
Investigating Occlusion and Discretization

Problems in Image Space Blurring Techniques

Brian A. Barsky a,b, Michael J. Tobias a, Daniel R. Horn a,
Derrick P. Chu a,c

aComputer Science Division, University of California, Berkeley, California,

94720-1776, USA

bSchool of Optometry, University of California, Berkeley, California, 94720-2020,

USA

cComputer Science Department, University of California, Los Angeles, California,

90095-1596, USA

Abstract

Traditional computer graphics methods render images that appear sharp at all
depths. Adding blur can add realism to a scene, provide a sense of scale, and draw a
viewer’s attention to a particular region of a scene. Our image based blur algorithm
needs to distinguish whether a portion of an image is either from a single object or
is part of more than one object. This motivates two approaches to identify objects
after an image has been rendered. We illustrate how these techniques can be used
in conjunction with our image space method to add blur to a scene.

Key words: Image forming and processing, Visual perception
PACS: 42.30.Va, 42.66.Si

1 Introduction

Images rendered with traditional computer graphics techniques appear com-
pletely in focus. However, images formed by optical systems have depth of
field; that is, some regions of the image are in focus while other are blurred.
This is useful to draw a viewer’s attention to a specific region of the image
and can help to indicate the scale of a particular scene. The rendering of a 3D

Email address: barksy@cs.berkeley.edu (Brian A. Barsky).
URL: http://www.cs.berkeley.edu/optical (Brian A. Barsky).

Preprint submitted to Elsevier Science 23 September 2003



scene requires transforming from object space to image space. This transfor-
mation is parameterized by a camera angle and location. There are algorithms
that can be used to apply blur in object space[2] where the entire geometry of
the scene is present. Yet, after the transformation to image space, there are a
wider variety of methods for applying depth of field.[3]

2 Object Space Methods for Depth of Field

Since scene geometry information is readily available in object space, this is the
most straightforward and ideal space in which to compute blur. Distributed
raytracing, first proposed by Cook et al. in 1984[6], sends multiple rays from
the aperture of the lens, through each pixel on the image plane, and into
the scene. Kolb et al.[11] proposed a more realistic algorithm for computing
object-space blur. For each pixel in the image, their approach emits multiple
rays from the film plane, through a system of lens elements, and computes
where these rays intersect the scene. Using this technique, the final color of
each pixel is the average of the colors at all the nearest ray-object intersections
for the rays emerging from this pixel.

Inherent in the distributed technique are questions of the density and spatial
distribution of samples across the lens; these issues have been addressed by
Cook[5], Dippe and Wold[7], Lee et al.[12], and Kajiya[10]. Further details
are provided in our survey paper on object space techniques[2]. Additionally,
simulating depth of field using these distributed ray tracing approaches is
more computationally expensive than standard ray tracing. The increase in
computation cost over standard ray tracing is proportional to the number of
rays per pixel.

3 An Image Space Method for Depth of Field

Image space techniques have been developed to avoid this increase in compu-
tation time. Potmesil and Chakravarty[13] were the first to propose an image
space technique that smears colors over a region (the circle of confusion) for
each pixel. The efficiency of the technique was improved by Rokita[14]. In
1994, Shinya[15] solved occlusion issues present in Potmesil’s solution by us-
ing a sub-pixel buffer for each pixel to track all rays entering that pixel from
a lens.

There has also been work regarding depth of field with respect to light fields,
which results in realtime[8] and non-realtime[9] techniques. For a more de-
tailed discussion of light fields and blur, the reader is referred to our survey

2



Fig. 1. Original Tin Toy image.

Fig. 2. Depth information, scaled from near (shown in white) to far (in black), for
the Tin Toy image.

Fig. 3. The image is separated by depth into discrete sub-images.

paper on image space techniques[3].

In 2002, we proposed an alternate approach[1] which is also applied in image
space. The technique takes as input a given image with a depth map (Figures 1
and 2) and then separates the image according to depth into discrete sub-

3



Fig. 4. Final blurred Tin Toy image focused on the Tin Toy.

Fig. 5. Final blurred Tin Toy image focused on the baby.

images (Figure 3). Each sub-image is blurred independently and then they
are combined to produce the resulting image which has depth of field; this is
shown in Figures 4 and 5.

