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A Dual Theory of Inverse and Forward Light Transport

Jiamin Bai* Manmohan Chandraker!

Abstract

A cornerstone of computer graphics is the solution of the ren-
dering equation for interreflections, which allows the simu-
lation of global illumination, given direct lighting or corre-
sponding light source emissions. This paper lays the foun-
dations for the inverse problem, whereby a dual theoretical
framework is presented for inverting the rendering equation
to undo interreflections in a real scene, thereby obtaining
the direct lighting. Inverse light transport is of growing im-
portance, enabling a variety of new applications like sepa-
ration of individual bounces of the light transport, and pro-
jector radiometric compensation to display images free of
global illumination artifacts in real-world environments that
exhibit complex geometric and reflectance properties. How-
ever, solving the inverse problem involves the inversion of
a large light transport matrix (acquired by measurement on
real scenes). While straightforward matrix inversion is in-
tractable for most realistic resolutions, there is scant prior
work on either theoretical foundations or fast computational
algorithms to meet the objectives of inverse light transport.

In this paper, we develop a mathematical theory that exposes
the duality of forward and inverse light transport. Forward
rendering also formally involves a matrix or operator in-
version, which is conceptually equivalent to a multi-bounce
Neumann series expansion. We show the existence of an
analogous series for the inverse problem. However, the con-
vergence is oscillatory in the inverse case, with more inter-
esting conditions on material reflectance. Importantly, we
give physical meaning to this duality, by showing that each
term of our inverse series cancels an interreflection bounce,
just as the forward series adds them.

In algorithmic terms, we develop the analog of iterative finite
element methods like forward radiosity to efficiently solve
light transport inversion. Our iterative inverse light transport
algorithm is very fast, requiring only matrix-vector multipli-
cations, and follows directly from the dual theoretical formu-
lation. We also explore the connections to forward render-
ing in terms of Monte Carlo and wavelet-based techniques.
As an initial practical application, we first acquire the light
transport of a real static scene, and then demonstrate iterative
inversion for radiometric compensation on high-resolution
datasets, as well as rapid separation of the bounces of global
illumination.

*e-mail: bjiamin@eecs.berkeley.edu
Te-mail: manukc@eecs.berkeley.edu
te-mail: ttng@i2r.a-star.edu.sg
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1 Introduction

Forward global illumination, based on the theory of the ren-
dering equation [Kajiya 1986], has been one of the great
challenges and successes of computer graphics. Given the
direct lighting (or light source emissions) in a virtual scene,
interreflections and indirect light can efficiently be com-
puted. In this paper, we consider the inverse problem [Seitz
et al. 2005]—we seek to invert the rendering equation to
undo the interreflections and recover the direct lighting in
a real scene. For the forward problem, theoretical develop-
ments based on operator notation and error analysis, as well
as algorithmic approaches such as efficient finite element
radiosity and Monte Carlo methods are well-known [Arvo
et al. 1994; Cohen and Wallace 1993; Kajiya 1986; Veach
1998]. However, relatively little is known about the theo-
retical and computational properties of the inverse problem.
This paper develops a comprehensive theoretical analysis of
inverse light transport, analyzes error and convergence, and
demonstrates the inverse computational analogs to forward
iterative finite element and Monte Carlo methods.

Motivation: =~ We are motivated by two recent develop-
ments. First, many fast techniques for acquiring the light
transport of real scenes have been proposed in recent litera-
ture [Debevec et al. 2000; Masselus et al. 2003; Peers et al.
2006]. Precomputed light transport is popular even for syn-
thetic rendering [Sloan et al. 2002; Ng et al. 2003; Hasan
et al. 2006]. In essence, these methods directly measure the
effects of interreflections under various lighting conditions.
The acquired light transport matrix has been used mainly for
relighting applications, equivalent to matrix-vector multipli-
cation.

However, another crucial problem is inversion, which en-
ables new applications like illumination estimation, and sep-
arating direct lighting and each subsequent bounce of global
illumination [Seitz et al. 2005]. Another important practical
application is radiometric compensation,' when a projector
is used to display an image on a scene with complex non-
convex geometry and non-uniform reflectance, which may
not be Lambertian. Interreflections are a serious issue in a
real-world projector-camera system, and one would ideally
like to compensate the projector image to remove global il-
lumination effects (see Fig. 1).

Addressing these practical applications is conceptually
simple—we invert the acquired light transport matrix for
a real scene. However, the high resolution of real light

! Another practical issue is to correct for geometric distortions, that we
do not consider here, but calibrate for using standard techniques.
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Figure 1: Application of inverse light transport for projector compensation in a real scene. This is suggestive of methods that
could be used with projector-systems to achieve an artist’s desired appearance or look in interior scenes. Top: The desired
projector output (right) leads to significant interreflections when displayed (left). Bottom: Our theory determines the pattern
(left) whose projection is close to the desired (right). In effect, we have gone from global to local illumination, inverting or
undoing interreflections. Our fast iterative method involves only matrix-vector multiplications, with each iteration taking only
0.03 sec. For a transport matrix of size 10° x 10°, the full image i, is computed after several iterations in 2-3 secs.

transport data (from 102 x 102 in the simplest cases, up to
10° x 10° or higher) often makes standard matrix inversion
impractical from both computation and memory standpoints.
Most importantly, little is known about the theoretical prop-
erties or convergence of the inverse solution.

Contributions:  We develop a novel theory for analyzing
and solving inverse light transport. A perhaps surprising re-
sult is that there is a strong duality between forward and in-
verse rendering. This is because solving the (forward) ren-
dering equation itself formally involves an operator or matrix
inverse. Our main contribution is a theory that formulates
forward and inverse light transport in similar ways, allowing
us to leverage many theoretical results and algorithms from
global illumination for the inverse problem.

Specifically, forward rendering readily admits to a Neumann
series solution. In fact [Kajiya 1986] used this result to ex-
plain existing approximations and ray tracing. We develop
a similar series expansion for inverse light transport, that
explains recent work on fast stratified inversion [Ng et al.
2009]. Analyzing the convergence brings out subtle but im-
portant differences between these dual facets of light trans-
port. Unlike in the forward case where physical bounces of
light are added, the convergence of the inverse series is os-
cillatory. While the forward series convergence condition
corresponds to energy conservation, in the inverse case the
condition is more complex—a sufficient condition is that the
albedo of surfaces is below 0.5, so that the net global illumi-

nation is still less than the direct lighting component.

