
Camera Models and Optical Systems

Used in Computer Graphics:
Part II, Image-Based Techniques

Brian A. Barsky1,2,3, Daniel R. Horn1, Stanley A. Klein2,3, Jeffrey A. Pang1,
and Meng Yu1

1 Computer Science Division
2 School of Optometry

3 Bioengineering Graduate Group, University of California,
Berkeley, California, 94720-1776, USA
http://www.cs.berkeley.edu/optical

Contact author: barsky@cs.berkeley.edu

Abstract. In our companion paper [5], we described the optics under-
lying camera models that have been used in computer graphics, and
presented object space techniques for rendering with those models. In
this paper, we survey image space techniques to simulate these models,
and address topics including linear filtering, ray distribution buffers, light
fields, and simulation techniques for interactive applications.

1 Introduction

Images generated by common computer graphics algorithms often lack depic-
tions of focus, blur, optical aberrations, and depth of field. In our companion
paper [5], published earlier in these proceedings, we described several camera
models that have been proposed to address these problems, and presented ob-
ject space techniques for rendering with those models. In this paper, we present
several image-based techniques to simulate these camera models. Several of these
methods are useful when the 3D geometry of a scene is not available, and they
are often more efficient than object-based techniques such as ray tracing. We
will conclude with a summary of camera models and optical systems used in
computer graphics and discuss future directions for research in this area.

2 Image-Based Blur

In 1981, Potmesil and Chakravarty [16] described a linear filtering technique for
image-based blur. Their algorithm blurs each pixel with a properly sized blur
filter at any given depth. Each pixel is smeared into a disc of a particular radius
known as the circle of confusion to establish blur. Equation (5) in our companion
paper [5] relates the depth at the current pixel in the scene to the diameter of
the resulting circle of confusion.

V. Kumar et al. (Eds.): ICCSA 2003, LNCS 2669, pp. 256–265, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Camera Models and Optical Systems Used in Computer Graphics: Part II 257

Fig. 1. Image Based Linear Filtering used on an image with a mapped cube
and sphere. On the left, the cube appears focused, and on the right the sphere
appears focused. (Courtesy of Indranil Chakravarty [16].)

Each point in the circle of confusion is weighted; the function that maps
locations in this circle to weights is known as the intensity distribution function
(IDF) [6, 16]. Although wave optics may be used to compute the precise IDF
across the circle of confusion as a wavy Airy disc [6], according to Chen [8],
a simple uniform spread of intensity across the circle of confusion can be used
when the lens system is not diffraction limited or when the discretization of the
pixels is too great. Smearing each pixel with the appropriate circle of confusion
at its corresponding depth yields the final image.

On a Prime 750 machine from the early 1980’s, a 512x512 image took between
3 and 125 minutes to process depending on the size of the aperture.

To speed the convolution process, Rokita [17] in 1993 presented an argument
for approximating convolution with a large circle of confusion by using many
convolutions with smaller circles of confusion. A number of faster 3x3 convolu-
tion filters can replace any single larger convolution filter. Although this does
not result in an exact uniform-intensity circle of confusion, there is not a signif-
icant difference to a human observer between images that are generated by the
repeated application of the smaller circle and those that are generated by the
single application of the larger circle of confusion.

However, there are some deeper problems with Potmesil and Chakravarty’s
straightforward method of blurring. Blurring with different filters for pixels at
different depths results in brightening and has artifacts arising from blurred
background objects bleeding into focused foreground objects. When processing
an image with a blurred white background and a sharp black foreground object,
the final image will be dramatically brighter near the border of the black object
as in Figure 4. This effect distorts the colors of the original image, and engenders
halos around sharp objects.

The problem stems from the larger issues surrounding occlusion. A lens with
a finite aperture allows a camera to view more of the scene than does a pinhole
camera as shown in Figure 2, and thus it allows rays from behind an occluded
object to arrive at the image plane. However, Potmesil and Chakravarty’s al-
gorithm only obtains colors that were present in the original pinhole rendering,
and never determines whether a color that was originally occluded is required.



258 B.A. Barsky et al.

p
la

n
e

Object

Occluding

Object

finite aperture
Ray through

finite aperture
Ray through

A
p
er

tu
re

Ray through pinhole

Ray through pinhole

fi
lm

Occluded

Fig. 2. An object that would be occluded in a scene ray traced through a pinhole
appears through a finite aperture.

