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Abstract. Images rendered with traditional computer graphics tech-
niques, such as scanline rendering and ray tracing, appear focused at all
depths. However, there are advantages to having blur, such as adding
realism to a scene or drawing attention to a particular place in a scene.
In this paper we describe the optics underlying camera models that have
been used in computer graphics, and present object space techniques for
rendering with those models. In our companion paper [3], we survey im-
age space techniques to simulate these models. These techniques vary in
both speed and accuracy.

1 Introduction

The goal of increasing realism fuels progress in computer graphics. However,
perfect realism is impossible to achieve simply due to the number of interactions
that occur when sending light into a scene and collecting the results on a discrete
plane. The human eye can discern many details; thus, humans can notice the
surreal clarity of most computer-generated scenes. In particular, images often
lack depictions of focus, blur, optical aberrations, and depth of field. This paper
illustrates the concepts behind modeling computer graphics with a lens system.

The rendering of a 3D scene requires transforming from object space to image
space. In object space, the entire geometry of the scene, with all the materials
and surfaces, is present. This transformation is parameterized by a camera angle
and location. There are various algorithms that can be used to translate the 3D
geometry into a final, 2D image. When the scene is transformed into a 2D image,
it often retains a depth map which contains distance measurements to the camera
at any given pixel; this may be used for additional post-processing algorithms.
Two ubiquitous methods to translate a 3D model in object space into a 2D image
are scanline rendering and ray tracing. However, images generated with these
methods are rendered in focus at all distances, as if photographed through a
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pinhole camera with an infinitely tiny aperture. Thus, these standard rendering
techniques cannot convey focus nor represent arbitrary lens configurations.

The rendering of images with focal blur is an interesting and important field
of research in computer graphics. Several techniques have been proposed to
model camera lens systems to varying degrees of accuracy. They range from
object-based modifications to ray tracing and scanline rendering to image-based
techniques that convolve and otherwise distort an image after it has been ren-
dered. We discuss object based techniques in this paper, and image based tech-
niques in our companion paper [3|, published later in these proceedings. Cur-
rently, these techniques offer varying realism and speed in rendering images
with camera models. Before studying them, some background on optics will be
reviewed.

2 Camera Models

Several camera models have been employed in computer graphics to approximate
physical optical systems. Although each has distinctive qualities and produces
characteristically different images, they all share some common traits.

A camera model simulates the capture of light from a three-dimensional
scene in object space onto a two-dimensional image, or image space. Most models
contain or approximate a system of parallel lenses such as that of a camera or
the eye. An axis that passes through the geometric center of the system of lenses
is called the optical azis. In computer graphics, the center of a single lens system
is sometimes called the center of projection (COP).

Objects in the scene are projected through the lens system to form an image
located on the opposite side of the system. Each lens has an aperture which
defines the area through which light is allowed to pass to the image.

Although rendering models usually consider an image plane in front of the
lens system when forming an image, camera models consider a film plane behind
the lens system. Like physical optical systems, the image formed on the film plane
is inverted. An appropriate image plane can be derived from the location of the
film plane in some camera models. The field of view is parameterized by the size
of the film plane.

In optics, the standard unit of lens power is the diopter [I], a unit which is
measured in inverse meters. Although the amount blur is not linear in distance,
it is approximately linear in diopters.

2.1 Camera Obscura (Pinhole Camera)

The standard rendering algorithms in computer graphics are equivalent to mod-
eling a camera obscura or pinhole camera. In this model, all the light rays from
the scene pass through a single point, called the center of projection, or through
a lens with an infinitesimal aperture.

Since only a single light ray cast from each point in the scene can pass through
the COP regardless of its location in space, each point will be rendered exactly
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Fig. 1. Thin lens model.

once on the film plane. This causes all objects in the scene to appear in sharp
focus on the image produced. The pan of the camera can be parameterized by
the location of the film plane along the axis.

This model could not be realized physically since in reality, a point-sized
aperture would produce an image on the film plane that would be too dim to
observe. However, simply reversing this model yields a ray tracer, where a ray
is projected from the COP through each pixel on the image plane and then the
colors of the materials it intersects determine the color of the particular pixel.
Analytic techniques have also been developed using this model to project objects
to image space efficiently [17].