An important theoretical contribution that highlights the du-
ality is our derivation of a physical meaning for the inverse
Neumann series. Just as each term of the forward Neumann
series adds a bounce of light transport, we show that each
term of the inverse series cancels a bounce.

The dual formulation leads to a new iterative inversion al-
gorithm, analogous to the iterative finite element method for
forward rendering, such as in radiosity. This is our main
algorithmic or computational contribution. No formal ma-
trix inversion is needed, and only matrix-vector multiplica-
tions are used. The resulting technique is thus very efficient,
and can be related to standard Jacobi and Gauss-Seidel iter-
ative methods. We also derive an iterative approach in case
full matrix inversion is required. Finally, we explore Monte
Carlo methods and final gather, showing the analogs between
forward and inverse light transport.

We validate the theory and computational algorithms with
numerical simulations and present a simple practical appli-
cation as an example. Our practical method first requires
the light transport of a static scene to be acquired. Our fast
iterative inversion technique then enables full radiometric
compensation of interreflections while projecting complex
scenes (Fig. 1), as well as separation of individual local and
global illumination components (Fig. 2).
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Figure 2: Separation of bounces of interreflection using our iterative light transport inversion technique. Each bounce is
obtained in just 3 seconds for a 131K x 131K light transport matrix.

2 Previous Work

Our work relates to light transport acquisition, the theory of
forward and inverse rendering, computational methods for
inversion, numerical linear algebra, and related practical ap-
plications. This paper is a more detailed version that sup-
plements [Bai et al. 2010]. Most notably, we describe in
detail the bounce cancellation of the inverse Neumann series
in Section 5 and Monte Carlo algorithms in Section 8. In
addition, we provide a fuller description of generality and
limitations in Section 10.

Light Transport Acquisition: In this paper, we focus on
the case where scene elements are illuminated individually
by a single projector, with a single camera recording the out-
put. This corresponds most closely to the setups in [Seitz
et al. 2005; Peers et al. 2006; Ng et al. 2009]. It is some-
what distinct from relighting with distant illumination [De-
bevec et al. 2000], where a single lighting direction illumi-
nates the entire surface. In fact, as we will discuss in Sec. 3,
the difference is only in the first bounce or direct lighting,
as interactions within the scene are still governed by the ren-
dering equation. Extensions to incident (and reflected) light
fields [Masselus et al. 2003; Sen et al. 2005; Garg et al. 2006]
are encompassed by the theory, but not yet considered in our
practical applications.

Inverse Rendering:  Previous methods have considered
inverting the direct reflection equation to acquire lighting and
reflectance properties [Marschner 1998; Sato et al. 1999; Ra-
mamoorthi and Hanrahan 2001]. [Yu et al. 1999] develop
an inverse global illumination method for BRDF estimation.
However, all these methods assume the scene geometry is
known, and usually work with lower-resolutions for lighting,
which makes analysis of interreflections much easier (and of-
ten requires only a few input images). In contrast, our work
is closest to [Seitz et al. 2005], where only the light trans-

port matrix is observed—both geometry and reflectance are
unknown, and are not explicitly estimated.

Forward Rendering: We draw on the rich history
of global illumination by leveraging operator formulations
and error analysis [Arvo et al. 1994], Monte Carlo algo-
rithms [Veach 1998], and finite element radiosity meth-
ods [Cohen and Wallace 1993]. Many iterative radiosity
techniques are also closely related to numerical linear al-
gebra methods [Golub and van Loan 1996; Demmel 1997]
for solving systems of linear equations, such as Jacobi and
Gauss-Seidel iterations. Our framework enables similar rela-
tions to be drawn for inverse rendering. Similarly, our Monte
Carlo method bears similarities to forward path tracing [Ka-
jiya 1986], as well as von Neumann and Ulam’s original
Monte Carlo matrix inversion method [Forsythe and Leibler
1950]. Future work could also consider analogs of hierarchi-
cal and wavelet radiosity [Hanrahan et al. 1991; Gortler et al.
1993] or photon mapping [Jensen 2001].

Computational Light Transport Inversion:  Much of the
most closely related work comes from radiometric compen-
sation in projector-camera systems. [Wetzstein and Bim-
ber 2007] form clusters of camera-projector pixels, doing a
brute-force light transport inversion within clusters, but not
considering inter-cluster interactions. This method is aimed
at computational efficiency, but without clear error control.
Iterative inverse methods for diffuse scenes are proposed in
[Bimber et al. 2006]. More recently, [Ng et al. 2009] devel-
oped a series expansion for inverse light transport that they
referred to as stratified inverses. We show that this series is
a natural analog to the forward Neumann series. Our dual
formulation enables us to go much further, clarifying the na-
ture of convergence conditions. Most importantly, we de-
rive a new computational analog to iterative finite element
radiosity, as well as Monte Carlo methods. The resulting
algorithms involve only matrix-vector (rather than matrix-



Outgoing light (direct + interreflections)

Direct light from sources or projector

Global light from interreflections 1o, = 1g + 1,4
Incident lighting or projected pattern
Operator/Matrix for forward transport
Operator/Matrix for inverse transport
Operator/Matrix for interreflections only, R =S — I
Local reflection operator

Geometric operator

Net global transport, A = KG

First bounce from projector

Observed light transport, T = SF, S = TF~!
Norm of K, related to maximum albedo (m < 1)
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Figure 3: Table of notation used in the paper.

matrix) multiplications, and are therefore significantly faster.

Practical Applications:  Projector radiometric compen-
sation has a long history [Nayar et al. 2003; Fujii et al. 2005;
Ding et al. 2009], but these methods did not consider inter-
reflections. This application also relates to techniques for
making one object look like another [Raskar et al. 2001].
Our main practical contribution is a fast computation method
for full light transport inversion.