3 Ray Distribution Buffer

In [18], Shinya proposed a workaround for the inherent occlusion problem. This
technique computes the final color of each pixel as an average of the colors
deposited by rays entering the lens system from all angles and striking that
pixel. For each pixel, the color values used in this computation are stored in a
bank of memory known as the Ray Distribution Buffer (RDB).

Distributed rays Pixel

RDB

Screen
Direction vector

Fig. 3. Each pixel has a sub-pixel Ray Distribution Buffer. An exit direction
vector can be calculated for each sub-pixel. (Courtesy of Mikio Shinya. Adapted
from [18].)

Shinya’s method comprises four stages: First, the image is rendered conven-
tionally with a depth buffer.

The second stage allocates memory for the RDB for each pixel. This memory
is filled with many copies of the depth and color of the corresponding pixel in the
conventionally rendered image. It is desirable to have rays spreading uniformly
across the lens aperture. To achieve this, a direction vector is defined for each of
these rays. Each direction vector is stored in an element of the RDB. In a given
pixel’s RDB, the set of all such direction vectors sprinkles uniformly across the
lens aperture.

In the third stage, at each pixel p of the image, the size of the circle of con-
fusion for that pixel is calculated using equation (5) in our companion paper [5].
Then, in the initial image rendered in the first stage, each pixel qp contained



Camera Models and Optical Systems Used in Computer Graphics: Part II 259

Fig. 4. A focused black line occludes a defocused book. Left: The standard linear
filtering method results in a translucent occluding object, which is incorrect in
this scene. Right: The occlusion problem is solved using the RDB, and the black
line is properly opaque. (Courtesy of Mikio Shinya [18].)

inside the pixel p’s circle of confusion is examined. The direction of the ray
emerging from each pixel qp in the pinhole rendering is calculated; that direc-
tion is compared with the directions in the pixel p’s RDB, and the corresponding
memory slot is located. The depth value in the pixel p’s RDB is compared with
the pixel qp’s depth value and the lower depth value with its associated color is
selected.

After this process is repeated for each pixel, the fourth stage of the algorithm
averages the colors of the RDB into the final pixel color. This method success-
fully overcomes many of the problems with Potmesil and Chakravarty’s simpler
approach, and the difference is illustrated in Figure 4. Shinya’s method requires
between 155 and 213 seconds on a 150 MHz IRIS Crimson R4400 depending on
the size of the circle of confusion on the majority of the image, as compared with
1321 seconds for the linear filtering method [18].

4 Blurring by Discrete Depth

Barsky et al. [2, 3] developed a method that blurs a scene with precise optics
to produce a realistic final image. The method divides a scene into many slices,
each slice containing pixels that share the same distance to the camera. Then it
blurs each slice of the scene separately, with the appropriate level of blur. Finally
the slices are combined for the final image.

The algorithm begins by separating the scene into discrete slices, according
to distance from the camera. Note that both size and blur are not linear in
distance, but they are approximately linear in diopters. Thus, the slices are not
positioned to be equally spaced in depth but rather they are located in equal
dioptric increments, ranging from the nearest depth of interest to the farthest.

The use of a scale that is linear in diopters ensures that blur will change
linearly with the number of depth filters so that large distances are not covered
with superfluous blur filters nor a paucity of them.

Humans can discriminate a change of approximately 1/8 diopter under op-
timal conditions; therefore, pixels within a slice may share a level of blur. Each
slice is thus blurred with a single blur filter, calculated from the IDF as described
in Section 2. Fast Fourier Transforms can be used in a relatively efficient method
for blurring a slice.



260 B.A. Barsky et al.

Fig. 5. Image-based blurring by discrete depths [2, 3]. In the left image the
foreground is in focus with the background blurred, and in the right image the
background is in focus with the foreground blurred.

Additionally, Barsky et al. [4] developed an alternate mechanism to obtain
an IDF by measuring a physical optical system. An instrument that measures
the path of light directed through an optical system is used to construct an IDF
for any given collection of lenses or a patient’s eye.

After each slice has been blurred, they are composited. To handle disconti-
nuities between the blur filters at different depths, linear interpolation between
the two resulting images is used to eliminate sharp transitions between depth
filters.

The algorithm requires 156 seconds to compute blur across 11 depth slices for
the teapot image in Figure 5 on a Apple G3 600 MHz iBook, which is significantly
faster than distributed ray tracing on modern hardware.

