and 3) φ, the angular velocity of the needle base. The
portion of the needle inside the sleeve moves with the sleeve, so
we simulate only two nodes inside the sleeve, whose velocities are
fixed at vbase. We must constrain two nodes because the direction
of the edge at the base of the needle is dictated by the sleeve ori-
entation. A time step increases the length of the second edge (just
outside the sleeve) by vinsert4t, effectively pushing the needle out
through the sleeve. To rotate the base, we add φ4t to θi at the nee-
dle’s base node i. The simulation propagates this rotation to the
bevel tip.

3.6 Optimizations
We have several optimizations that reduce the simulation’s running
time. These optimizations should be applicable to other types of
simulation.

3.6.1 Accelerating the LCP Solver
The simulation’s bottleneck is solving linear complementarity
problems. Its speed depends crucially on rapidly determining the
friction state variables si. Empirically, these values are temporally
coherent if the needle is manipulated smoothly (as it should be for
this application). The obvious strategy for guessing the states works
well: presume that the state variables remain the same from time
step to time step. However, needle reparametrization means that
there is not necessarily a one-to-one mapping from nodes in one
time step to nodes in another. We guess the state at each new node
by using the nearest node (measured by arc length) from the previ-
ous time step.

After solving the coupled system (7) for a set of friction states, we
check if the constraints (9), (10), and (11) are satisfied. If not, we
try to alter the state of each node whose constraint is not satisfied
using the following rules. If the node is , change it to .
If the node is , change it to  with its sign determined
by the coupling constraint force [1 0 0]T · ci.

To avoid trying the same configuration twice, we remember those
we have tried. If we are about to try one we have already tried, we
instead try the next configuration in lexicographic order, with the
node at the tissue entry point acting as the least significant “digit.”

With this heuristic, we find a consistent set of friction states in fewer
than 1.2 trials on average in our examples. Temporal coherence
is lost when the needle switches from cutting to withdrawing, in
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which case many iterations might be required to find a consistent
configuration. We devised two additional optimizations to keep the
frame rate high during these transitions.

Our conjugate gradient solver is always initialized with the solu-
tion from the previous (unsuccessful) trial. This simple trick sig-
nificantly cuts down the number of iterations the conjuage gradient
method takes to converge to a tolerance τsol (by a factor of twenty
in our prostate examples). Interestingly, we did not attain speedups
by initializing the solver to the solution from the previous time step.

We took this optimization a step further by deciding whether to
change state variables before the solver fully converges. As soon
as the conjugate gradient residual drops below a tolerance τcheck
(which is larger than τsol), we check if any constraints are violated,
and switch state variables immediately if they are. In our simulation
results, τcheck = 10−3 and τsol = 10−5.

Finally, if a consistent configuration isn’t found within ten trials,
we simply accept the last configuration to ensure real-time perfor-
mance. In our prostate example, our solver found a consistent con-
figuration within ten trials for 99.6% of the time steps. Our LCP
solver is summarized in Algorithm 3.

Algorithm 3 Solve the coupled system, yielding the friction states
and the tissue and needle accelerations

1: Guess friction states si from previous time step
2: Initialize solution to 0
3: for numTrials← 0 to maxTrials do
4: Solve linear system (7) to tolerance τcheck
5: if the constraints (9), (10), and (11) are satisfied then
6: Continue solving linear system to tolerance τsol
7: if the constraints (9), (10), and (11) are satisfied then
8: return solution
9: Change friction states si to something new (see §3.6.1)

10: /* Next iteration will reuse solution from this trial */
11: Solve linear system (7) to tolerance τsol
12: return (approximate) solution

3.6.2 Parallel Sparse Conjugate Gradients

We use the OpenMP conjugate gradient implementation, which par-
allelizes the sparse matrix multiplication and all the vector opera-
tions. To improve the cache performance of sparse matrix access,
we order the tissue mesh nodes with a reverse Cuthill–McKee or-
dering [Cuthill and McKee, 1969], which puts the nonzero entries
close to the diagonal. We avoid building a new sparse matrix for
each solution by treating the coupling terms separately from the
other terms in the matrix multiplication. In Equation (7), the ma-
trices Â and Ã are fixed during an LCP solution, whereas R and Z
vary with the coupling states. We never assemble the third row or
column of (7); we perform that portion of the matrix-vector multi-
plication element by element.