Our other application is rapid direct and global separation
for unstructured lighting. This relates most closely to [Na-
yar et al. 2006], who used a high-frequency illumination pat-
tern and its complement. However, that method works only
for a single image, where the entire scene is illuminated by
the single light source or projector—not for the full light
transport where the response for individual scene elements
is computed, and where the incident illumination can come
from many sources. On the other hand, we do first require
acquisition of full light transport, unlike [Nayar et al. 2006].
Moreover, we can separate the different bounces of global il-
lumination, like [Seitz et al. 2005], and can do so with much
higher-resolution transport matrices at interactive rates.

3 Preliminaries

In this section, we lay out the problem statement, and discuss
some practical issues for acquisition. A table of notation is
given in Fig. 3.

Owing to the linearity of light transport and the rendering
equation,
1out = Slda (1)

where 1, is the outgoing “global” light, and 14 is the direct
lighting on surfaces due to external sources. In continuous
form, 1, and 14 are functions (of spatial location and out-
going direction), while S is a linear operator that accounts
for global illumination. If there are no interreflections, S is
the identity I. When discretized for practical applications,
lIout and 14 are vectors, while S is the interreflection matrix.
Equation 1 depends only on linearity, and holds for the light
field, as well as a single camera view (image).

In traditional global illumination, 14 is actually 1., the emis-
sion from sources. However, in our case, we do not see the
light source or projector directly, but rather its effect on the
scene or direct lighting (or equivalently “induced emission”
ly). Equation 1 is also the same formulation used in recent
direct-to-indirect transfer methods for relighting of synthetic
scenes [Hasan et al. 2006].

The inverse light transport problem considered here is simply
ld - S_llouta (2)

where we seek to invert the operator or matrix S™!, undoing
the effects of interreflections. Again, if there is no global
illumination, S = S~ =1, and 14 = loy.

Practical Issues: In practice, it is rare that S is measured
directly. Instead, a projector or illumination source lights the

scene,
ld = Flin ) (3)

where 1;;, is the incident pattern projected (or distant light
sources turned on), and F is a “first-bounce” matrix or oper-
ator, that gives the direct lighting due to 1;,,. We then observe

lout = Tlin = SFlina (4)

where the actual acquired light transport is T = SF. The
above expression holds for any light transport acquisition
system, including projectors, distant and point light sources.

The remainder of the theoretical development in this paper
focuses on analyzing and computing S~!. Eventual practical
applications do need to convert from T to S, using

S=TF . )

Moreover, applications like radiometric compensation actu-
ally seek to recover l;,, (rather than 14 in equation 2) given
by lin - T_llouts

T !=pF!s! L, = F 1. (6)
Since we focus on global illumination S, we will be inter-
ested in setups where S is easy to obtain from T, i.e., where
F is simple and at least approximately invertible.> Therefore,

2While the discussion in the paper is grounded in physical principles,
from a numerical standpoint, F~1 can also be seen simply as a precondi-
tioner that improves the numerics of the matrix S = TF~1. Therefore,
completely accurate estimation of F is not required.



we consider projector-based acquisition, that illuminates a
single spatial location and records the response, rather than
light sources that illuminate the whole object (where F is
a low-pass filter, that is not easy to invert for diffuse sur-
faces [Ramamoorthi and Hanrahan 2001]). For projector-
based acquisition, after geometric calibration, we can use
the same parameterization for projection and camera im-
ages [Seitz et al. 2005]. F is then a diagonal matrix, with
F~! being trivial to compute, simply by taking reciprocals
of the diagonal elements.3

At this stage, we note that F need not correspond to the
actual first bounce for an accurate light transport inversion.
One may interpret light transport inversion in terms of gen-
eral matrix inversion theory, whereby our choice of F is sim-
ply Jacobi preconditioning, which is guaranteed to be con-
vergent as long as T is strictly diagonally dominant. See
Section 10 for further discussion.

4 Dual Forward and Inverse Light
Transport

At first glance, the inverse problem in equation 2 may be very
different from forward light transport in equation 1. In this
section, we show that the structure of the rendering equation
exposes a strong duality between them. We then derive anal-
ogous Neumann series or expansions for forward and inverse
transport. The next section briefly discusses convergence,
followed by our main algorithmic contributions of fast in-
verse light transport algorithms in Sec. 7. Key theoretical
results for each section are summarized in Fig. 4.

Using the operator form of the rendering equation [Arvo
et al. 1994],
Lo = 1a + KGlouta (7N

where K considers the local reflection at a surface, governed
by the BRDF, and G is a geometric operator that transports
outgoing to incident radiance. Note that this formulation is
valid for any opaque BRDF when considering the full light
field. While the theory we are about to present is fully gen-
eral, our experiments will consider projection to a single
view, which introduces practical limitations, as discussed in
Sections 9 and 10. Denoting A = KG, this can be written,

lout = (I - A)_lld7 (8)

from which it naturally follows that

s=@-A)" ©)

This well known result shows that the forward problem for-
mally involves a matrix or operator inversion, which indi-
cates a similarity and duality with the inverse problem. Also

3In practice, we make the assumption that F = diag(T) similar to [Ng
et al. 2009], i.e., using the diagonal elements of the transport after geomet-
ric calibration. This is an accurate approximation up to first order, since a
surface point does not immediately interreflect onto itself.

note that if the scene geometry and reflectance (and hence A)
are known, we simply have S™! = I — A, as noted by [Seitz
et al. 2005; Mukaigawa et al. 2006]. We focus here on cases
where we only measure S, but do not know or compute A.

In fact, we can separate 1, into the direct 14 and indirect or
global 1, components,

lowe = la +1g = 1a + Rlq, (10)
which may be simplified to
Lot = (I+ R)ly. (11)

Here, we have defined another linear operator or matrix R
that accounts only for global illumination. By definition, R
is simply

R=S_1 S=I+R. (12)

We are now ready to present an expression for inverse light
transport, that is the dual to equation 9,

S'=(TI+R)"L (13)

The very similar or dual forms of equations 9 and 13 is a key
insight in this paper, and allows direct leveraging of many
forward rendering theories and algorithms for inverse ren-
dering.