5 Light Field Techniques

Light field rendering [13] and lumigraph systems [9] are alternative general meth-
ods to represent the visual information in a scene from a collection of reference
images. Both techniques were proposed in 1996, and they share a similar struc-
tural representation of rays. Unlike model-based rendering, which uses the ge-
ometry and surface characteristics of objects to construct images, light field ren-
dering, as an example of image-based rendering techniques, resamples an array
of the reference images taken from different positions and generates new views
of the scene. These images may be rendered or captured from real scenes.

In 1995, McMillan and Bishop [15] proposed plenoptic modeling, based on the
plenoptic function, which was introduced by Adelson and Bergen [1]. A plenoptic
function is a five-dimensional function that describes the entire view from a
given point in space. The five dimensions comprise three parameters indicating
the position of the point, as well as a vertical and horizontal angle indicating
the direction of the ray from the particular point. Originally, the function also
contained wavelength and time variables. Treating time as constant and light
as monochromatic, the modeling ignores these two parameters. A light field,
described by Levoy and Hanrahan [13], is a 4D reduced version of the plenoptic



Camera Models and Optical Systems Used in Computer Graphics: Part II 261

L(u, v, s, t)

u s

v t

exit planeentrance plane

Fig. 6. 4D light field point. (Courtesy of Marc S. Levoy. Adapted from [13] c©
1996 ACM, Inc. Reprinted by permission.)

function. Light field rendering assumes the radiance does not change along a
line. Lines are parameterized by two coordinates of intersections of the lines on
each of two parallel planes in arbitrary positions: the entrance plane and the
exit plane. Figure 6 illustrates this parameterization. The system takes as input
an array of 2D images and constructs a 4D light field representation. It regards
the camera plane and the focal plane as the entrance and exit planes of the
two-plane parameterization, respectively. Each image is taken from a particular
point on the camera plane and stored in a 2D array (Figure 7). Thus, the light
field is the composition of the slices of the 2D images. Once the light field is
generated, the system can render a new image by projecting the light field onto
the image plane, given a camera position and its orientation.

One of the major challenges of this technique is to sample the light field.
Since the light field is discrete, only rays from the reference images are available.
When resampling the light field to form a new image, we must approximate
rays that are absent from the input images. This approximation may introduce
artifacts. Different methods have been suggested for interpolating rays to address
the problem. There is also some research focusing on computing the minimum
sampling rate of the light field required to reduce the artifacts, such as Lin et
al. [14] and Chai et al. [7]. Levoy et al.’s approach to interpolate a ray combines
the rays that are close to the desired ray using a 4D low pass filter. However,
this integration of rays is based on the assumption that the entire scene lies on
a single and fixed exit plane. Therefore, a scene that has a large range of depth
will appear blurred.

The lumigraph system, which was introduced by Gortler et al. [9], proposed
a different approach to reduce the artifacts arising from the sampling problem.
In the algorithm, the light field is alternatively called the lumigraph. The system
first approximates the depth information of the scene. Next, instead of using a
single exit plane as is the case in Levoy et al. [13], the lumigraph constructs a set
of exit planes at the intersections of the rays and the objects, and then projects
the rays to the corresponding planes. A basis function based on the depth infor-
mation is associated with each 4D grid point in the light field. The color value of
the desired ray is a linear combination of the color values of the nearby 4D points
weighted by the corresponding basis functions. The lumigraph system reduces
the artifacts by applying depth information; however, such information can be
difficult to acquire from images captured from real scenes.



262 B.A. Barsky et al.

Fig. 7. The visualization of a light field. Each image in the array represents the
rays arriving at one point on the camera plane from all points on the focal plane,
as shown at left. (Courtesy of Marc S. Levoy. Adapted from [13] c© 1996 ACM,
Inc. Reprinted by permission.)

Fig. 8. Isaksen’s parameterization uses a camera surface C, a collection of data
cameras Ds,t and a dynamic focal surface F . Each ray (s, t, u, v) intersects the
focal surface F at (f, g)F and is therefore named (s, t, u, v)F . (Courtesy of Aaron
Isaksen. Adapted from [11].)

In 2000, Isaksen [11, 12] developed the dynamically reparameterized light
field. This technique extended the light field and lumigraph rendering methods to
enable a variety of aperture sizes and focus settings without requiring geometric
information of the scene. The system associates each point on the camera plane
with a small camera, called a data camera (Figure 8). A image is taken from
each data camera at the corresponding point. To reconstruct a ray in the light
field, the system maps a point on the focal surface onto several data cameras.
This results in a ray for each selected data camera for the corresponding point
on the focal surface. A mapping function is defined to decide through which data
cameras the rays pass. Then the system applies a filter to combine the values of
the rays from all data cameras. To vary the aperture sizes, the system changes the
shape of the aperture filter. This changes the number of data cameras through
which the rays pass. The aperture filter is also used to apply depth information.