2.2 Thin Lens Approximation

In reality, all lenses have a finite aperture, and hence each point in the scene
emits a cone of light which is visible to the lens. In geometric optics, when light
rays encounter the boundary between two media, the angle through which light
is refracted can be calculated using Snell’s law. Since real lenses are composed
of a refractive material that has a finite and non-constant thickness, Snell’s law
can be used to project light rays through a lens.

The thin lens approximation instead assumes that even though lenses have a
finite aperture, they have an infinitesimal thickness. In general, thin lenses are
also spherical in form, either convex or concave, and ideal. A lens is ideal if it
has the property that the change in slope for a ray passing through the lens is
proportional to the distance from the center of the lens to the point at which
the ray encounters it [I]. The plane that is normal to the optical axis at the lens
is called the principal plane (Figure [I).

Along the optical axis of the lens is the focal point, F. Formally, F' is an
axial point having the property that any ray emanating from it or proceeding
toward it travels parallel to the axis after refraction by the lens [8]. A secondary
focal point, F’ exists on the opposite side of the lens. Analogously, this point
is defined as an axial point having the property that any incident ray traveling
parallel to the axis will proceed toward F” after refraction (Figure [).

The distance between the center of the lens and a focal point is called the
focal length. If the medium is same on both sides of the lens (hence the indices of
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refraction, n and n’/, are equal) and if the lens is symmetric, then these distances,
denoted by f and f’ are the same.
The law governing image formation through a thin lens in Gaussian form is:

tu= (1)

where [ is the distance from the object to the lens, I’ is the distance from the lens
to the image, and f is the focal length (Figure[T]). By solving for I’ in equation
(@), we can derive that the projection of an object at a distance [ in front of the
lens will converge at a distance

fl
U = 2
L 2)
behind the lens.
The f-stop (or F number), which we denote as fstop, is defined as the ratio of

the focal length to the diameter of the aperture of the lens, denoted by agiam:

fstop - f . (3)
Qdiam

When focusing at a particular distance dfocus in front of the principal plane,
there is a specific location d’, ., . where the film plane must be located such that
each point that is at distance doeys forms its image on that plane (Figure [2).
The plane perpendicular to the axis at dfocus is called the focal plane. To derive
the distance d},., s behind the lens to place the film plane, we substitute dfocus

and d},,,, for [ and I, respectively, in equation (@), yielding:
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Fig. 2. The circle of confusion c¢g;qm and blur angle @ in the thin lens model.
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A point that is closer to the lens than the focal plane projects behind the
film plane, whereas the projection of a point farther from the lens than the focal
plane converges in front of the film plane. Thus, each of these projected points
forms a circle rather than a point on the film plane. This is called the circle of
confusion or blur disk, and it measures how defocused an image point is. Using
similar triangles [12] in Figure[2], we can deduce from equations () and (@) that
the diameter of the circle of confusion cg;qm for a particular point is:

U —d
Cdiam = Qdiam l/fOCus ) (5)

In optics, it is often simpler to measure blur in terms of the blur angle rather
than the diameter of the circle of confusion. The blur angle, which we denote
as 0, is the angular size, measured in radians, of a given point’s blur [I]. From
Figure 2] it can be seen that:

0 Cdiam/2
tan 5 = . . (6)

When 6 is small, as is usually the case for normal lenses, tan g ~ g; thus equation
(6) can be approximated as:

0 — Cdiam ) (7)

!
focus

Substituting equation (@) for cgiam yields:

U —d
focus
Ud' ’ ()

focus

1 1
0 = Adiam ( , - l’) . (9)
focus

11
' dly o

to a change in the location of the object or a change in the location of the
image. This is called diopters of defocus and is denoted by Dgefocus [1]. Using
this notation, equation (@) can be written as:

0= Qdiam

Rearranging,

The quantity in parentheses measures the change in curvature due

0= adiadeefocus . (10)

2.3 Thick Lens Approximation

The thin lens approximation is appropriate for the case where the thickness of
the lens is small relative to the focal length. However, some lenses do not satisfy
this assumption and most lens systems that comprise multiple “lens elements,”
like those in photographic systems, cannot be accurately approximated by a
single thin lens. However, it is sometimes possible to treat these systems as ideal
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Fig. 3. Thick lens model. The dashed lines show the actual paths of rays passing
through the lens. The dotted lines demonstrate that we can calculate exit direc-
tions for the rays in a similar manner as in the thin lens case with the addition
of a translation between the principal planes.

thick lenses. A thick lens is usually described by a single homogeneous lens with
two spherical surfaces separated by an appreciable distance.