Neumann Forward and Inverse Series: It is well known
that the forward equations 8 and 9 have series expansions
corresponding physically to multiple bounces of light,

S=I+A+A>+A3+ ... (14)

We can also relate global illumination operator R to this ex-
pansion,

R=A+A%?+A%+... =S—1 (15)

Note that in our case, only S (rather than A) is known ex-
plicitly, and practical calculations simplyuse R =S — 1.

Mathematically, our dual formulation of inverse light trans-
port in equation 13 has a series analogous to equation 14,

ST'T=I-R+R*’-R*+.... (16)

Note that the positive sign of R implies the series is oscil-
latory. The physical meaning is harder to find than in the
multi-bounce forward series. Intuitively, from equation 11,
ly = lout — Rlg. But, evaluating the right hand side in-
volves finding 14, which is unknown. So, we first approxi-
mate 13 =~ l,,t, and remove all the global illumination due to
Ry, i.e. calculate 14 ~ 1,,; — Rlyy:. But, this overcom-
pensates and gives too low a value, requiring higher-order
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Figure 4: The duality of forward and inverse light transport, indicating analogous relations for some of the key properties.
(Monte Carlo equations abbreviated; full forms in equations 46 and 47.)

corrections, and leading to the alternating signs in equa-
tion 16.

Finally, we note that equation 16 is (after suitable algebraic
manipulations)4 identical to, and explains, the stratified in-
verses in [Ng et al. 2009]. Our derivation is simpler and
directly relates to the rendering equation. This is much as
the original rendering equation [Kajiya 1986] explained ray
tracing as a special case of the forward series expansion. Car-
rying the analogy further, we will derive fast iterative algo-
rithms (analogous to radiosity) in Sec. 7.

5 Inverse Neumann Series as Physi-
cal Bounces of Light

Forward light transport has an intuitive interpretation in
terms of physical bounces of light, since each term of the

forward Neumann series adds the next bounce. One may
consider an approximation of order n:

SH:ZA’“

S, —S=0(A"") (17)

In this section, we derive the interpretation of the inverse
Neumann series in terms of physical bounces of light trans-
port. A physical interpretation for the inverse series seems
non-intuitive at first glance, since (16) is expressed in terms
of R, that includes all global illumination terms. Neverthe-
less, here we derive a surprising result: each term of the in-
verse series cancels or zeros out the corresponding bounce
of light transport, analogous to the forward case.

We start with the basic relations, that
S=(1-A)", (18)

and that
S'=(1I+R)!, (19)

4In particular, note that R = S — I, whichis TF~! —1I, or TT(-D 1
in the notation of [Ng et al. 2009]. A final binomial expansion in TF 1 or
TT(- 1), and using T-1 = F~1S—! enables one to derive their result.

where we also note that
R=A+A>+...=A0-A)L (20)

Now, from equation 19 above, we can derive a series,

Sl = i(—l)kRk = i(—nk Ad—-A)"1". @
k=0 k=0

Note that we have used the final result of equation 20 in the
last part. Moreover, while in general, raising a matrix (or
operator) product to a power is complicated because of non-
commutativity, in our case everything involves powers of A,
and so A and (I— A)~! commute, and can be exponentiated
separately. Analogous to the order n approximation S,, in
the forward case, we can now write an expression for the
corresponding approximation in the inverse case:

n n

S, ' =) (-DFRF =) (-DFAFT-A)F. (22

k=0 k=0

Binomial Series Expansion Using a standard binomial
series expansion for (I — A)~*, this can be written as

SR S I ( pet ) Al (@3

k=0 =0

Our next step is to combine the powers of A, using m = [+k
andl =m — k,

-1 _ - = k m_l m
S —’;Z_k(—l) (m_k)A N )

It will simplify the later analysis if we treat k = 0 as a special
case, given obviously from equation 22 as the identity. We
alsouse (m — 1) — (m — k) = (k — 1) in the combination,

S, =T+ > (-1)f ( 71;1:11 ) A" (25)
k=1m=k

To proceed further, we need to transpose the order of the
summations. The outer summation should be about m,
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Table 1: Coefficients of S;,' and S;;*S. The series exhibit oscillatory convergence towards I — A and 1 respectively. The n
term series is accurate up to A™, and in fact cancels or zeroes bounces up to that order, with errors only in higher-order terms

or bounces n + 1 and higher.

which controls the powers. It is clear that we require m > k,
which in turn leads to the relations that £ < m and (because
we are consider the n term inverse series) that & < n,

) min(m,n)
-1 k m—l m
S, =TI+> | > (-1 (k_1> A™. (26)

Base Cases We treat the simple cases when n = 0, 1 and
m = 1 first. When n = 0, the expression above just reduces
to the identity (no bounce is cancelled as expected). When
n = 1, only the £ = 1 term is relevant, so we have

S;l=1- Z A™, 7)

where we note that for £ = 1, the kK — 1 term in the combi-
nation reduces it to 1, and (—1)* = —1. This is indeed the
expected result, since Sl_1 =I-R,andR=A+A%+....

Finally, the special case m = 1 will be useful. In this case
(assuming n > 1), the second summation in equation 26 will
have upper limit m = 1, and the coefficient will simply be
1. Thus, for n > 1 (the cases n = 0 and n = 1 have already
been dealt with),

oo | min(m,n) m—1
-1 _7_ _1\k - m
St=1 A+Z:2 2 (1) (k_1> A"

(28)

Zeroing of Higher-Order Bounces Now, consider the
case when m < n. In this case, the second summation has a
limit of m > 1, and the coefficient of A™ becomes

’
m m

EH (%)) =2 (W) -0

k'=0

(29)
where m’ = m — 1 and ¥’ = k — 1 (note this only works
form > 1;the m = 1 term is given as a special case in
equation 28). The expression above is clearly 0, since those

are the coefficients in a binomial expansion of (1 + x)m',
withz = —1.

This implies a key result, namely, that the A™ terms vanish
for 2 < m < n, which in turn leads to

8,1 =1-A+O0(A") S,'-S' =0(A")]

(30
where O() denotes higher order terms, and n > 1. This
means terms up to order n are correct, and in fact terms from

[AZ...A"] are 0.