4 Problems with Image Space Blurring Techniques

Using image space techniques raises two concerns: the occlusion problem and
the discretization problem.

4.1 Occlusion Problem

Although processing in image space allows an increase in speed, it has the
problem that the scene geometry is missing, which we refer to as the occlusion
problem. A lens with a finite aperture allows more of the scene to be visible
than would be seen through an infinitesimal pinhole, as illustrated in Figure 6.
Thus, without additional input, the colors from parts of the scene that are

4



ap
er

tu
re

finite aperture

finite aperture pl
an

e

object

ob
je

ct
oc

cl
ud

ed

occluding

ray through
ray through pinhole

ray through pinhole

fi
lm

ray through

Fig. 6. An object that is visible through a finite aperture can be occluded when
viewed through a pinhole.

behind objects would have to be approximately reconstructed using the border
colors of visible objects.

To address the need for occluded scene information, the algorithm can also
take as input scene data that are behind the foreground objects. This data
comprises both color and depth information. Thus, in addition to the data
at the first intersection, this approach can use all the subsequent intersection
data located along the infinite ray drawn from the viewpoint through any pixel
in the original scene. This allows the algorithm to obtain colors from occluded
objects, instead of approximating the reconstruction of occluded color data.

However, if it is not possible to determine additional intersections from the
geometry itself, then we must approximate the occluded pixels. If we assume
that the hidden pixels have similar colors to those of the neighboring pixels
that are visible, then we can approximate the hidden pixels by a weighted sum
of the visible pixels. This is equivalent to convolving the visible sub-images
with a well-chosen Gaussian kernel and then using the results as approxima-
tions for the occluded areas. Note that since these approximated pixels are
used only for blurring, accuracy is not critical.

4.2 Discretization Problem

The second problem, which we call the discretization problem, results from
separating the image by depth. At adjacent pixels in different sub-images, the
calculation of depth of field is complicated. This arises because these adjacent
pixels may or may not correspond to the same object.

If an object spans more than one sub-image, there will be adjacent pixels that
correspond to the same object but reside in different sub-images. We refer to
a pair of such pixels as a joint-pair, as shown in Figure 7. Otherwise, when
the adjacent pixels in different sub-images correspond to different objects, we
call them a disjoint-pair, as illustrated in Figure 8.

5



sub−
im

age 2

view
direction

surface
pixel edges

joint pair

sub−
im

age 1

Fig. 7. A joint-pair is a pair of adjacent pixels belonging to the same object but
residing in different sub-images.

pixel edges

view
direction

pixel edges

sub−
im

age 1
sub−

im
age 2

surface A

surface B
disjoint pair

Fig. 8. A disjoint-pair is a pair of adjacent pixels belonging to different objects and
residing in different sub-images.

When two pixels reside in distinct sub-images, it is difficult to determine
whether they form a joint-pair or disjoint-pair.

Artifacts are introduced into the image when a single object straddles two
sub-images and the sub-images are blurred. Consider a pixel p; its neighboring
colors are the colors of those pixels in the nearest sub-image at or behind the
sub-image containing the pixel p, as depicted in Figure 9. As presented earlier
in this section, these neighboring colors are either determined from the first
intersection, or determined from latter intersections, or approximated. In a
joint-pair, we refer to the pixels in the near and far sub-images as the near
pixels and far pixels, respectively. The artifact arises when the far pixel is
averaged with neighboring colors behind the near pixel that do not match
the far pixel’s color. The neighboring colors are often black, which is the
default background color. Consequently, a black blurred band occurs at the
intersection of the object with the separation of the sub-images that it spans,
as can be seen in Figure 10.

6



view

’s neighboring colors

surfacesnear
pixel

pixel edges
far
pixel p,

pixel edges

pixel edges

sub−image 1

sub−image 2

sub−image 3
direction

p

Fig. 9. The neighboring colors of a pixel p are the colors of those pixels in the nearest
sub-image at or behind the sub-image containing the pixel p.

Fig. 10. Black bands appear at the locations where the sub-images are separated,
unless the algorithm properly distinguishes between joint-pairs and disjoint-pairs.