A thick lens can be characterized by primary and secondary principal planes,
H and H’, and their corresponding primary and secondary focal points, F' and
F’. The two principal planes are defined in the same manner as was the single
one in the case of the thin lens. The primary principal plane is the plane that
is normal to the optical axis where any ray cast from the primary focal point
F intersects the corresponding axis-parallel ray exiting the lens. The secondary
principal plane is defined similarly with respect to the secondary focal point F’.

As with the thin lens, the primary and secondary focal lengths, f and f’
are defined to be the distances from H to F, and from H’ to I, respectively
(Figure B]).

The principal planes are usually determined by tracing rays through the lens
system, although they can also be calculated analytically using lens thickness for-
mulas [I0]. Once we know the location of the principal planes and focal lengths,
we can determine image formation through the lens. Assuming that the medium
is the same on both sides of the lens, the formula for image formation is the
same as equation (1) [8]. However, since there are two principal planes instead
of only one (as there is in the thin lens model), here | and I’ are the distances
from H to the object, and from H’ to the image, respectively.

Thus, the circle of confusion for a point can be derived in a similar manner to
the derivation for the thin lens model (Section [Z2)). We merely have to translate
each ray entering the lens from the primary to secondary principal planes (in
parallel to the axis) before applying the thin lens equations to determine where
the corresponding image forms.

2.4 Full Lens Systems

Kolb et al. [I0] argued that the previous idealized models cannot accurately
simulate the behavior of particular physical optical systems. They developed a
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Fig. 4. Example of a full lens system. The black stop is the aperture stop for
this particular point on the film plane since it most limits the incoming parallel
rays of light. The exit pupil, shown by the dotted lines, defines the cone of rays
from the point that pass unobstructed through the lens. (Courtesy of Craig E.
Kolb. Adapted from [10] © 1995 ACM, Inc. Reprinted by permission.)

Fig. 5. Full lens simulations can exhibit aberrations that are not possible with
thick lens simulations, such as appear in this image taken with a 16mm fish-eye
lens. The image shows the lens’ signature barrel distortion. (Courtesy of Craig
E. Kolb [10] © 1995 ACM, Inc. Reprinted by permission.)

rendering technique based on a physically-based camera model that simulated a
system of lenses (Figure HJ).

A lens system usually comprises a series of spherical lenses and stops centered
on the optical axis. A stop is an opaque element with a approximately circular
opening that permits the passage of light. The stop that most limits the passage
of rays through the system is termed the aperture stop. One or more of the lenses
in the system usually moves relative to the film plane to change the focal point
of the system. One advantage of using a lens system model is that moving a lens
changes the field of view as in a physical system. The previous approximations
assume that the film plane is always located at the secondary focal point and the
lens can be focused at any arbitrary distance without change of configuration.

Full lens geometries can simulate an array of specific physical systems, such
as that depicted in Figure [B.

Image formation through a lens system is described by Snell’s law. Since
the lens geometry is arbitrary, generalizations are not possible, although char-
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acteristics of the system such as the exit pupil can be derived to aid simulation
algorithms.

3 Distributed Ray Tracing

Super-sampling or oversampling was originally employed as a mechanism for
dampening aliasing artifacts in ray traced images by increasing the sampling rate
to better approximate the analytic model of a scene. Cook et al. [5] demonstrated
that distributing ray samples could be used to model other “fuzzy phenomena”
as well, including depth of field and motion blur.