Bounce Cancellation We have seen how higher-order
terms are zeroed in the inverse operator series. We now show
that applying the n-term inverse series to the original cancels
the first n bounces. For this we write,

S,'S=[I-A)+0A™H][I-A] ", (31)

It is clear that the first part I — A creates the identity as de-
sired. The product O(A" 1) (I — A)~ 1 is still of O(A"*1),
since the inverse can be expanded in a Neumann series.
Therefore,

S, 'S =1+0(A™). (32)

In other words, the n-term inverse series annihilates bounces
[1...n], leaving only bounces n + 1 and higher.

Analytic Forms In fact, the inner summation in equa-
tion 28 can be performed symbolically (we did so using
Mathematica), to derive

oo

-1 _ n m—2 m,
S,'= I-A + (-1)")_ (n—l )A (33)

m=n+1

-1q _ n m—1 m,
S:ls= 1 +(—1)Z< . )A(.34)

m=n+1

Table 1 shows coefficients for (m,n) < 7. Figures 5 and 6
graphically illustrate the coefficients of S,;! and S!S re-
spectively for n < 12 and m < 7. Owing to the (—1)" term,
these coefficients oscillate until they are zeroed.
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Figure 6: Coefficients of S, 'S form = 0,...,T.

6 Convergence and Error Analysis

An immediate question is when the series in equation 16 con-
verges, and how the error will decrease with more terms, as
well as how this relates to the known properties of the for-

ward series in equation 14.

For the forward case, [Arvo et al. 1994] prove several re-
sults, briefly summarized here. Since A = KG, consider
the norms of K and G first. || G ||= 1 for a closed enclosure
(less for open scenes), while || K ||= m < 1, where m re-
lates to the albedo of the surface (for non-diffuse materials,
it is the maximum over all incident directions of the fraction
of total energy reflected). The relation m < 1 comes from

energy conservation, excluding perfect reflectors,’

IK|<m<1 |A]<m < 1. (35)
The last relation follows because || A [|<||K ||| G ||. In dis-
crete terms, the matrix I — A is diagonally dominant. Since
Il A|< 1, the forward series always converges for physical

environments.

We now turn to the inverse series in equation 16, and we
desire that || R ||< 1 for convergence. A bound from equa-
tion 15 is,
2 2 m
IRI<IA]+ AT +... <mA+m®+...= .

(36)

SNote that these relations hold in any LP norm, since by reciprocity,
K1 =[K[[co=m, and ||-|| < max([|-[| 1, || [ o0)-
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Figure 7: Top: From left to right, we add more terms of the inverse series, going from the simulated global illumination output
Lout to the “direct lighting” result 14 (shown leftmost). These terms also correspond to the iterations introduced in Sec. 7. The
results oscillate between over and under-compensation, converging after 4-8 iterations. Bottom: Contributions of individual
terms (neutral grey is 0). Odd iterations over-compensate interreflections, giving rise to cyan and magenta colors, while even
iterations under-compensate retaining some red and green color bleeding. As can be seen, the corrections of successive terms
(iterations) reduce rapidly, converging to direct lighting only.

Setting %n < 1, we obtain,

1
IR[<1 if m< . (37)

Intuitively, if the diffuse albedo (or maximum fraction of en-
ergy reflected for any incident direction for non-diffuse ma-
terials) is less than 1/2, the norm of the total global illu-
mination operator || R || is still less than that of the direct
lighting operator I. In matrix terms, S = I 4+ R is diago-
nally dominant. Because the inverse series is oscillatory, we
require to bound the full global illumination, rather than just
each bounce as in the forward case. Note however, that equa-
tion 37 is only a sufficient, but not a necessary condition.

Error Analysis:  The series expansions are usually trun-
cated to a finite number n of terms (i.e. approximate S as
S..). The error introduced by doing so can easily be bounded.
In the forward case,

IS =S| < Z A% < Z m*
k=n-+1 k=n+1
n+1
- 39
1—-m

Similarly, for the inverse series,

oo 00 k
-1 _g-1| < k| < m
Isestl s Y IRts > (s
k=n-+1 k=n-+1
mn+1
(1 =m)r(1—2m)’

(39)

Numerical Simulations:  We verify our results and pro-
vide insights with numerical simulations. For simplicity, we

consider a diffuse box, without shadows but with interreflec-
tions. This is a closed environment, so that || G ||= 1. For
greatest accuracy, A (and hence S) is computed directly us-
ing analytic form factors for a discretized mesh [Schroder
and Hanrahan 1993].

Figure 7 assumes that 1y is constant on each surface (but
with different albedos and red-green walls as in a conven-
tional Cornell Box). l,,; includes global illumination ef-
fects. From left to right, we see the addition of more terms
from equation 16 that oscillate between over and under-
compensating the interreflections, till we converge to 14. In-
terestingly, while forward global illumination in 1., results
in predictable red and green color-bleeding, odd terms (or
iterations in Sec. 7) of the inverse series over-compensate
interreflections and give rise to cyan and magenta colors in-
stead. The final inverse light transport solution for 14 has no
color bleeding as desired.

In Fig. 8, we analyze errors and convergence. Fig. 8a shows
error at a single point, that clearly indicates oscillatory con-
vergence. While there is somewhat more error near corners,
the corners, edges and face centers converge in largely simi-
lar ways. Fig. 8b compares error for the whole S™! operator
with the theoretical bound in equation 39. Excellent agree-
ment in form is obtained, with the bound being loose only
by a constant factor. Because convergence is exponential (as
per a geometric series), the vertical axis is on a logarithmic
scale for this and following graphs. Next, Fig. 8c consid-
ers the effects of different albedos. Convergence rate varies
inversely with albedo, as predicted by theory. Even for albe-
dos like 0.45, close to the theoretical limit, at most 10-20
terms or iterations suffices. However, albedos very close to
0.5 show very slow convergence, and those greater than 0.51
diverge. Note that this figure is for a fully closed box. Fig-
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Figure 8: Error analysis for convergence of inverse series. (a): Convergence at different points (center, edge, corner), showing
largely similar behavior. (b): Comparison of error to theoretical bound for different albedos showing good agreement. (c):
Convergence for different albedos. As predicted by theory, convergence is faster for lower albedos, upto the limit of 0.5. An
albedo of 0.51 leads to divergence. (d): An albedo of 0.62 diverges for a closed box (6 sides) and shows very slow convergence
as expected for a box with 5 sides, but rapid convergence for more open environments (fewer sides, smaller || G ||).

ure 8d shows more realistic cases of partially open environ-
ments (fewer than 6 sides for the box), where || G ||< 1. For
an albedo of 0.62, close to the theoretical limit for a 5-sided
box, very slow convergence is achieved for 5 sides (and di-
vergence for 6) as expected, but rapid convergence for more
open environments.