5 Object Identification as a Solution for Image Space Artifacts

To eliminate these band artifacts that arise when an object is separated into
multiple discrete sub-images, the algorithm attempts to identify entire objects
within the image. This eliminates the artifact by avoiding the separation of
objects across sub-images. Instead, when a large object straddles several sub-
images, each sub-image will include the entire object instead of only a part
of that object. Consequently, the object will have minimal artifacts due to
blurring.

We will now consider two approaches for object identification to properly blur
the scene. Our first approach uses the depth difference of adjacent pixels to
identify objects. In our second approach, the Canny edge detection[4] algo-
rithm is applied to draw borders between objects and hence identify them.

7



33 1 4 1

5 9 2 6

5 3 5 8

9 7 9 3

2

−4

2

2

−3

7

−2

−2

−3

−4

6

Fig. 11. An example of a first degree difference map (right) resulting from applying
a horizontal difference to the first 16 digits of π (left).

6 Approaches for Object Identification

6.1 Adjacent Pixel Difference Technique

The first technique for including points from objects that span several sub-
images assumes a surface with a given order of continuity. As input to the
algorithm, we select the order of continuity, denoted Cn, of the surface. In
addition, the bound on the nth derivative of depth with respect to the im-
age plane coordinates is selected such that adjacent pixels within the bound
correspond to the same object. Since image space is a discrete representation
of continuous geometry, we use the difference as the discretized counterpart
of the derivative. Figure 11 illustrates a first degree difference map for an
arbitrary image.

The algorithm assigns an object identifier to each pixel and then groups to-
gether those pixels that share an object identifier. Once all objects are located,
it is straightforward to determine whether the neighboring colors should be
obtained from objects in front of, at, or behind, the current sub-image.

6.2 Edge Detection Technique

Our second method for identifying objects begins by using a variant of the
Canny edge detection algorithm[4]. The Canny algorithm takes as input an
intensity map for the image, and it convolves the intensity map with the first
derivative of a Gaussian function. The algorithm then marks pixels in the
resulting array whose magnitude exceeds a specified upper threshold. These
marked pixels are grouped into edge curves based on the assumption that
neighboring marked pixels that have consistent orientations belong to the
same edge.

Our technique uses a depth map as the intensity map as input to this edge

8



Fig. 12. Using depth map information as input, the edge detection algorithm iden-
tifies where object edges lie in the image.

detected edge

 

rays
extending

the region

detected edge

Fig. 13. Extending the region involves taking the union of the line segments that
begin within the original region and do not intersect the detected edges.

detection algorithm. Figure 12 shows the result of edge detection on the exam-
ple depth map. Using this variant of the Canny algorithm to segment a scene
into distinct objects avoids inadequacies that are common to traditional edge
detection methods. In particular, using depth information avoids erroneous
detection of edges that correspond to the surface markings and shadows of
objects in the scene.

Starting with the region formed by the boundary pixels in the current sub-
image, the algorithm extends that region until it is bounded by previously
detected edges. Specifically, extending the region involves taking the union of
the line segments that begin within the original region and do not intersect
the detected edge segments; this is illustrated in Figure 13.

Thus, both the adjacent pixel difference technique and the Canny edge detec-
tion approach address the discretization problem that is associated with our
technique for image space blurring.

9



7 Summary

Our two proposed approaches differ both in their inputs and in their methods
to identify objects to solve the discretization problem.

The adjacent pixel difference technique can utilize every intersection between
an infinite ray from the camera and the scene. It tags entire objects, since the
algorithm has access to all the image space data of the scene.

The Canny variant relies only on the input image and depth map. It uses
detected edges to exclude regions outside a given sub-image that are not part
of an object within that sub-image.

Thus, both approaches improve our image space algorithm for depth of field
by determining which regions of the image should be included in a given
sub-image to create an extended sub-image. That extended sub-image may
then be independently blurred and combined with other sub-images without
introducing artifacts.

Acknowledgments

The authors would like to thank Adam W. Bargteil and Jeffrey A. Pang of
the Computer Science Division of the University of California, Berkeley for
their helpful comments. We also wish to thank Edwin E. Catmull, Christine
Freeman, and Randy Nelson of Pixar Animation Studios for providing the
original Tin Toy image.