Actual lenses have a finite aperture and project cones of light from the scene
to each point on the film plane, as described in Section [2. To approximate the
cone using the thin lens approximation, the image plane is placed at the focal
plane. In computer graphics, the traditional pinhole model traces a single ray
from the COP to each pixel on the focal plane, whereas a distributed approach
traces rays from many points on the principal plane to each pixel on the im-
age/focal plane. Cook et al. showed that this model accurately captures the
circle of confusion that was described in Section 222

Although this simple model generates photographic-like effects, Kolb et al. [10]
argued that the model is not precise enough to accurately approximate specific
physical optical systems. They proposed a similar distributed ray tracing tech-
nique that traces rays directly through systems of lenses (a similar rendering
model was subsequently described by Barsky et al. [2] for a broader set of ap-
plications). Their algorithm traces rays from each pixel on the film plane to the
surface of the lens in front of it and computes new directions for rays using
Snell’s law. Rays travel through each lens in the system before exiting the sys-
tem to then sample the scene. Their full lens model accounts for radiometry as
well. The ray tracing algorithm captures the blocking of light by lens elements
when rays pass through the system at large angles to the axis; thus, the images
produced will correctly exhibit vignetting and other exposure effects.

Figure B compares images synthesized using distributed ray tracing with
different lens models.

Distributed ray tracing methods for capturing optical effects such as depth
of field have several benefits. First, since these approaches integrate these effects
with shading and visible surface calculations, they more accurately solve the
depth of field problem and do not have problems dealing with occlusion. Second,
these methods are easily implemented by simply ray tracing a stochastically
chosen set of rays and then averaging the results.

Nevertheless, there are several considerations when applying these methods.
The most significant is the problem of deciding the number and nature of sam-
ples to be distributed over the lens to obtain an accurate value for each pixel
on the image plane. Cook [4] addressed the problems that accompanied uniform
sampling at regularly spaced sample points by introducing stochastic sampling,
or sampling at random intervals. Dippe and Wold [6] analyzed two such sam-
pling techniques: Poisson and jitter sampling. Lee et al. [T1] developed a statis-
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Fig. 6. Images synthesized using distributed ray tracing using a thin lens model
(left), thick lens model (center), and a full lens system (right). The full lens
simulation exhibits noticeable barrel distortion. (Left image courtesy of Robert
L. Cook [5]. Center and right images courtesy of Craig E. Kolb [10]. All images
© 1995 ACM, Inc. Reprinted by permission.)

tical model to probabilistically limit the error in sample variance and discussed
stratified sampling techniques to limit the number of samples required for good
approximations. Kajiya [9] discussed a Monte Carlo algorithm that he termed
uniform sequential sampling for sampling the aperture of a lens. This method
is compatible with stratified sampling techniques and converges to the analytic
model of a scene. Kolb et al. [10] used a stratified strategy based on a mapping
of concentric squares to concentric circles.

The sampling problem is magnified by the multi-dimensional nature of the
samples. For example, in Kolb et al.’s algorithm, the origins of sample rays must
be distributed on the film plane, and target points must be distributed on the
nearest lens in the system. To capture motion blur, the dimension of time must
be added to the sample space. Hence, the number of samples required for a good
approximation can become prohibitive.

Kolb et al. found that 16 rays per pixel were required for their images. Al-
though tracing rays through their lens systems only consumed 10% of the ren-
dering time, a number of additional ray samples were required. For example,
the center image in Figure[f required about 90 minutes to compute on a Silicon
Graphics Indigo2.

Furthermore, distributed ray tracing techniques are only applicable when
the 3D geometry to a scene is available. In addition, even though these methods
correctly model certain attributes of physical optical systems, they do not model
arbitrary (position or time dependent) lens aberrations nor many wavelength
dependent effects such as chromatic aberration. Finally, all such systems are
assumed to be aberration-limited and thus ignore the effects of diffraction.

4 Summary

In this paper, we described the optics underlying camera models that have been
employed in computer graphics, and presented object space techniques for ren-
dering with those models. The models range from the common pinhole camera to
completely specified lens system geometries. Rendering techniques that use these
models trade off complexity and efficiency for accuracy and realism. In our com-
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panion paper [3], published later in these same proceedings, we survey several
1mage space techniques to simulate these models, and address topics including
linear filtering, ray distribution buffers, light fields, and simulation techniques
for interactive applications.
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