Finally, Fig. 9 shows a scene with occlusions and glossy sur-
faces. Similar behaviors hold as above, with convergence of
the inverse series to direct lighting even for high gloss where
the m < 0.5 condition is not strictly satisfied.

7 Fast lterative Computation

In this section, we introduce our main algorithmic
contribution—a fast iterative method to compute inverse
light transport, using only matrix-vector multiplications.

This method is the dual to iterative forward rendering meth-
ods like finite element radiosity, and we also explore analo-
gous wavelet accelerations.

For forward rendering, one rarely computes the series in
equation 14 to explicitly determine S. This is mainly be-
cause of the high cost of matrix-matrix multiplications on
high-resolution scenes. Instead, finite element and radiosity
methods [Cohen and Wallace 1993] try to solve

1out = 1d + Alout (40)
iteratively, which corresponds directly to equation 7. This

iteration is numerically stable, and requires only the matrix-
vector multiplication for Al,,¢. Each step computes

1% =1, + ALY

out

(41)
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Figure 9: Validation of the theory
for shadowed and non-Lambertian
scenes. The iterative method of
Section 7 recovers lgq in 10 itera-
tions for the shadowed scene and
20 for the glossy one.
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where the superscript stands for the step k, and 1§,?}t =14. It
is important to note that n steps correspond simply to com-
puting the effect of the first n terms of the series in equa-

tion 14.
For inverse rendering, one can derive a similar relation,

lg = Lot — Rlg, (42)
which is analogous to equation 40, and follows from equa-

tion 11. The iterative solution naturally follows, dual to
equation 41,

187 = Towe — RIS, (43)

where again the first n steps correspond to the first n terms in
equation 16. Note the negative sign on R (compare to +A in
equation 41), corresponding to the oscillatory nature of the
series.

As written, equation 43 (and equation 41) corresponds to
the Jacobi iteration for solving systems of linear equa-
tions [Golub and van Loan 1996]. If the 14 are updated in
place (instead of at the end of a step), this is the Gauss-
Seidel method. Both techniques are popular in forward ra-
diosity. By framing inverse light transport as dual to forward
transport, we could also leverage other computational meth-
ods in future, such as Southwell iteration, successive over-
relaxation, and conjugate gradient solutions.

Matrix Iteration:  While rarely used in forward rendering,
there is also a corresponding iteration for the full matrix or
operator, in cases where we seek to precompute S or S~!. In
the forward case,

S =I+AS;_1, (44)
with Sg = L. Correspondingly, in the inverse case,
-1 -1
S, =I-RS,,. (45)
These iterations are not significantly more efficient than a
proper factorization for computing equations 14 and 16 di-

rectly, but do provide an elegant and numerically stable iter-
ative scheme.

Wavelet and Hierachical Methods:  The matrix-vector
multiplication Rly in equation 43 is the time-consuming
step. We can wavelet-transform and approximate the vector
14, as well as the rows of R, to speed up the matrix-vector
multiply. This is analogous to wavelet radiosity and light
transport in forward rendering [Gortler et al. 1993; Ng et al.
2003]. Other hierarchical approaches, analogous to [Hanra-
han et al. 1991], can also be explored.

Numerical Simulations:  As the baseline, we use matrix-
matrix multiplications to directly compute the series in equa-
tion 16 (explicit matrix inversion is intractable for high res-
olutions). In Fig. 10, we compare to the standard iteration
in equation 43, and accelerations using wavelets. The series
method scales as O(N?), where N is the transport resolu-
tion and rapidly becomes impractical. The iterative method
uses only matrix-vector multiplications and is much faster
O(N?), with a speedup of three orders of magnitude for
large sizes. Wavelet acceleration theoretically leads to lin-
ear O(NW) performance, where the number of wavelets W
in each row is relatively insensitive to N. The benefits are
more noticeable at higher resolutions, where wavelet spar-
sity W outweighs the transform overhead—wavelets would
provide significant savings at the resolutions in many real
experiments.

8 Monte Carlo Algorithms

Besides finite element methods like radiosity, forward ren-
dering has developed a suite of Monte Carlo techniques.
In fact, [Kajiya 1986] proposed that the forward Neumann
series in equation 14 could be solved with Markov Chain
Monte Carlo or path tracing. Treating A as a matrix, we
need to consider all permutations of indices,

o0
Lout(i0) = la(io) + > > Aigiy Aiyiy -+ Aiy i lalin),
k

k=11i1,ig,...i

(46)
where the first summation is over all terms k in the series,
or all path lengths in a path tracing context. The different
indices correspond to all matrix sums, or equivalently all
paths, where each ¢; chooses a particular point on the path.
In Monte Carlo path tracing, essentially the above form is
implicitly used, but the A matrix is not usually computed
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Figure 10: Timings for series, iterative finite element, and
wavelet accelerated methods (using Daubechies4 wavelets).
N is the transport resolution (matrix is of size N2). We nor-
malize timings so that 1.0 corresponds to 5.57 x 1074 sec-
onds, with experiments in Matlab on an Intel i7 machine. All
methods were run to an error of 1%.

explicitly, and elements of it are generated on the fly.

The inverse series in equation 16 has an exactly analogous
form,®

la(io) = lout (i0) + Y _(=1)* > Rigi; Riyiy - Riy_ iy Jous (i),
k=1

1,09,k

(47
where the oscillatory behavior requires the additional (—1)*
factor. A direct Monte Carlo algorithm is to use a number of
samples, for each of which the indices 1, i2, . . . i are drawn
at random. The expectation of these samples then gives the
desired result. Our implementation makes a number of op-
timizations, that correspond to analogous techniques in for-
ward rendering.