References

[1] Brian A. Barsky, Adam W. Bargteil, Daniel D. Garcia, and Stanley A.
Klein. Introducing vision-realistic rendering. In Paul Debevec and Simon
Gibson, editors, Eurographics Rendering Workshop, pages 26–28, Pisa,
June 2002.

[2] Brian A. Barsky, Daniel R. Horn, Stanley A. Klein, Jeffrey A. Pang,
and Meng Yu. Camera models and optical systems used in computer
graphics: Part I, Object based techniques. In Proceedings of the 2003
International Conference on Computational Science and its Applications
(ICCSA’03), Montréal, May 18–21 2003. Second International Workshop
on Computer Graphics and Geometric Modeling (CGGM’2003), Springer-
Verlag Lecture Notes in Computer Science (LNCS), Berlin/Heidelberg.

10



[3] Brian A. Barsky, Daniel R. Horn, Stanley A. Klein, Jeffrey A. Pang,
and Meng Yu. Camera models and optical systems used in computer
graphics: Part II, Image based techniques. In Proceedings of the 2003
International Conference on Computational Science and its Applications
(ICCSA’03), Montréal, May 18–21 2003. Second International Workshop
on Computer Graphics and Geometric Modeling (CGGM’2003), Springer-
Verlag Lecture Notes in Computer Science (LNCS), Berlin/Heidelberg.

[4] John F. Canny. A computational approach to edge detection. IEEE
Transaction on Pattern Analysis and Machine Intelligence, 8(6):679–698,
1986.

[5] Robert L. Cook. Stochastic sampling in computer graphics. ACM Trans-
actions on Graphics, 5(1):51–72, January 1986.

[6] Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed ray
tracing. In Hank Christiansen, editor, ACM SIGGRAPH 1984 Conference
Proceedings, pages 137–145, Minneapolis, July 23–27 1984.

[7] Mark A. Z. Dippe and Erling H. Wold. Antialiasing through stochastic
sampling. In Brian A. Barsky, editor, ACM SIGGRAPH 1985 Conference
Proceedings, pages 69–78, San Francisco, July 22–26 1985.

[8] Wolfgang Heidrich, Philipp Slusallek, and Hans-Peter Seidel. An image-
based model for realistic lens systems in interactive computer graphics. In
Wayne A. Davis, Marilyn Mantei, and R. Victor Klassen, editors, Proceed-
ings of Graphics Interface 1997, pages 68–75. Canadian Human Computer
Communication Society, May 1997.

[9] Aaron Isaksen, Leonard McMillan, and Steven J. Gortler. Dynamically
reparameterized light fields. In Kurt Akeley, editor, Proceedings of ACM
SIGGRAPH 2000, pages 297–306, New Orleans, July 23–28 2000.

[10] James T. Kajiya. The rendering equation. In ACM SIGGRAPH 1986
Conference Proceedings, pages 143–150, Dallas, 1986.

[11] Craig Kolb, Don Mitchell, and Pat Hanrahan. A realistic camera model
for computer graphics. In Robert L. Cook, editor, ACM SIGGRAPH
1995 Conference Proceedings, pages 317–324, Los Angeles, August 6–11
1995.

[12] Mark E. Lee, Richard A. Redner, and Samuel P. Uselton. Statistically
optimized sampling for distributed ray tracing. In Brian A. Barsky, ed-
itor, ACM SIGGRAPH 1985 Conference Proceedings, pages 61–67, San
Francisco, July 22–26 1985.

[13] Michael Potmesil and Indranil Chakravarty. Synthetic image generation
with a lens and aperture camera model. ACM Transactions on Graphics,
1(2):85–108, April 1982. (Original version in ACM SIGGRAPH 1981
Conference Proceedings, Aug. 1981, pp. 297-305).

[14] Przemyslaw Rokita. Fast generation of depth-of-field effects in computer
graphics. Computers & Graphics, 17(5):593–595, September 1993.

[15] Mikio Shinya. Post-filtering for depth of field simulation with ray dis-
tribution buffer. In Proceedings of Graphics Interface ’94, pages 59–66,
Banff, Alberta, May 1994. Canadian Information Processing Society.

11