We store Â with a dynamic compressed sparse row format that can
be updated to reflect tissue remeshing without being reassembled
from scratch. As tetrahedra are deleted, created, and modified, we
update their contributions to Â. Each compressed row of the matrix
is stored in a separate array that can be resized to accommodate
new edges. An edge deletion causes two zero entries to be written
into the matrix. A node deletion causes an entire row and column
to be set to zero. We maintain a list of free node indices so unused
rows can be reassigned to newly inserted nodes. Unused column
entries in an active row are set to zero. Because remeshing changes
only a small portion of the mesh, the time consumed by these zero
entries is negligible compared to rebuilding the matrix. The most
common remeshing operation is to snap a node to the needle tip,
which entails no change to the sparse matrix structure.

ethres % updated F&J (ms) % frame time % rel error
0 100.00 12.42 100.00 0.00

100 7.96 3.83 82.37 0.06
1000 3.65 2.52 79.68 0.19

10000 0.58 2.12 78.89 0.16

Table 1: For several values of ethres, the % of tetrahedra whose
Jacobian matrices are updated per time step, the time required for
the force and Jacobian computations (F&J), the % of total frame
time compared to recomputing every Jacobian, and the relative er-
ror in the tip position after four seconds of needle insertion (200
time steps). Values are for the prostate mesh (∼13,375 tetrahedra)
running with seven threads on an 8-core processor.

3.6.3 Parallel Incremental Jacobian Update

We also parallelize the computation of the forces and the Jacobian
matrices. To reduce lock contention, we partition the mesh with
METIS [Karypis and Kumar, 1998], so that the entries modified by
one thread do not overlap much with those of any other.

We observe that the Jacobians tend to change slowly over time, be-
cause most tetrahedra deform little during a time step. Therefore,
we only update a tetrahedron’s Jacobian matrix’s contributions to Â
(as determined by Equation (4)) when it has changed enough since
its last update. The test is whether

e =
(
max

i, j
|4Ui j|max

i, j
|4Vi j|

)2

max
i, j
|Ni j|max

i, j
|Bi j|max(λ, α) (12)

exceeds a threshold ethres, where U and V are the SVD rotation ma-
trices mentioned in Section 3.2, N is a matrix whose columns are
area-weighted normal vectors to the tetrahedron faces, and B is the
tetrahedron’s barycentric matrix. λ and α are the second coefficients
for computing the Piola–Kirchhoff stress and the damping stress in
Irving et al. [2004], respectively. e is an approximate upper bound
on the change in any entry of the Jacobian matrix due to changes in
U and V , for both the elastic and damping forces. Table 1 shows the
running time reductions and the relative errors in needle tip position
caused by lazy updating for several values of ethres. Lazy updating
reduces the tissue force and Jacobian computation time by 83% and
the frame time by 20%, with no more than a 0.2% relative error in
the needle tip position.

4 Results and Discussion
All timings in this paper are on an 8-core 3.0 GHz Intel Xeon with
16 GB RAM. Figure 1 illustrates our simulations of a prostate can-
cer brachytherapy procedure, wherein a needle implants radioactive
seeds in the prostrate gland, for both a flexible bevel-tip needle (a)
and a stiff symmetric-tip needle (b). We use isosurface stuffing [La-
belle and Shewchuk, 2007] to generate a tetrahedral mesh encom-
passing an anatomically accurate model of the epidermis, dermis,
hypodermis, urethra, prostate, perineum, pelvic bone, bulbourethral
glands, vasa deferentia, seminal vesicles, and bladder. The external
mesh boundary conforms to the skin, and internal triangular faces
conform to the prostate boundary, separating regions with dissimi-
lar material properties. Material parameters for prostate and other
tissues are inferred from Krouskop et al. [1998]. The bone is con-
strained not to move. A video accompanying this paper demon-
strates the needle being inserted into and removed from the tissue,
both slowly and vigorously, to demonstrate the simulator’s stability.