First, for each sample, we choose a path length k. We as-
sign probabilities to different path lengths in proportion to
their expected contribution, which decays with k. From the
convergence and error analysis in equation 39, we use the
normalized probability

p(kz)z( = )k(l_Qm), 48)

1—-m m

6Equations 46 and 47 are abbreviated for brevity in the table in Fig. 4.

with m being an estimate of the average albedo of the scene.
We next choose indices i1, 42, ...7,. These can be chosen
randomly, or we can use importance sampling on each row
of the matrix R,

(iglij1) = izt Rismais (49)
p(ijltj-1) = = :
I le Rijflip |Rij—1 ‘

where we normalize by the sum of elements over the full row,
and the last step simply denotes the row sum more compactly
as |Rq,_, |= >, Ry, ,i,. These row sums correspond to
a generalized anazl)og of albedos or BRDFs along the path,
suitably weighted. Note that importance sampling in forward
rendering is usually based on some partial information like
lighting or BRDF, but we have the luxury of the full accurate
R matrix to importance sample.” This greatly simplifies the
final expressions.

Finally, the net image is just the expected value over all
paths/samples. For each path, we must divide the value f
by the probability (in this case, f is simply the appropriate
term in the summation on the right-hand side of equation 47).
Since f involves expressions of the form R;,_,;;, they can-
cel with the probabilities above as they should for good im-
portance sampling,

flksivia, . ig)  (=1)F .
- = |Ri0 ||Rl1| |Rik71 | lout(lk)a

(50

where we must average (take the expected value) over all
samples to obtain 14, and also add the initial term L,y (7o)
per equation 47. Note that the above simplified form is valid
only if we importance sample properly when choosing the
next index along a path.

Hybrid Methods: Besides the above pure Monte Carlo
path tracing analog, we can also explore hybrids of itera-
tive and Monte Carlo techniques. Note that these types of
hybrids are rarely used in forward rendering but follow natu-
rally from our framework. For example, we can speed up the
matrix-vector multiplication Rly in equation 43 by Monte
Carlo sampling only some of the columns for each row, us-
ing the importance sampling scheme above. We can also ex-
plore an analogy to final gather in forward rendering, where
we use fewer samples for the iteration, but then compute the
final step with a direct matrix-vector multiplication.

Numerical Simulations: Figure 11 first demonstrates
that variance varies inversely with the number of samples per
pixel as expected (each “pixel” corresponds to the intensity
of an area element on the box in Fig. 7). The images in the
top row show the power of final gather—Monte Carlo with
30 samples is noisy as expected, but is smoothed out almost

"Note that building the probability tables for importance sampling does
require a preprocess for each row of the matrix. This preprocess is done
once, after acquisition and before any specific 1oyt is chosen.
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Figure 11: Top: Graph of variance in Monte Carlo meth-
ods, which shows the expected behavior, varying inversely
with the number of samples per pixel. Bottom: In the top
row, we show that only 30 samples per pixel (that in itself is
extremely noisy) is adequate to produce good results using
final gather. In the bottom row, as expected, Monte Carlo
becomes more accurate with more samples. The transport
resolution N in these cases is 5120.

completely using one direct iteration (the final gather). In
the bottom row, we see that as expected, pure Monte Carlo
converges as the number of samples is increased.®

9 Experiments with Real Data

In this section, we illustrate the application our iterative in-
verse light transport algorithm for two scenarios—separating
the bounces of light transport and projector radiometric com-
pensation. The accuracy of our algorithms is established by
a few didactic examples, while their computational utility is

80ur current Matlab implementation is not optimized for the sampling
process, making a direct timing comparison to finite elements difficult.
Hence, we simply report on number of samples per pixel.

demonstrated by performance on high resolution transport
matrices. See Section 10 for a discussion of limitations im-
posed by our choice of experimental conditions.

Acquisition Details:  Our acquisition setup consists of a
Dell 4310WX projector and a Canon EOS 5D Mark II cam-
era. An accurate, one-time, radiometric calibration of the
projector and camera response curves is performed to en-
sure linearity of the corresponding signals. While prior work
has obtained transport matrices at resolutions comparable to
ours [Sen et al. 2005], it has mainly been for applications
akin to relighting. In contrast, the inverse problems that
form our application domain require greater fidelity in the
elements of the transport matrix. Thus, a judicious consider-
ation of signal to noise ratio is necessary to capture as many
of the weaker interreflection bounces as possible while dis-
carding the sensor noise. To faithfully capture the energy of
the transport matrix, up to 8 images at various exposures are
assembled into a high dynamic range image. The projector’s
black offset is computed at the highest exposure to average
out high frequency fluctuations. For the higher resolution
scenes, a hierarchical subdivision scheme is used to simul-
taneously acquire portions of the transport matrix which are
not in mutual conflict, similar to [Sen et al. 2005].

Projector Radiometric Compensation: = The ubiquitous
use of projectors may necessitate inverting photometric dis-
tortions and interreflection effects to simulate any desired ap-
pearance in non-flat, non-Lambertian spaces. In terms of our
theory, given a desired appearance 1., we seek to invert the
light transport to find 15 = S~ ,u¢. As discussed in Sec. 3,
we must account for the first bounce F from the projector,
and actually compute Ly, = T 1.

Fig. 1 shows results for radiometric compensation to project
a desired image onto a scene with non-Lambertian materials,
occlusions and interreflections. Clearly, the desired appear-
ance is closely matched. The size of the transport matrix is
131K x 131K, for which our iterative algorithm performs
radiometric compensation in only about 3 secs. While such
high resolutions may be infeasible for a straightforward ma-
trix inversion, based on the patterns in Fig. 10, the stratified
inverses method of [Ng et al. 2009] will require 1 — 2 orders
of magnitude more time. Also, in contrast to the method
of [Wetzstein and Bimber 2007], our algorithms are physi-
cally motivated and not contingent on any tunable parame-
ters.