Camera Models and Optical Systems Used in Computer Graphics: Part II 263

Fig. 9. By changing the shape of the focal surface, the same image can be ren-
dered with varying parts in focus. (Courtesy of Aaron Isaksen [11].)

The rays from several data cameras pass through the aperture and intersect on
the focal surface. If the intersection is near the surface of the virtual object, the
ray will appear in focus; otherwise, it will not. On the other hand, the range of
the depth of field is limited by the number of data cameras on the camera surface.
A deeper scene requires more data cameras on the camera surface. Similar to
varying aperture sizes, the system changes the focal surface dynamically. The
sampling results in the same view of the scene with different focus, depending
on which focal surface is chosen. Figure 9 shows the results of the same image,
rendered with different focal surfaces. The light field input images are captured
by an Electrim EDC1000E CCD camera. Then, the new images are rendered by
PC rasterizers for Direct3D 7. The real-time renderer allows users to change the
location of the camera and the focal plane, and the aperture size in real time.

An important advantage of light field rendering techniques is the capability
of generating images without a geometric representation. Instead, the geometric
information is implicitly obtained from a series of reference images, taken from
the surrounding environment. Furthermore, rather than simply mapping rays to
pixel colors, these techniques map rays to rays and apply a prefiltering process,
which integrates over collections of nearby rays.

6 Realistic Lens Modeling in Interactive Computer
Graphics

Heidrich et al. [10] introduced an image-based lens model, which represents rays
as a light field and maps slices of the scene light field into corresponding slices
of the camera light field, instead of using ray tracing. This technique simulates
the aberration of a real lens and achieves hardware acceleration at the same
time. The model describes a lens as a transformation of the scene light field in
front of the lens into the camera light field between the lens and the film. Due
to the aberration of the lens, rays from a grid on the film do not intersect in
a single point on the image-sided surface of the lens system. In this case, the
mapping cannot be described as a single perspective projection. A virtual cen-
ter of projection (COP) is approximated for each grid on the film. The system



264 B.A. Barsky et al.

calculates the angle between the original rays and those generated by the per-
spective transformation through the corresponding calculated virtual COP. If
the angle is small enough, the system continues the approximation on the next
grid; otherwise, the grid is subdivided and the system calculates a virtual center
of projection and repeats the same process for each subgrid. Eventually, all slices
of the camera light field, are combined with weights relative to the radiometry
of the incoming rays to form the final image. In addition to realistic modeling of
the lens, another important contribution of this technique is its application in
interactive computer graphics. Light fields, which are composed of 2D images,
can be easily generated by computer graphics hardware at high speeds. Once
the light field is sampled, a final image is ready to be rendered. Heidrich’s ex-
periments generate images on a RealityEngine2 using 10 sample points on the
lens with approximately 14 frames per second. The grid size on the film plane is
10 x 10 polygons.

7 Summary and Future Directions

This paper covered the theory underlying lens systems that add realistic vision
and camera effects to a scene. There are both object space and image space
techniques, and they have different tradeoffs with respect to blur quality, speed,
and realism. Future directions of research may involve extending Potmesil and
Chakravarty’s technique to improve object identification and occlusion detection
when adding blur to a prerendered image. Likewise, modifying Heidrich et al.’s
technique for rendering a lens with arbitrary geometry would result in a signif-
icantly faster technique for rendering fish-eye distortions and other distortions
that cannot be approximated with a thick lens. Other directions of future re-
search could include automatically determining how many rays or lens sample
points are necessary for a given image quality in the Kolb et al. and Heidrich et
al. techniques, respectively.

Acknowledgments

The authors would like to thank Adam W. Bargteil, Billy P. Chen, Shlomo
(Steven) J. Gortler, Aaron Isaksen, and Marc S. Levoy for their useful discussions
as well as Mikio Shinya and Wolfgang Heidrich for providing figures.

References

[1] E.H. Adelson and J.R. Bergen. Computational Models of Visual Processing. The
MIT Press, Cambridge, Mass., 1991.