We also constructed an artificial example, shown in Figure 8, where
we simulate the ability of the bevel-tip flexible needle to be steered
by rotating its base to avoid fixed cylindrical obstacles and hit a
target in a deformable tissue.

To evaluate our simulator, we compare the simulated insertion of
steerable needles into gel tissue phantoms with real-world exper-
iments performed at Johns Hopkins University in 2005. In these
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Figure 8: An example showing the bevel-tip flexible needle steer-
ing to avoid two fixed cylindrical obstacles. The base of the needle
is rotated to change the direction of bending.

Figure 9: Comparison of our simulation with two experiments.
The simulated needle appears in blue. The red squares are the
physical markers, and the yellow dots are the simulated markers.
Our root-mean-squared simulation error (compared with the exper-
iment) is 0.75 mm for the single-bend experiment (left), and 1.30
mm for the double-bend experiment (right). The double-bend ex-
periment used the single-bend parameters without re-tuning.

experiments, a robotic device [Webster III et al., 2005a] inserts a
bevel-tip flexible needle of diameter 0.83 mm into a 27.1×26.5×3.9
cm gelatin block. Fiducial markers are placed on the surface of
the gel phantom to track the deformations. The material’s Young’s
modulus (E) and Poisson’s ratio (v) were measured using compres-
sion tests. We use these values in our simulation.

The remaining simulation parameters (tissue damping, needle pa-
rameters) were tuned by hand to match a single-bend experiment,
where the needle is inserted and retracted from the tissue without
twisting. The same parameters are then used without re-tuning in
the second double-bend experiment, where the needle is twisted
180◦ halfway through insertion. Figure 9 shows screenshots from
both experiments.

We ran the simulation, tracked the positions of simulated mark-
ers as computed by barycentric interpolation on the tetrahedra, and
compared their positions to the physical markers in the experiment.
The trajectory of the real needle and the simulated needle match to
video resolution for both experiments. The root-mean-squared er-
ror of the marker positions over time in the single bend experiment
is 0.75 mm, with 88.3% of errors under 1 mm, and 97.8% of errors
under 2 mm. The root-mean-squared error in the double bend ex-
ample is 1.3 mm, with 90.5% of errors under 2 mm, and 97.2% of
errors under 3 mm. The simulation also matches the experiments
qualitatively, as the companion video shows.

Some of the marker error is attributable to the vision algorithm. It
fails to track several markers (which we exclude from the videos),
and several others are tracked incorrectly so they appear to jitter
about.

Table 2 gives the running times for the different simulations dis-
cussed in this section. Observe that speeds for the steerable needle
simulation in prostate tissue range from about 7 frames per second
on one core to about 25 frames per second on seven cores. The
LCP solver dominates the running time, whereas the local remesh-
ing step takes a negligible amount of time. Table 3 shows the num-
ber of LCP trials per time step and the number of conjugate gradient

Name # Total LCP Tissue Needle Remesh
ProsFB 1 130.9 108.8 13.4 1.3 0.5
ProsFB 2 77.7 62.3 7.7 1.6 0.5
ProsFB 3 64.1 51.1 4.7 1.4 0.4
ProsFB 4 56.6 44.8 3.9 1.4 0.7
ProsFB 5 47.6 36.7 3.3 1.8 0.4
ProsFB 6 39.6 28.8 3.0 1.4 0.5
ProsFB 7 38.5 28.3 2.2 1.4 0.3
ProsSS 7 38.2 28.7 2.1 1.1 0.5
TwoCyl 7 24.0 14.4 1.9 0.6 0.9
1bend 7 22.8 13.2 1.1 0.4 0.9
2bends 7 33.0 23.6 1.1 0.5 0.5