Separating Bounces: One consequence of our theory
is that once the light transport has been acquired, we can
quickly separate an image into the different bounces (direct,
1st bounce indirect, 2nd bounce indirect and so on). It fol-
lows from (41), noting that S™! = I — A, that the k-th indi-
rect bounce is

1 %) =14 - sl (51)

out ou
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Thus, each successive run of our iterative inversion algorithm
yields a bounce of light transport. Fig. 12 shows a didactic
example demonstrating the accuracy of the bounce separa-
tion. The scene consists of a white dihedral with green light
projected on the left half. Note that successive bounces of in-
direct illumination in the bottom row alternate perfectly be-
tween the two walls, as expected. Fig. 13 demonstrates the
same with a non-Lambertian occluder present in the scene.
We observe that the specular highlight is limited only to
the direct component and absent from the indirect bounces,
which is also expected.

This application is the same as [Seitz et al. 2005], but our
algorithms are far more efficient. For instance, our itera-
tive method recovers the direct component as well as each
bounce of indirect illumination in 0.09 sec for the 4K x 4K
transport matrix in Fig. 13, while straightforward matrix in-
version requires 4.6 sec. More importantly, our methods can
efficiently operate on much higher resolution scenes that di-
rect inversion cannot handle—for instance, Fig. 2 demon-
strates bounce separation in a 131K x 131K transport ma-
trix. While an uncompressed matrix of that size cannot even
be loaded in RAM, extrapolating from Fig. 10, a brute force
inversion will require nearly 150 hours. In contrast, we re-
quire only 33ms per iteration in our (unoptimized) Matlab
implementation, for a total of about 3 sec to separate each
bounce. Note that the faster method of [Nayar et al. 2006]
yields only the top row of Fig. 12 for a particular lighting

Global

Figure 12:  Separation of individual
bounces. The scene is a white concave di-
hedral, with flat green projection on the left
half. Top row: input image and separated
direct and net global components. Bottom
row: recovered indirect bounces. Note that
successive bounces illuminate alternating
walls of the dihedral, as expected.

Bounce 4

Global

Figure 13: Bounce separation with occlu-
sions and specularities. Top row: input
image and separated direct and net global
components. Bottom row: recovered indi-
rect bounces. Note that successive bounces
illuminate alternating walls and the spec-
ular highlight is present only in the direct
component.

Bounce 4

configuration, while we can separate all the bounces for any
lighting, albeit at the expense of a more laborious acquisi-
tion.

10 Generality and Limitations

Finally, we briefly discuss the generality and limitations of
the presented theory, especially in the context of our experi-
mental setup in Section 9.

Choice of F': It is important to note that F need not corre-
spond to the actual first bounce for an accurate light transport
inversion. In numerical terms, the choice of F = diag(T)
amounts to Jacobi preconditioning, which is convergent if
T is diagonally dominant. Thus, our choice of F is valid
for inversion of any light transport, even one arising from
a non-Lambertian scene, as long as global effects do not
dominate the transport. So, our theory is valid in its cur-
rent form for applications like radiometric compensation in
non-Lambertain scenes that rely merely on inversion of the
light transport.

Non-Lambertian BRDFs: It is worth reemphasizing that
our theoretical framework is derived in terms of the full light
field and is applicable to light transports arising from com-
plex BRDFs. In particular, our derivations remain true for
non-Lambertian BRDFs, including anisotropic ones. Phe-



nomena such as translucency, subsurface and volumetric
scattering, which cannot be modeled by an opaque BRDEF,
are not encompassed by this theory. Yet our results are well-
behaved even in the presence of out-of-model effects like
subsurface scattering, which are clearly visible in our ex-
periments. An interesting avenue for future research is to
explicitly incorporate such effects into our theory.

Single projector-camera setup: While our formulation
is valid for any opaque BRDF when considering the full light
field, our experiments employ a single projector and a sin-
gle camera. Thus, an experimental setup like ours will ne-
cessitate the additional considerations of an operator P that
projects the output light field to the image and another oper-
ator Q that raises the projector input to the full light field.

The acquired light transport can now be written as

T = PSFQ (52)
=PI+A+A%+.-)FQ (53)
= PFQ + PAFQ + PA’FQ + - -- (54)

The direct lighting component in the observed image is
PFQ. In the case of the full light field, higher bounces are
generated by a simple operator action A. However, that is
not true here due to the pre-multiplication by the projection
operator P, unless P and A commute multiplicatively (for
which it is unlikely that any physical meaning exists). Thus,
our physical interpretations in terms of bounces of light in
Section 5 are only valid for the full light field, not for the
single projector-camera setup of our experiments. Also, this
makes the theory inexact for certain applications like bounce
separation with a single projector-camera in non-Lambertian
scenes.

But it is important to note that the theory does hold for a
Lambertian scene even in the single projector-camera case.
Since the camera direction is immaterial in that case, one
need not consider P for a radiometric analysis (or even Q,
if one ignores visibility and shadowing issues, as in [Seitz
et al. 2005]). In practice, it is known that specular effects
rapidly decay with bounces of interreflection (that is, higher
bounces are increasingly diffuse), so the results obtained in
our bounce separation experiments are still robust to moder-
ate amounts of gloss.

Device limitations: We share some restrictions with other
projector-camera systems, such as shutter speeds limited by
projector refresh rates, color bleeding and non-linear color
mixing ratios. For radiometric compensation, the projector
cannot display negative values, which may lead to clipping
artifacts in dark regions.

11 Conclusions and Future Work

The main contribution of this paper is a formulation of in-
verse light transport in computer vision, as a dual to the
theory of forward rendering in computer graphics. This
lends new insights for canceling interreflections in complex
scenes, as well as fast computational methods for doing so.
Our efficient algorithms, analogous to finite element radios-
ity and Monte Carlo path tracing in forward rendering, can
handle transport resolutions far higher than previous meth-
ods.

From a theoretical perspective, we have just scratched the
surface of analogies between forward and inverse methods.
It is our hope that the framework of this paper forms the ba-
sis for discovering further insights into the structure of light
transport and developing methods that couple fast acquisi-
tion and iterative inversion to perform radiometric compen-
sation in dynamic scenes.
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