[2] Brian A. Barsky, Adam W. Bargteil, Daniel D. Garcia, and Stanley A. Klein.
Introducing vision-realistic rendering. In Paul Debevec and Simon Gibson, editors,
Eurographics Rendering Workshop, pages 26–28, Pisa, June 2002.

[3] Brian A. Barsky, Adam W. Bargteil, and Stanley A. Klein. Vision realistic ren-
dering. Submitted for publication, 2003.



Camera Models and Optical Systems Used in Computer Graphics: Part II 265

[4] Brian A. Barsky, Billy P. Chen, Alexander C. Berg, Maxence Moutet, Daniel D.
Garcia, and Stanley A. Klein. Incorporating camera models, ocular models, and
actual patient eye data for photo-realistic and vision-realistic rendering. Submit-
ted for publication, 2003.

[5] Brian A. Barsky, Daniel R. Horn, Stanley A. Klein, Jeffrey A. Pang, and Meng
Yu. Camera models and optical systems used in computer graphics: Part I, Object
based techniques. In Proceedings of the 2003 International Conference on Com-
putational Science and its Applications (ICCSA’03), Montréal, May 18–21 2003.
Second International Workshop on Computer Graphics and Geometric Model-
ing (CGGM’2003), Springer-Verlag Lecture Notes in Computer Science (LNCS),
Berlin/Heidelberg. (These proceedings).

[6] Max Born and Emil Wolf. Principles of Optics. Cambridge University Press,
Cambridge, 7th edition, 1980.

[7] Jin-Xiang Chai, Xin Tong, and Shing-Chow Chan. Plenoptic sampling. In Kurt
Akeley, editor, Proceedings of ACM SIGGRAPH 2000, pages 307–318, New Or-
leans, July 23–28 2000.

[8] Yong C. Chen. Lens effect on synthetic image generation based on light particle
theory. The Visual Computer, 3(3):125–136, October 1987.

[9] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen.
The lumigraph. In Holly Rushmeier, editor, ACM SIGGRAPH 1996 Conference
Proceedings, pages 43–54, New Orleans, August 4–9 1996.

[10] Wolfgang Heidrich, Philipp Slusallek, and Hans-Peter Seidel. An image-based
model for realistic lens systems in interactive computer graphics. In Wayne A.
Davis, Marilyn Mantei, and R. Victor Klassen, editors, Proceedings of Graphics
Interface 1997, pages 68–75. Canadian Human Computer Communication Society,
May 1997.

[11] Aaron Isaksen. Dynamically reparameterized light fields. Master’s thesis, Depart-
ment of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, Cambridge, Mass., November 2000.

[12] Aaron Isaksen, Leonard McMillan, and Steven J. Gortler. Dynamically reparame-
terized light fields. In Kurt Akeley, editor, Proceedings of ACM SIGGRAPH 2000,
pages 297–306, New Orleans, July 23–28 2000.

[13] Marc Levoy and Pat Hanrahan. Light field rendering. In Holly Rushmeier, edi-
tor, ACM SIGGRAPH 1996 Conference Proceedings, pages 31–42, New Orleans,
August 4–9 1996.

[14] Zhouchen Lin and Heung-Yeung Shum. On the numbers of samples needed in
light field rendering with constant-depth assumption. In Computer Vision and
Pattern Recognition 2000 Conference Proceedings, pages 588–579, Hilton Head
Island, South Carolina, June 13–15 2000.

[15] Leonard McMillan and Gary Bishop. Plenoptic modeling: An image-based ren-
dering system. In ACM SIGGRAPH 1995 Conference Proceedings, pages 39–46,
Los Angeles, August 6–11 1995.

[16] Michael Potmesil and Indranil Chakravarty. Synthetic image generation with a
lens and aperture camera model. ACM Transactions on Graphics, 1(2):85–108,
April 1982. (Original version in ACM SIGGRAPH 1981 Conference Proceedings,
Aug. 1981, pp. 297-305).

[17] Przemyslaw Rokita. Fast generation of depth-of-field effects in computer graphics.
Computers & Graphics, 17(5):593–595, September 1993.

[18] Mikio Shinya. Post-filtering for depth of field simulation with ray distribution
buffer. In Proceedings of Graphics Interface ’94, pages 59–66, Banff, Alberta,
May 1994. Canadian Information Processing Society.


	Introduction
	Image-Based Blur
	Ray Distribution Buffer
	Blurring by Discrete Depth
	Light Field Techniques
	Realistic Lens Modeling in Interactive Computer Graphics
	Summary and Future Directions