Table 2: Timings (ms) for several examples with different numbers
of threads (#). Examples include the prostate mesh with flexible
bevel-tip needle (ProsFB) or stiff symmetric-tip needle (ProsSS),
the two-cylinder example (TwoCyl), and the tissue phantom verifi-
cation experiments (1bend and 2bends). The frame time (Total) is
divided into the LCP solution (LCP), the force and Jacobian com-
putations for tissue (Tissue) and needle (Needle), and remeshing
and needle reparameterization (Remesh). The number of tetrahe-
dra/vertices for prostate, two cylinders, and tissue phantoms are
13,375/2,763, 3,248/813, and 2,280/672, respectively.

Name LCP CG
ProsFB 1 / 1.41 / 10 18 / 205 / 652
ProsSS 1 / 1.23 / 4 12 / 225 / 536
TwoCyl 1 / 1.02 / 2 42 / 213 / 474
1bend 1 / 1.17 / 4 46 / 234 / 343
2bends 1 / 1.04 / 3 54 / 413 / 686

Table 3: Minimum/average/maximum number of trials required for
the LCP solver and number of conjugate gradient (CG) iterations
for each linear solution for examples running on seven threads.

iterations per linear solution for each example.

5 Conclusions and Future Work
Our coupled needle-tissue simulator is capable of interactive and
accurate simulation of a range of needles, from a symmetric-tip
stiff needle to a bevel-tip flexible needle. We achieve this with a
novel remeshing algorithm, a needle-tissue coupling algorithm, op-
timization techniques to improve LCP solution time and accelerate
Jacobian computation, and parallelization.

We plan to use the simulator in surgical planning. Concurrent to this
paper, members of our project group have developed feedback con-
trol software that uses our simulator to maneuver a steerable needle
to a target in a deformable tissue [Hauser et al., 2009]. Figure 10
shows several states during needle insertion. The light blue helical
paths are trajectories chosen by the planner at different instants in
time. As the needle is inserted, our simulator predicts how the tis-
sue deforms, and the planner uses this feedback to make trajectory
corrections. Our future plans are to integrate into our planner the
ability to avoid obstacles and to achieve coverage of a prostate gland
with radioactive seeds with as few needle insertions as possible.

We are also exploring ways to extend the versatility of our simu-
lator. The biomedical community is considering needles with pre-
bent tips, giving them a much smaller turning radius [Reed et al.,
2008]. Because the bend is not at the needle tip, simulating the
needle entails placing a mesh node at a fixed location in the nee-
dle that moves with the needle. This necessitates a change to our
remeshing algorithm that makes it difficult to maintain high mesh
quality. A second extension would be to use graded meshes, which
would allow us to model a larger tissue yet have higher resolution
near the needle. The difficulty is to maintain the quality of the mesh
during local remeshing. A third extension would be to model the
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Figure 10: A planning algorithm finds a path by which a steerable
needle can reach a target using the simulator.

torsional friction that couples a twisting needle to the surrounding
tissue. Currently, we treat only sliding friction. To treat torsional
friction as well, we would have to reformulate the force computa-
tion and take torque into account. A fourth extension would be to
extend the remeshing to support the simulation of a procedure in
which several needles are inserted to fix the tissue in place. Our
simulator can already handle simulating multiple needles that never
touch common elements or are inserted one at a time and retracted
in the reverse order. More general uses would require a more so-
phisticated remeshing algorithm. The techniques reported here may
also apply to simulating surgical sutures and staples where similar
one-dimensional structures penetrate into soft tissue.
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